
Design Patterns and Frameworks
Dr.-Ing. Max Leuthäuser
INF 2081
http://st.inf.tu-dresden.de/teaching/dpf

Exercise Sheet No. 6 with Solutions
Software Technology Group
Institute for SMT
Department of Computer Science
Technische Universität Dresden
01062 Dresden

Architecture Mismatch Patterns

Task 6.1: Medi(t)ative Air

Design an application which enables you to book the cheapest flight to a destination of your choice out
of a number of providers.

1a) Task: Assume, every provider is known in advance, and implements an interface IFlightProvider,

which provides operations for querying for a connection, and for booking a flight. Develop an architecture
which enables clients to interface to these providers and book the cheapest flight on offer for the desti-
nation and date they are interested in. Flight providers should require (and receive) no knowledge on
other flight providers known to the system. Also, clients should not need to know which flight providers
are registered with the system.

Which design pattern could you use?

Solution: Mediator would be a good design pattern for this. The mediator provides the client’s
interface and connects the flight providers and the selection component which selects the cheapest flight
for booking—of course, after checking back with the client.

ClientClient
FlightMediatorFlightMediator

FlightOffer getOffer (FlightRequest fr)

FlightBooking bookOffer (FlightOffer fo)

<<interface>>

IFlightProvider

<<interface>>

IFlightProvider

FlightOffer getOffer (FlightRequest fr)

FlightBooking bookOffer (FlightOffer fo)

MyFlightProviderMyFlightProvider

1..*

FlightOfferComparerFlightOfferComparer

FlightOffer selectOffer (FlightOffer[] fos)1

1b) Task: Many airlines offer on-line booking services as web services. How can you incorporate such

an airline as a flight provider?

Solution: The airline can be incorporated by using an Adapter which maps the SOAP interface onto
IFlightProvider. You may need to implement one adapter per airline, because they may use slightly
different SOAP protocols.

1

<<interface>>

IFlightProvider

<<interface>>

IFlightProvider

FlightOffer getOffer (FlightRequest fr)

FlightBooking bookOffer (FlightOffer fo)

ToSOAPAdapterToSOAPAdapter

… getOffer (…)

… bookOffer (…)

FlightProviderWebServiceFlightProviderWebService

… search (…)

… performBooking (…)

1

Task 6.2: Photo-realistic Facade

Ray tracing is a rather complex technique. It consists of a number of steps from parsing a scene-graph
description (often called a ‘script’), building a scene-graph instance in memory, optimising the scene
graph, tracing rays through all pixels of the target image, possibly oversampling to provide anti-aliasing,
to actually rendering the image; that is, transforming the ray colour values into the value range of image
colour values. On the other hand, as a client all you want to do is provide a script and obtain an image.

2a) Task:

Use the Facade pattern to provide clients of a ray-tracing subsystem with easy access to ray-tracing
functionality.

Solution: The facade is a class that uses the subsystem to provide very simple access to a subsystem.
A facade for the ray-tracing subsystem may have only one operation: public Image render (File

fScript).

Task 6.3: Pattern Relations

In this task you will explore the relations between the various patterns that we have been looking at in
the course so far.

3a) Task:

Compare Template Method and Template Class. What do they have in common, what is the
major difference? How do they achieve variability? What is their relation to the Template Hook and
the Objectifier patterns?

Solution: Both patterns achieve variability by separating a fixed template and a variable hook, as
described by Template Hook. Their most important difference lies in the allocation of classes for the
template and the hook part. Template Method allocates both operations to the same class, while
Template Class uses a separate class for the hook. Template Class thus combines Objectifier
and Template Hook.

3b) Task:

Compare the extensibility patterns Decorator, Composite, Chain of Responsibility, and Ob-
server. What are the mechanisms through which they achieve extensibility? Why does Proxy not

2

provide extensibility? What is the relation of these patterns to Template Class and Object Recur-
sion?

Solution: Extensibility is about being able to add an unlimited (and typically not pre-determined) set
of objects which can be managed in a uniform manner. This requires

1. either an association with a ‘*’ multiplicity at the target end, which is treated inside while-loops,
2. or a recursive reference either to self or to a super class.

The patterns named pretty much span this field. Proxy cannot provide extensibility because it has
neither a ‘*’ multiplicity association nor a recursive reference to self or a super class. It is therefore
strictly a variability pattern.

All extensibility patterns still use Template Class, but they manage multiple (typically a number
unknown à priori) instances of the hook class. Object Recursion is the basic pattern for recursive
associations, which is specialised by both Decorator and Composite.

3c) Task:

Now compare the architecture-glue patterns Adapter, Facade, and Mediator. How do they cope
with architectural mismatch? How do they compare to the variability and extensibility patterns?

Solution: The architecture-glue patterns are Template Class patterns that perform semantic map-
pings of interfaces.

3d) Task: ∗

Sketch a chart of the relations between the design patterns Template Method, Template Class,
Objectifier, Bridge, Strategy, State, Visitor, Proxy, Adapter, Facade, Mediator, Object
Recursion, Decorator, Composite, Chain of Responsibility, and Observer. Use arrows to
indicate specialisation (based on class structure, behaviour, or intent) and introduce additional helper
concepts if you need them to represent commonalities which have not yet been abstracted into an
individual pattern.

Solution: This is my conception of the relations between the patterns:

Extensibility

Variability

Template Method Template Class

Objectifier

Bridge

Strategy‘Delegation’

Object Recursion

CompositeDecorator

Proxy

variation of

the template

identical

signatures

In p
re

H
a
n
d
le

R
e
q
u
e
s
t,

p
o
s
tH

a
n
d
le

R
e
q
u
e
s
t

by intent

delegation to sibling

delegation

to super

multiplicity *

successor defined

by structural rules
multiplicity 1

State

Chain of Responsibility

delegation to self

Observer

Glue

Mediator

Adapter

Facade

wrap many classes

multiplicity *

Visitor

double

dispatch

Template Hook
alloc. to

same class

reify

hook

3

