
Design Patterns and Frameworks
Dr.-Ing. Max Leuthäuser
INF 2081
http://st.inf.tu-dresden.de/teaching/dpf

Exercise Sheet No. 13 with Solutions
Software Technology Group
Institute for SMT
Department of Computer Science
Technische Universität Dresden
01062 Dresden

Patterns in Business

In this exercise we will look at patterns which are particularly relevant in the context of business appli-
cations. The first task is on the analysis level and looks at analysis patterns, while the later two tasks
look at design patters from a business application framework.

Task 13.1: Accountable Organizations

Organisations typically have a hierarchic structure, where sub-organisations report to bigger parts of the
organisation above. This structure must be represented at analysis time in order to develop a correct
model of the organisation.

1a) Task:

How can we represent an organisation with a single hierarchy? How can we model the rules governing
such a hierarchy?

Solution: This can essentially be done using the Composite pattern. Notice that, because this is
analysis, we do not care about implementation issues, so we do not need to distinguish between leaf and
composite nodes.

OrganisationOrganisation

CompanyCompany DepartmentDepartment Sales OfficeSales OfficeGroupGroup

parent

subsidiary

{hierarchy}

inv: subsidiary

->forall(oclIsKindOf (Department))

inv: subsidiary

->forall(oclIsKindOf (Group))

inv: subsidiary

->forall(oclIsKindOf (Sales Office))

As can be seen, we have attached constraints to the specific subclasses of Organisation to indicate the
structure of the hierarchy.

1b) Task:

Many organisations use different, overlapping hierarchies. For example, the Boston-based sub-group of
IT-management reports to the IT-management group, which reports to Technical Infrastructure, which

1



eventually reports to Executive Board. At the same time, the Boston-based sub-group of IT-management
is responsible for managing the company’s IT systems in Boston, so it reports to Boston branch’s technical
director, who reports to Boston branch’s board of management, who report to Executive Board. Thus,
the same organisational unit is involved in at least two organisational hierarchies in this company.

How can we model multiple hierarchies in an organisation? Where do the rules go?

Solution: The easiest way seems to be to simply add another association to the Organisation from
the last task:

OrganisationOrganisation

CompanyCompany DepartmentDepartment Sales OfficeSales OfficeGroupGroup

parent

subsidiary

{hierarchy}

local parent

local subsidiary

{hierarchy}

This approach is fine, as long as there are not too many hierarchies and the constraints structuring each
hierarchy do not become too complex. Keep in mind that we have left out the hierarchy constraints from
the above figure. Of course we would need constraints similar to the ones we had in the first subtask,
but this time for both hierarchies.

If there are more (or more complex) hierarchies, or if it looks like there might be, we can introduce
an explicit type to represent the Organisation Structure. For this, we split the information on
organisation structure into an Organisation Structure Type, representing general information about
one particular type of organisation structure (e.g., line management as discussed in the first subtask), and
an Organisation Structure, instances of which represent actual relations of a certain organisation-
structure type. This also allows us to represent additional information about each such link—for example,
the time period in which the link is to be valid. This solution is discussed as the Organization
Structure pattern in [1, Sect. 2.3].

OrganisationOrganisation

CompanyCompany

DepartmentDepartment

Sales OfficeSales Office

GroupGroup

parent

subsidiary

Organisation

Structure

Organisation

Structure

Organisation

Structure Type

Organisation

Structure Type
RuleRule

Time PeriodTime Period

An interesting aspect of this analysis model is that it makes most sense to place the hierarchy rules with
the organisation structure type now. This means all rules concerning one type of organisation structure

2



will all be collected in one place, so that changing the rules for one type of hierarchy is easy. Note that
this structure may get problematic as soon as changes to the actual organisation units happen often as
opposed to changes to the organisation hierarchies.

1c) Task:

Can the arguments and solutions given above be extended to persons dealing with organisations (or other
persons)? If yes, how?

Solution: Of course, people have relations with companies. These relations (e.g., contracts) are typically
about responsibility and accountability (and not necessarily about organisation structure only). They
may only exist for a certain period of time. Thus, we can transfer the concepts from above:

parent

subsidiary

AccountabilityAccountability

Accountability

Type

Accountability

Type
RuleRule

Time PeriodTime Period

PartyParty
OrganisationOrganisation

PersonPerson

This is discussed in [1] under the heading of Accountability. The complexity of this model has
increased, though, because there are many more types of accountability than of organisation structure,
only. To maintain overview of these concepts, it may be worthwhile to add a Party Type which can
be used to model which Parties Accountability instances of a certain Accountability Type may
connect. This essentially introduces a meta-level into our model.

