
Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie – Prof. Aßmann - Softwaretechnologie II

21) Functional and Modular Design

• Prof. Dr. U. Aßmann
• Technische Universität

Dresden
• Institut für Software- und

Multimediatechnik
• http://st.inf.tu-

dresden.de/teaching/swt2
• Version 16-0.1 17.12.16

1. Functional Design
2. Modular Design (Change-

Oriented Design)
3. Use-Case Based Design

Softwaretechnologie II

Obligatory Readings

Ø S. L. Pfleeger and J. Atlee:
Software Engineering: Theory and Practice.
Pearson. 2009.
• Chapter 5 (Designing the Architecture)

Ø C. Ghezzi, M. Jazayeri and D. Mandrioli:
Fundamentals of Software Engineering.
Prentice Hall. 1992.
• Chapter 4 (Design and Software Architecture)

Ø M. Shaw and D. Garlan:
Software Architecture: Perspectives on an Emerging Discipline. Prentice Hall, 1996.

2

Softwaretechnologie II

Literature

Ø [Parnas] David Parnas. On the Criteria To Be Used in Decomposing
Systems into Modules. Communications of the ACM Dec. 1972 (15) 12.

P
ro

f.
 U

. A
ßm

an
n

3

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie – Prof. Aßmann - Softwaretechnologie II

21.1 FUNCTIONAL DESIGN

Prof. U. Aßmann Modular Design 4

Softwaretechnologie II

Function-Oriented Methods

Ø Examples:
Ø Stepwise function refinement resulting in function trees
Ø Modular decomposition with information hiding (Change-oriented

modularization, Parnas)
Ø Meyers Design-by-contract: Contracts are specified for functions with

pre- and postconditions
Ø (see OCL lecture)

Ø Dijkstra’s and Bauer’s axiomatic refinement (not discussed here)

P
ro

f.
 U

. A
ßm

an
n

5

Which functionality will the system have?
What are the subfunctions of a function?

Softwaretechnologie II

A Start for a Function Tree

Ø How to design the control software for a tea automaton?

P
ro

f.
 U

. A
ßm

an
n

6

produce
tea

Produce Tea

Softwaretechnologie II

First Refinement of a Function Tree
P

ro
f.

 U
. A

ßm
an

n

7

put
tea

in pot

add
boiling
water

wait

composition

produce
tea

Produce Tea
.. is composed of ..
Put tea in pot
Add boiling water
Wait

Softwaretechnologie II

Second Refinement of a Function Tree
P

ro
f.

 U
. A

ßm
an

n

8

put tea
in pot

add
boiling
water

wait

fetch
tea from
tea box

open
pot

close
pot

produce
tea

Produce Tea
Put tea in pot
Fetch tea from tea box
Open pot
Close pot
Add boiling water
Wait

Softwaretechnologie II

Produce Tea
Put tea in pot
Fetch tea from tea box
Open pot
Close pot
Add boiling water
Boil water
Open pot
Pour water in
Close pot
Wait

Third Refinement of a Function Tree
P

ro
f.

 U
. A

ßm
an

n

9

put tea
in pot

add
boiling
water

wait

fetch
tea from
tea box

open
pot

close
pot

produce
tea

boil
water

open
pot

close
pot

pour
water
in pot

Softwaretechnologie II

Function Trees

Ø Function trees can also be derived by a 1:1 mapping from a functional
requirements tree (see ZOPP requirements lecture)

Ø Usually, for a system several function trees are develop, starting with top-
level functions in the context model

Ø Stepwise Refinement works usually top-down (Hierarchic decomposition)
Ø Bottom-up strategy (composition) possible
Ø Middle-out strategy blends composition and decomposition
Ø Development of the “subfunction-of” (“call”) relationship: a part-of relationship for

functions: the function has which parts (subfunctions)?
Ø Usually implemented by call relationship (call graph)

Ø Syntactic stepwise refinement is indifferent about the semantics of the
refined model

Ø Semantic stepwise refinement proves that the semantics of the program
or model is unchanged
Ø Systems developed by semantic refinement are correct by construction

Ø Functions are actions, if they work on visible state
Ø In functional design, state is disregarded
Ø State is important in action-oriented design, actions are usually related to state

transitions!

