
Design Patterns and Frameworks
Dr.-Ing. Max Leuthäuser
INF 2081
http://st.inf.tu-dresden.de/teaching/dpf

Exercise Sheet No. 5 with Solutions
Software Technology Group
Institute for SMT
Department of Computer Science
Technische Universität Dresden
01062 Dresden

Extensibility Patterns: Extension Access

Task 5.1: Lively Iteration

Cellular automata [1] are mathematical ‘machines’ consisting of a grid of individual so-called ‘cells’, each
of which can be in one of k states (typically called ‘colours’). A cellular automaton evolves in so-called
generations: The state of all cells is updated simultaneously following rules based on the colours of the
cells in a certain neighbourhood of the currently evolving cell. Different types of cellular automata exist;
they vary in the shape and size of the grid, the number of possible colours per cell, the size and shape
of a cell’s neighbourhood, and the evolution rules.

1a) Task:

Design and implement a class CellGrid that represents a grid of cells of a cellular automaton. Provide
an interface for access to the individual cells, but hide the structure of the grid (number of dimensions,
structure and size of neighbourhood, etc.) from clients.

What design pattern can you use? How do you use it?

Solution: We use Iterator to allow clients to access each cell in the grid without having to disclose
anything about the structure of the grid.

Everything the client needs to know about an individual cell is made available through the iterator’s
interface:

public interface Ce l l I t e r a t o r {

/∗∗
∗ Move the i t e r a t o r to the next c e l l , i f any .
∗
∗ @return true , i f t he re s t i l l i s a c e l l to be considered , f a l s e i f a l l
∗ c e l l s have been t r ea t e d .
∗/

public boolean next () ;

/∗∗
∗ @return the co lour o f the current c e l l encoded as a non−nega t i v e number
∗/

public int getColour () ;

/∗∗
∗ @return the number o f ne ighbours o f a c e r t a in co lour o f the current c e l l
∗/

public int getNeighbours (int withColour) ;

/∗∗
∗ Determine the co lour o f the current c e l l in the next genera t ion o f the
∗ automaton
∗/

public void setColourInNextGenerat ion (int fu tureCo lour) ;

}

1

CellGrid then provides access to individual cells only through an instance of CellIterator:

/∗∗
∗ A gr id o f c e l l s in a c e l l u l a r automaton . This g r i d can be o f any s i z e and
∗ shape . A c e l l g r i d s t o r e s two genera t ions o f a gr id , namely the current
∗ generat ion and an image o f the next generat ion . {@see #nextGeneration ()} can
∗ be invoked to make the fu tu r e genera t ion the current one .
∗/

public interface Cel lGr id {
/∗∗
∗ @return an i t e r a t o r o f a l l c e l l s in the current genera t ion o f t h i s g r i d .
∗/

public Ce l l I t e r a t o r a l l C e l l s () ;

/∗∗
∗ Switch to the next genera t ion .
∗/

public void nextGenerat ion () ;

}

1b) Task:

Using the CellGrid class from above, design and implement a class GridChanger that realises Conway’s
Game of Life [2]. Life is played on a two-dimensional grid, with cells that are either black (“dead”) or
white (“alive”). The neighbourhood of a cell consists of the 8 cells directly adjacent to it. For each cell,
the colour of the cell in the next generation depends on the cell’s current colour and on the number of
living (i.e., white) cells in its neighbourhood:

• The cell dies (i.e., turns black in the next generation) if it is alive and there are less than 2 or more
than 3 living cells in the neighbourhood.

• The cell survives (i.e., stays white in the next generation) if it is currently alive and there are 2 or
3 living cells in the neighbourhood.

• The cell is born (i.e., turns white in the next generation) if it is currently dead and there are exactly
3 living cells in its neighbourhood.

• The cell stays dead (i.e., stays black in the next generation) if it is dead and there are more or less
than 3 living cells in its neighbourhood.

Solution:

public class GridChanger implements Runnable {

private Cel lGr id c e l lG r i d ;

public GridChanger (Ce l lGr id c e l lG r i d) {
super () ;
this . c e l lG r i d = c e l lG r i d ;

}

@Override
public void run () {

while (true) {
try {

Thread . s l e e p (5 0 0) ;
} catch (Inter ruptedExcept ion e) {
}

s tep () ;
}

}

public void s tep () {
for (C e l l I t e r a t o r c i = c e l lG r i d . a l l C e l l s () ; c i . next () ;) {

i f (c i . getColour () == 1) {
switch (c i . getNeighbours (1)) {
case 0 :
case 1 :

2

case 4 :
case 5 :
case 6 :
case 7 :
case 8 :

c i . setColourInNextGenerat ion (0) ;
break ;

default :
c i . setColourInNextGenerat ion (1) ;

}
} else {

c i . setColourInNextGenerat ion ((c i . getNeighbours (1) == 3) ? 1 : 0) ;
}

}

c e l lG r i d . nextGenerat ion () ;
}

}

1c) Task: ∗

Use additional patterns (Strategy, Observer, Interpreter, . . .) to implement a completely generic
cellular automaton grid. Parametrize size and structure of the grid, size and structure of a cell’s neigh-
bourhood, number of colours, and the rules for determining a cell’s colour in the next generation.

