
Design Patterns and Frameworks
Dr.-Ing. Max Leuthäuser
INF 2081
http://st.inf.tu-dresden.de/teaching/dpf

Exercise Sheet No. 5
Software Technology Group
Institute for SMT
Department of Computer Science
Technische Universität Dresden
01062 Dresden

Extensibility Patterns: Extension Access

Task 5.1: Lively Iteration

Cellular automata [1] are mathematical ‘machines’ consisting of a grid of individual so-called ‘cells’, each
of which can be in one of k states (typically called ‘colours’). A cellular automaton evolves in so-called
generations: The state of all cells is updated simultaneously following rules based on the colours of the
cells in a certain neighbourhood of the currently evolving cell. Different types of cellular automata exist;
they vary in the shape and size of the grid, the number of possible colours per cell, the size and shape
of a cell’s neighbourhood, and the evolution rules.

1a)

Design and implement a class CellGrid that represents a grid of cells of a cellular automaton. Provide
an interface for access to the individual cells, but hide the structure of the grid (number of dimensions,
structure and size of neighbourhood, etc.) from clients.

What design pattern can you use? How do you use it?

1b)

Using the CellGrid class from above, design and implement a class GridChanger that realises Conway’s
Game of Life [2]. Life is played on a two-dimensional grid, with cells that are either black (“dead”) or
white (“alive”). The neighbourhood of a cell consists of the 8 cells directly adjacent to it. For each cell,
the colour of the cell in the next generation depends on the cell’s current colour and on the number of
living (i.e., white) cells in its neighbourhood:

• The cell dies (i.e., turns black in the next generation) if it is alive and there are less than 2 or more
than 3 living cells in the neighbourhood.

• The cell survives (i.e., stays white in the next generation) if it is currently alive and there are 2 or
3 living cells in the neighbourhood.

• The cell is born (i.e., turns white in the next generation) if it is currently dead and there are exactly
3 living cells in its neighbourhood.

• The cell stays dead (i.e., stays black in the next generation) if it is dead and there are more or less
than 3 living cells in its neighbourhood.

1c) ∗

Use additional patterns (Strategy, Observer, Interpreter, . . . ) to implement a completely generic
cellular automaton grid. Parametrize size and structure of the grid, size and structure of a cell’s neigh-
bourhood, number of colours, and the rules for determining a cell’s colour in the next generation.

This task is of added complexity. We may not discuss it in the exercise, but I will be happy to comment
on any solution of yours that you send me.

Bibliography

1. Eric W. Weisstein. Cellular Automaton. From MathWorld—A Wolfram Web Resource.
http://mathworld.wolfram.com/CellularAutomaton.html

1



2. Eric W. Weisstein. Life. From MathWorld—A Wolfram Web Resource.
http://mathworld.wolfram.com/Life.html

Task 5.2: Extensible Insurance Contracts

Insurance contracts are very long-lived documents that are treated by many different people for many
different reasons during their life-time. In a software system for the management of insurance contracts,
each of these clients needs a custom interface to the insurance-contract object. Sometimes the same
person needs to treat very different types of insurance contracts in the same manner. Occasionally, new
types of treatment need to be added dynamically, without affecting any of the pre-existing code.

2a)

Understand the design pattern Extension Object [1]. What are its elements? How do they collaborate
to support solving the above problems?

2b)

Use the Extension Object pattern to design and implement an insurance contract management system.
Support the following roles:

• Initialization: The contract object has just been created and needs to be filled with the correct
data.

• Conclusion: The contract has been accepted and needs to be signed by all parties.
• Termination: The contract’s duration has passed, all the money goes to the company :-)

2c)

What do you have to do to support another role “Incident” (i.e., the incident against which the insurance
is held, has occurred)?

2d)

How can different document types (for example, insurance contracts, but also letters, etc.) support the
same role?

Bibliography

1. Gamma, E. 1997. Extension object. In Pattern Languages of Program Design 3, R. C. Martin,
D. Riehle, and F. Buschmann, Eds. Addison-Wesley Software Pattern Series. Addison-Wesley
Longman Publishing Co., Boston, MA, 79–88.
Also at http://st.inf.tu-dresden.de/Lehre/WS06-07/dpf/gamma96.pdf
A nice tutorial also exists at http://www.design-nation.net/en/archives/000488.php

Task 5.3: Discussion of Patterns

3a) Enumerate 4 different types of Proxies, and tell what they do.

3b) Compare Adapter and Bridge. Enumerate commonalities and differences.

3c) Compare Bridge and TemplateMethod. Enumerate commonalities and differences.

2



3d) Enumerate the cases in which Visitor can be employed. Characterize the advantages of the

pattern.

3e) Compare TemplateMethod and Strategy. What are commonalities, what are differences?

3