parents

subsidiaries

AccountabilityAccountability

Accountability

Type

Accountability

Type
Party TypeParty Type

Time PeriodTime Period

PartyParty
OrganisationOrganisation

PersonPerson

parent

subsidiary

operational level

knowledge level

3



Bibliography

1. Martin Fowler. Analysis Patterns – Reusable Object Models. Object Technology Series, Addison-
Wesley, 1997.

Task 13.2: Generating Complex Lists

In many business applications it is necessary to generate lists from multiple data sources for varying
purposes. Often, for every item in the list it must be possible to determine the original data source, so
that actions on the list can be reflected into actions on the original data. It is necessary to be able to
vary the algorithm for list creation (including the number of lists to generate) as well as the algorithms
to be applied on individual list items or complete lists.

For example, in a warehouse application, at some point, sets of current orders must be transformed
into lists of items to be picked from the warehouse. We want to optimise these lists so that for each
product only one line occurs in the list, with an amount corresponding to the accumulated amount for
this product from all orders.

What design patterns can we use for this?

Solution: We can use Strategy to enable variation of list generation and list modification algorithms.
In [1] the authors describe this pattern (called List Generation) using so-called Policies, which are
no more than extended Strategies.

ListList

ListControllerListController

ListDetailListDetail

ItemItem

ListGenerationPolicyListGenerationPolicy

List<Method>PolicyList<Method>Policy

ListDetail<Method>PolicyListDetail<Method>Policy

creates

works with

works with

4



PickListPickList

PickListMgrPickListMgr

PickListDetailPickListDetail

OrderLineOrderLine

PickListGenerationPickListGeneration

PickListDetailConfirmationPolicyPickListDetailConfirmationPolicy

creates

works with

Bibliography

1. James Carey, Brent Carlson, and Tim Graser. San Francisco Design Patterns – Blueprints for
Business Software. Addison-Wesley, 2000.

Task 13.3: Dynamic Life Cycle

Business objects often have a life cycle the individual elements of which stay the same, but whose
arrangement may change depending on context. For example, in a warehouse, an order needs to be
treated differently depending on whether it is an Internet order or a direct sales in a factory outlet. In
the former case, the order is accepted, planned (determining which storage is to serve the order), prepared
for picking, picked, shipped, and invoiced. In the latter case, it is accepted, prepared for picking, picked,
and invoiced. Planning and shipping are not necessary, because the customer is right there in the outlet
shop and picking can only sensibly happen in the warehouse associated to the outlet.

3a) Task:

How can we realise the individual states in the life-cycle of the order? Remember that each state may
require its own interface operations and data.

Solution: We can use the Extension Object pattern, realising each state as an Extension object
providing the additional operations and data elements. A state change then occurs by removing on
extension object and adding another.

3b) Task:

How can we realise the different life cycles while reusing as much of the order code as possible?

Solution: We must externalise the life-cycle management from the order code. We do this by adding
a LifeCycleManagement class that has knowledge of the structure of a certain life cycle.

5



But, how do we implement the mapping between actions on the business object and state transitions in
the life cycle? Obviously, life-cycle state changes are triggered by certain messages sent to the business
object. On the other hand, not every message triggers a life-cycle state change. Deciding which messages
trigger which state change is the responsibility of the LifeCycleManagement. So, both the order and
the life-cycle management must be involved in this decision. But the order object must not know about
life-cycle state changes. We solve this by introducing a double mapping: First, the order sends an event
whenever it receives a message, finishes handling a message, or at any other significant moment to the
life cycle management object. That object maintains a mapping from events to conditions, where each
condition (possibly together with the set of previously activated conditions) demands a certain life-cycle
state to be active. The life cycle management object asks the order object to maintain a list of all
conditions activated during its life time. Additionally, the life cycle management object determines if a
state change must be performed and if so start any activities required.

Extension Object PatternExtension Object Pattern

ExtensionObjectExtensionObject ExtensionExtension

LMBOExtensionLMBOExtension

key:ConditionSetKeykey:ConditionSetKey

key:EventIDkey:EventID

LifeCycleManagementLifeCycleManagement

ConditionCondition

ConditionSetKeyConditionSetKey

StateTransitionStateTransition

StringString ExtensionCreationExtensionCreation MethodInvocationMethodInvocation

LifeCycleManagedBusinessObjectLifeCycleManagedBusinessObject

Command PatternCommand Pattern

removeExtensions

This pattern is treated as Business Entity Lifecycle in [1].

Bibliography

1. James Carey, Brent Carlson, and Tim Graser. San Francisco Design Patterns – Blueprints for
Business Software. Addison-Wesley, 2000.

6