This task is of added complexity. We may not discuss it in the exercise, but I will be happy to comment
on any solution of yours that you send me.

Solution: Unfortunately, solution hint is not available.

Bibliography

1. Eric W. Weisstein. Cellular Automaton. From MathWorld—A Wolfram Web Resource.
http://mathworld.wolfram.com/CellularAutomaton.html

2. Eric W. Weisstein. Life. From MathWorld—A Wolfram Web Resource.
http://mathworld.wolfram.com/Life.html

Task 5.2: Extensible Insurance Contracts

Insurance contracts are very long-lived documents that are treated by many different people for many
different reasons during their life-time. In a software system for the management of insurance contracts,
each of these clients needs a custom interface to the insurance-contract object. Sometimes the same
person needs to treat very different types of insurance contracts in the same manner. Occasionally, new
types of treatment need to be added dynamically, without affecting any of the pre-existing code.

2a) Task:

Understand the design pattern Extension Object [1]. What are its elements? How do they collaborate
to support solving the above problems?

Solution: Unfortunately, solution hint is not available.

2b) Task:

Use the Extension Object pattern to design and implement an insurance contract management system.
Support the following roles:

• Initialization: The contract object has just been created and needs to be filled with the correct
data.

3

• Conclusion: The contract has been accepted and needs to be signed by all parties.
• Termination: The contract’s duration has passed, all the money goes to the company :-)

Solution: The following code provides the basic structure, implementing only the initialization role,
however.

/∗
∗ InsuranceContract . java
∗
∗ History
∗ −−−−−−−
∗
∗ 28.10.2005 Zscha ler Created .
∗/

package de . tudresden . i n f . wwwst . e x t en s i onob j e c t ;

import java . u t i l .Map;
import java . u t i l . TreeMap ;

/∗∗
∗ An insurance cont rac t .
∗
∗ @author Zscha ler
∗ @since 28.10.2005
∗/

public class InsuranceContract {

/∗∗
∗ Final va lue o f the con t rac t .
∗/

private double m dFinalValue ;

/∗∗
∗ Monthly payments .
∗/

private double m dMonthlyDue ;

/∗∗
∗ Duration o f the con t rac t in years .
∗/

private long m lDuration ;

/∗∗
∗ Name of the person fo r whom the cont rac t has been i s sued .
∗/

private St r ing m sOwner ;

/∗∗
∗ Create a new empty cont rac t .
∗/

public InsuranceContract () {
super () ;

class I n i tRo l e extends ICRoleAdapter implements ICIn i tRo le {
public void setParameters (S t r ing sOwner , double dFinalValue ,

long lDurat ion) {
m sOwner = sOwner ;
m dFinalValue = dFinalValue ;
m lDuration = lDurat ion ;
// Ca l cu la t e monthly payments and don ’ t f o r g e t the revenue !
m dMonthlyDue = (dFinalValue + 10000 .00) / (lDurat ion ∗ 12) ;

}

public double getMonthlyDue () {
return m dMonthlyDue ;

}
} ;

// Set up the r o l e s o f t h i s con t rac t
addRole (”INITIALIZE” , new I n i tRo l e ()) ;

4

}

/∗∗
∗ Tag i n t e r f a c e common to a l l r o l e s an insurance cont rac t may p lay .
∗
∗ @author Zscha ler
∗ @since 28.10.2005
∗/

public interface ICRole {
/∗∗
∗ @return the con t rac t whose r o l e t h i s i s .
∗/

public InsuranceContract getContract () ;
}

/∗∗
∗ A ro l e f o r i n i t i a l i z i n g a con t rac t .
∗
∗ @author Zscha ler
∗ @since 28.10.2005
∗/

public interface ICIn i tRo le extends ICRole {
/∗∗
∗ Set the con t rac t ’ s parameters .
∗/

public void setParameters (S t r ing sOwner , double dFinalValue , long
lDurat ion) ;

/∗∗
∗ Get the monthly payment o f t h i s con t rac t as computed by
∗ {@link #setParameters (Str ing , double , long)} .
∗/

public double getMonthlyDue () ;
}

/∗∗
∗ Helper c l a s s .
∗ @author Zscha ler
∗ @since 28.10.2005
∗/

public abstract class ICRoleAdapter implements ICRole {
public InsuranceContract getContract () {

return InsuranceContract . this ;
}

}

/∗∗
∗ Exception thrown when a reques t ed r o l e i s not a v a i l a b l e .
∗
∗ @author Zscha ler
∗ @since 28.10.2005
∗/

public stat ic class UnsupportedRoleException extends Exception {
public UnsupportedRoleException (S t r ing sRoleName) {

super (”Unsupported r o l e : <” + sRoleName + ”>”) ;
}

}

/∗∗
∗ The s e t o f r o l e s supported by t h i s con t rac t .
∗/

private Map<Str ing , ICRole> m mpRoles = new TreeMap<Str ing , ICRole> () ;