P
ro

f.
 U

. A
ßm

an
n

10

Softwaretechnologie II

Function Polyhierarchies

Ø If subfunctions are shared, polyhierarchies result with several roots and
shared subtrees

P
ro

f.
 U

. A
ßm

an
n

11

put tea
in pot

add
boiling
water

wait

fetch
tea

from
tea box

open
pot

close
pot

produce
tea

boil
water

open
pot

close
pot

pour
water
in pot

put
coffee
in pot

fetch
Coffee
from

tea box

produce
coffee

Softwaretechnologie II

Function Nets

Ø Functions are arranged in a directed acyclic graph

P
ro

f.
 U

. A
ßm

an
n

12

P
ro

f.
 U

. A
ßm

an
n

put tea
in pot

add
boiling
water

wait

fetch
tea

from
tea box

open
pot

close
pot

produce
tea

boil
water

open
pot

close
pot

pour
water
in pot

put
coffee
in pot

fetch
Coffee
from

tea box

produce
coffee

Softwaretechnologie II

Other Trees with Other Part-Of Relationships

Ø Many concepts can be stepwise refined and decomposed. Hierarchic
decomposition is one of the most important development methods in
Software Enineering:

Ø Problem trees
Ø Goal trees
Ø Acceptance test trees
Ø Requirements trees

• Function trees
• Feature trees (function trees describing grouping, variability and extensibility)

Ø Attack trees
Ø Fault trees
Ø ….
Ø The development is always by divide and conquer.
Ø Think about: Which part-of relationships do they develop?

P
ro

f.
 U

. A
ßm

an
n

13

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie – Prof. Aßmann - Softwaretechnologie II

21.1.2 MODULAR COMPOSITION:
GROUPING MODULES AND COHESION

Prof. U. Aßmann Modular Design 14

Softwaretechnologie II

Grouping Functions to Modules to Support Cohesion

Ø Group functions according to cohesion: “which function belongs to which
other function?”

Ø Minimize coupling of modules
Ø Maximize coherence: encapsulate dependencies within a module

P
ro

f.
 U

. A
ßm

an
n

15

Module Tea Automaton {
Produce Tea

Add boiling water
Wait

}

Module Tea Box {
Fetch tea from tea box

}

Module Water Boiler {
Boil water

}

Module Pot {
Open pot
Put tea in pot
Pour water in pot
Close pot

}

Softwaretechnologie II

Grouping Functions to Modules or Classes in UML

Ø Functions can often be grouped to objects (object-oriented encapsulation)
Ø Then, they can be actions working on the state of the object (begin of

object-orientation)

P
ro

f.
 U

. A
ßm

an
n

16

<<module>>
TeaAutomaton

produceTea()
addBoilingWater()
wait()

<<module>>
WaterBoiler

TeaBox

fetchTea()

Pot

open()
putIn(Tea)
pourIn(Water)
close()boilWater()

Softwaretechnologie II

Heuristics and Best Practices

Ø Don't group too many items onto one abstraction level or into one module
(slim interface principle)

Ø Technical modules or classes (classes that do not stem from domain
modeling) can be found in similar ways, by grouping cohesive functions
together

Ø Identify material modules or classes with CRUD interfaces (see TeaBox and
Pot):
Ø Create
Ø Read
Ø Update
Ø Delete

Ø Identify tool modules or classes with “active functions”:
• List<Material>
• Edit<Material>
• Navigate<Material>

Ø Identify command modules or classes (Design Pattern Command)
• Tools are specific commands, working on materials

P
ro

f.
 U

. A
ßm

an
n

17

Softwaretechnologie II

Result: Call-Based Architectural Style

Ø Functional design leads to call-based architectural style with statically
known callees (static call graph)

P
ro

f.
 U

. A
ßm

an
n

18

Module
Module

Module

System

call

return

call

return

callreturn
call

return

cal
l
return

Softwaretechnologie II

Grouping Other Trees with other Part-Of Relationships

Ø Any hierarchic relationship can be grouped to modules based on cohesion
Ø Problem trees è problem modules
Ø Goal trees è goal modules
Ø Acceptance test trees è acceptance test modules
Ø Feature trees (describing variability, extensibility) è Feature modules
Ø Attack trees è attack modules
Ø Fault trees è fault modules
Ø ….

P
ro

f.
 U

. A
ßm

an
n

19

Softwaretechnologie II

Why is Function-Oriented Design Important?

Ø Implementation of function trees in a functional language
Ø ... or a modular imperative language, e.g., Modula, C, or Ada-83.

In some application areas, object-oriented design and languages have severe
disadvantages:
Ø Employment in safety-critical systems:

Ø Proofs about the behavior of a system are only possible if the architecture and the
call graph are static. Then they can be used for proofs

Ø Due to polymorphism, object-oriented systems have dynamic architectures (don't
program your AKW with Java!)

Ø In embedded and real-time systems:
Ø Object-oriented language implementations usually are slower than those of

modular languages
Ø ... and eat up more memory

Ø In high-speed systems:
Ø Operating systems, database systems, compilers, ...

P
ro

f.
 U

. A
ßm

an
n

20

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie – Prof. Aßmann - Softwaretechnologie II

21.2 CHANGE-ORIENTED MODULARIZATION
WITH INFORMATION HIDING
(VARIABILITY)

(Rep. from ST-1, left out here)

Prof. U. Aßmann Modular Design 21

Softwaretechnologie II

What is a Module?

Ø Software should, according to the divide-and-conquer principle, also
physically be divided into basic parts, modules
Ø A module groups a set of functions or actions
Ø A module can be developed independently

Ø errors can be traced down to modules
Ømodules can be tested before assembling

Ø A module can be exchanged independently
Ø A module can be reused

Ø The terms module and component mean pretty much the same
Ø Often, a module is a programming-language supported component
Ø Here: a module is a simple component
Ø In the past, different component models have been developed
Ø A component model defines features of components, their

compositionality, and how large systems are built with them
(architecture)

Ø In course “Component-based SE”, we will learn about many different
component models

P
ro

f.
 U

. A
ßm

an
n

22

Softwaretechnologie II

How To Modularize a System?

Ø Parnas principle of change-oriented modularization (information hiding)
[Parnas, CACM 1972]:

Ø 1) Fix all design decisions that are likely to change
Ø 2) Attach each of those decisions to a new module

Ø The design decision becomes the secret of a module (called module secret)

Ø 3) Design module interface that does not change if module secret changes

P
ro

f.
 U

. A
ßm

an
n

23

Softwaretechnologie II

Information Hiding

Ø Information hiding relies on module secrets
Ø Possible module secrets:

Ø How the algorithm works, in contrast to what it delivers
Ø Data formats
Ø Representation of data structures, states
Ø User interfaces (e.g., AWT)
Ø Texts (language e.g., gettext library)
Ø Ordering of processing (e.g., design patterns Strategy, Visitor)
Ø Location of computation in a distributed system
Ø Implementation language of a module
Ø Persistence of the data

P
ro

f.
 U

. A
ßm

an
n

24

Softwaretechnologie II

Module Interfaces

Ø Should never change!
Ø Well, at least be stable

Ø Should consist only of functions
Ø State should be invisible behind interfaces
Ø Direct access to data is efficient, but cannot easily be exchanged

Ø e.g., emply set/get methods for accessing fields of objects
Ø Should specify what is

Ø Provided (exported)
Ø Required (imported)

P
ro

f.
 U

. A
ßm

an
n

25

Softwaretechnologie II

Different Kinds of Modules

Ø Functional modules (without state)
Ø sin, cos, BCD arithmetic, gnu mp,...

Ø Data encapsulators
Ø Hide data and state by functions (symbol table in a compiler)
Ø Monitors in the parallel case

Ø Abstract Data Types
Ø Data is manipulated lists, trees, stacks, ..
Ø New objects of the data type can be created dynamically

Ø Singletons
Ø Modules with a singular instance of a data structure

Ø Data-flow processes (stream processors, filters)
Ø Eating and feeding pipelines

Ø Objects
Ø Modules that can be instantiated

P
ro

f.
 U

. A
ßm

an
n

26

Softwaretechnologie II

What Have We Learned?

Ø When designing with functions, use function trees and subfunction
decomposition

Ø When grouping to modules, fix module secrets
Ø The more module secrets, the better the exchange and the reuseability

Ø Change-oriented design means to encapsulate module secrets
Ø Functional and modular design are still very important in areas with hard

requirements (safety, speed, low memory)

P
ro

f.
 U

. A
ßm

an
n

27

Softwaretechnologie II

Conclusion of Information-Hiding Based Design
P

ro
f.

 U
. A

ßm
an

n

28

We have seen how important it is to focus on describing secrets rather than
interfaces or roles of modules.

When we have forgotten that, we have ended up with modules without clear
responsibilities and eventually had to revise our design.

[Parnas/Clements, The Modular Structure of Complex Systems, CACM]

Softwaretechnologie II

Conclusion of Information-Hiding Based Design (2)

Ø Product lines (product families) are a major business model for software
companies.

P
ro

f.
 U

. A
ßm

an
n

29

Modularity is the basis of all product lines.

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie – Prof. Aßmann - Softwaretechnologie II

21.3 FUNCTION-ORIENTED DESIGN
WITH USE-CASE DIAGRAMS

(repetition from ST-1)

Prof. U. Aßmann Modular Design 30

Softwaretechnologie II

Use Case Diagrams

Ø Use Case Diagram (UCD) can be used in functional design
Ø A Use Case Diagram consists of several use cases of a system
Ø A use case describes an application, a coarse-grain function or action of a system,

in a certain relation with actors
Ø A use case contains a scenario sketch

Ø Pseudocode text which describes the functionality
Ø Use Case diagrams can be used in Function-Oriented, Action-Oriented, or in

Object-Oriented Design

Ø From UCD, a function tree can be derived

P
ro

f.
 U

. A
ßm

an
n

Softwaretechnologie II

32

Example Service Station

Ø A Service Station has 4 tasks [Pfleeger]
Ø Parking
Ø Refueling
Ø Maintenance
Ø Preventive Maintainance

P
ro

f.
 U

. A
ßm

an
n

Parking

Refueling

Maintenance

Preventive
Maintenance

Customer Manager

<<extends>>

Softwaretechnologie II

33

Questions for Use Cases

Ø What is the system/subsystem?
Ø Who is Actor?