/∗∗
∗ Get a r o l e with a ce r t a in name .
∗/

public ICRole g e t I n t e r f a c e (S t r ing r o l e) throws UnsupportedRoleException {
ICRole r e s u l t = m mpRoles . get (r o l e) ;

i f (r e s u l t == null) {

5

throw new UnsupportedRoleException (r o l e) ;
}

return r e s u l t ;
}

/∗∗
∗ Reg i s t e r a r o l e with a ce r t a in name .
∗/

protected void addRole (S t r ing sRoleName , ICRole r o l e) {
m mpRoles . put (sRoleName , r o l e) ;

}
}

2c) Task:

What do you have to do to support another role “Incident” (i.e., the incident against which the insurance
is held, has occurred)?

Solution: All that’s required is a new implementation of ICRole with the corresponding functionality.
As soon as this has been registered with the insurance-contract object, the new role can be used.

2d) Task:

How can different document types (for example, insurance contracts, but also letters, etc.) support the
same role?

Solution: By providing an interface IExtensible the only purpose of which it is to provide access
to extensions through a getRole object. If roles are given globally unique identifiers, any object that
implements this interface can then be used in the same way, independent of its class. This even permits
virtual dynamic class changes.

An implementation of this is in Microsoft’s most basic COM interface IUnknown. This interface provides
two features: reference counting and access to other interfaces of a COM object using globally unique
interface identifiers.

Bibliography

1. Gamma, E. 1997. Extension object. In Pattern Languages of Program Design 3, R. C. Martin,
D. Riehle, and F. Buschmann, Eds. Addison-Wesley Software Pattern Series. Addison-Wesley
Longman Publishing Co., Boston, MA, 79–88.
Also at http://st.inf.tu-dresden.de/Lehre/WS06-07/dpf/gamma96.pdf
A nice tutorial also exists at http://www.design-nation.net/en/archives/000488.php

Task 5.3: Discussion of Patterns

3a) Task: Enumerate 4 different types of Proxies, and tell what they do.

Solution:

1. A remote proxy provides a local representative for an object in a different address space.
2. A virtual proxy creates expensive objects on demand.
3. A protection proxy controls access to the original object. Protection proxies are useful when object

should have different access rights.
4. A smart reference is a replacement for a bare pointer that performs additional actions when an

object is accessed. Typical uses include:
• counting the number of references to the real object for garbage collection
• checking for locking

6

This list has been taken directly from the GOF book.

3b) Task: Compare Adapter and Bridge. Enumerate commonalities and differences.

Solution: Adapter and Bridge have a few things in common:

• Both enhance flexibility by introducing an additional indirection into the access to an object.
• Both hand on commands from an interface that the object originally did not implement.

The key difference between the two patterns can be found in their intents. Adapter focuses on resolving
incompatibilities between two existing interfaces. It does not care for the implementation of these
interfaces, nor does it care about the possible development of class hierarchies. Adapter couples two
classes developed independently. Their cooperation has originally not been planed or predicted.

Users of Bridge, however, know from the beginning that there will be multiple implementations for the
same abstraction.

3c) Task: Compare Bridge and TemplateMethod. Enumerate commonalities and differences.

Solution: Template Method and Bridge both declare methods in abstract superclasses and imple-
ment them in subclasses.

The key difference is that in the abstract class of Template Method, one method is implemented. This
breaks the complete separation of abstraction and implementation intended by Bridge. Abstraction
and implementation can no longer be refined independently.

Template Method uses operations from the same object only. Bridge uses operations from another
object. This can lead to runtime errors in weakly typed languages (e.g., SmallTalk).

3d) Task: Enumerate the cases in which Visitor can be employed. Characterize the advantages of

the pattern.

Solution: Visitor can be used to advantage, when an object structure with many classes must be
traversed, and class specific operations are to be executed on each object.

Visitor helps group into one class operations that belong together semantically, even though they work
on different classes. This helps avoid cluttering data classes with lots of operations for different use cases.
All operations of the same use case are encapsulated in one Visitor.

Additionally, Visitor is perfect when the data structure changes rarely, but new operations are added
frequently.

Visitor is often used together with Composite.

3e) Task: Compare TemplateMethod and Strategy. What are commonalities, what are differences?

Solution: In Template Method, the algorithm is fix, but some parts are variable. On the other hand,
in Strategy, the algorithm is variable, and the client is fix.

7