Ø A user
ØAn active object
ØA person
ØA system

Ø Must be external to the described system
Ø What are the Applications/Uses?
Ø What are the relations among

Use Cases
Ø Extends: Extend an existing

use case (Inheritance)
Ø Uses: Reuse of an existing

use case (Sharing)

P
ro

f.
 U

. A
ßm

an
n

Ø Which
Ø Users
Ø External systems
Ø Use
Ø Need

Ø The system for which tasks?
Ø Are tasks or relations to

complex?

Softwaretechnologie II

Refinement Service Station

Ø We introduce an abstraction of the services

P
ro

f.
 U

. A
ßm

an
n Parking

Refueling
Maintenance

Billing
ServicesCustomer

Manager

Credit Card
System

Preventive
Maintenance

Softwaretechnologie II

Second Refinement Service Station
P

ro
f.

 U
. A

ßm
an

n

Parking
Refueling

Maintenance

Billing
Services

Customer

Manager

Credit Card
System

Printer
System

Accounting
Services

Preventive
Maintenance

Softwaretechnologie II

Third Refinement Service Station

Ø The <<includes>> relationship allows for decomposition of a use case.
<<includes>> is a form of <<part-of>>

P
ro

f.
 U

. A
ßm

an
n

Inspection

Customer

Manager

Diagnosis

Therapy
Technician

initiates

Recording
EffortsAccounting

Services

Maintenance

<<includes>>

Softwaretechnologie II

37

Consistency Checking Check List Use Case Diagrams

Ø One diagram
Ø Clarity
Ø Simplicity
Ø Completeness
Ø Match the stories of the customer?
Ø Missing actors?

Ø Several diagrams
Ø Which actions occur in several diagrams? Are they specified

consistently?
Ø Should actors from shared actions be replicated to other UCD?

P
ro

f.
 U

. A
ßm

an
n

Softwaretechnologie II

How To Go On from a Use Case Diagram

Ø There are several ways how to reach a design from a use case diagram
Ø Hierarchical refinement of the actions into UCD of second level, yielding

a reducible specification
ØDisadvantage of UCD: Hierarchical refinement is sometimes difficult,

because new actors have to be added
Ø Leads to a correction of the top-level UCD

Ø Action tree method: action-oriented method to refine the use case
actions with an action tree

Ø Collaboration diagram method: object-oriented method to analyse paths
in the use case diagram with communication (collaboration) diagrams
(see later)

P
ro

f.
 U

. A
ßm

an
n

Softwaretechnologie II

Hierarchical Refinement of a Use Case

Ø Often, new actors have to be added during refinement

P
ro

f.
 U

. A
ßm

an
n

Technician

Evaluate
inspection

data

Consult
other

experts

Technician

Consult
manual

Diagnosis

Diagnosis

new actor!!

Softwaretechnologie II

Deriving an Function Tree from a Use Case

Ø DomainTransformation: From a UCD, set up a function or action tree
Ø <<includes>> expresses a part-of hierarchy of function

Ø Refinement: Refine the functions by decomposition

P
ro

f.
 U

. A
ßm

an
n

Inspection Diagnosis Therapy

Watching Inspect
Error codes

Maintenance

Recording
Efforts

Combine
inspection
results

Consult
other
experts

..other..

Softwaretechnologie II

Benefits of Use Cases

Ø Use cases are good for
Ø Documentation
Ø Communication with customers and designers -> Easy
Ø Are started for the first layout of the structural model

Ø To find classes, their actions, and relations
Ø In eXtreme Programming (XP), use cases are called „stories“

Øwhich are written down on one muddy card
Ø collected
Ø and implemented one after the other

Ø XP does not look at all use cases together, but implements one after the
other

P
ro

f.
 U

. A
ßm

an
n

Softwaretechnologie II

21.4 Extensibility of Function Trees
P

ro
f.

 U
. A

ßm
an

n

42

Softwaretechnologie II

Change Points of Function Trees

Ø A function tree can have optional, variable and extensible parts (option
points, variation points, extension points)

P
ro

f.
 U

. A
ßm

an
n

43

Softwaretechnologie II

The End
P

ro
f.

 U
. A

ßm
an

n

44

