O

2. Simple Patterns for Variability

Dr.-Ing. Sebastian Go6tz 1)
2)
Software Technology Group
Department of Computer Science 3)
Technische Universitat Dresden 2)
WS 17/18,17.10.2017
5)

Design Patterns and Frameworks, © Prof. Uwe ABmann, Dr. Sebastian Go6tz, Christian Piechnick

Basic Template-And-Hook Patterns
Faceted Objects with Bridges
Layered Objects

Dimensional Systems

Layered Systems



Literature (To Be Read)

» GOF, Chapters on Creational and Structural Patterns

» Another good book:

Head First Design Patterns. Eric Freeman & Elisabeth Freeman,
mit Kathy Sierra & Bert Bates. O'Reilly, 2004, ISBN 978-0-596-00712-6

German Translation
Entwurfsmuster von Kopf bis Ful3. Eric Freeman & Elisabeth Freeman, mit Kathy
Sierra & Bert Bates. O'Reilly, 2005, ISBN 978-3-89721-421-7




Secondary Literature

» W. Pree. Design Patterns for Object-Oriented Software Development.
Addison-Wesley, 1995.

»  W. Zimmer. Relationships Between Design Patterns. Pattern Languages of
Programming (PLOP) 1995.

» Uta Priss. Faceted Information Representation. Electronic Transactions in
Artificial Intelligence (ETAI). 2000(4):21-33.

» R. Prieto-Diaz, P. Freeman. Classifying Software for Reusability. IEEE
Software, Jan 1987. Prieto-Diaz has introduced facet-based classifications in
software engineering. Surf also on citeseer for facets.

» Don Batory, Vivek Singhal, Jeff Thomas, Sankar Dasari, Bart Geraci, and Marty
Sirkin. The GenVoca Model of Software-System Generation. IEEE Software,
11 (5), Sept. 1994, pp 89—94.




1. Understanding Templates and Hooks

« Template Method vs Template Class
« Dimensional Class Hierarchy

2. Understanding why Bridges implement faceted objects

3. Understanding layered systems



2.1) Basic Template and HooR [Patterns

@ Design Patterns and Frameworks, © Prof. Uwe ABmann, Dr. Sebastian Go6tz, Christian Piechnick



The [Problem




The [Problem




The [Problem



The [Problem



The [Problem

10



The [Problem

l } Variable Part ‘ HOOK
Can be exchanged

Stays fixed

11



The [Problem

» How to produce several products from one code base?

» Design patterns often center around
= Things that are common to several applications
Commonalities lead to frameworks or product lines

= Things that are different from application to application
Variabilities to products of a product line

I ) oo

| |
— [ -] B

Word Processor Presentation Tool Spreadsheet Tool

D »

Office Backbone

TEMPLATE {

l




Pree's TemplateGHooR Conceptual [Pattern

» Pree invented a template-and-hook (T&H) concept for the communality/variability
knowledge in design patterns [Pree]

» Templates contain skeleton code
= Common for the entire product line

» Hooks are placeholders for the instance-specific code
= Only for one product
= Also called slots, hotspots

Fixed part of design pattern Flexible part of design pattern
Template: commonality Hook: variability
Context

D ?



The Template Method Design [Pattern

» Define the skeleton of an algorithm (template
method)

= The template method is concrete

:primitiveOperationl();E

:primitiveOperation2();E

» Delegate parts to abstract hook methods (slot
methods) that are filled by subclasses

AbstractClass - Requires inheritance

» Implements template and hook with the same

TemplateMethod() O class, but different methods

primitiveOperation1()
primitiveOperation2()

/\

ConcreteClass

primitiveOperation1()
primitiveOperation2()

D y




Template Method Example: Actors & Genres

» Binding an Actor's hook to be a ShakespeareActor or a TV actor

=TT ======- 1
1 1
Actor I I
1 1
: recite () ; :
play) O- - = === - - - - - I
recite() ' dance(); |
dance() ' !
ShakespeareActor TVActor
recite() recite()
dance() dance()




Variability with Template Method

» Allows for varying behavior

= Separate invariant parts from variant parts of an algorithm

- TemplateMethod differs slighly from polymorphism:
—> For a polymorphic method, one needs several subclasses

» Binding the hook (slot) means to

= Derive a concrete subclass from the abstract superclass, providing the
implementation of the hook method

» Controlled extension by only allowing for binding hook methods, but not overriding
template methods

& =)

Binding the
hooks with hook
Conrete Abstract values (method Concrete
template method hook method implementations) hook method

D ,



Consequences

» The design pattern TemplateMethod realizes the
conceptual pattern T&H on the level of Methods

= TemplateMethod — HookMethod

» Basis for other design patterns:
- FactoryMethod
- TemplateClass



Variability vs Extension

» The T&H concept occurs in two basic variants

= Binding of hooks or extension of hooks:
—> a slot, is a hook that can be bound only once
(unextensible hook, only bindable)

= Hooks can be extensible
= Extension patterns are treated later

- Binding a hook (sot)-

with a hook value

Extending a hook with
another hook value

O —>Q—>O




O

2.1.1 Template Method and Template Class

Design Patterns and Frameworks, © Prof. Uwe ABmann, Dr. Sebastian Go6tz, Christian Piechnick

19



What Happens If We Reify the HooR Method?

» Methods can be reified,
—> represented as objects

» In the TemplateMethod, the hook method can be split out of the class
and put into a separate object

» Reification is done by another basic pattern, the Objectifier [Zimmer]



The Objectifier Pattern

» The pattern talks about basic polymorphism with objects (delegation)

= Combined with an abstract class and abstract method
=  Clients call objects polymorphically

Client Og

reference

applicationMethod() O

> Objectifier

reifiedMethod()

JAN

ConcreteObjectifierA

ConcreteObjectifierB

reifiedMethod()

reifiedMethod()

21



Objectifier Example: Different Students

» When preparing an exam, students may use different learning styles

» Instead of a method lea

m(),

an objectified method (LearningStyle class) can be used

Student

>—

learningStyle
N

prepareExam() 0]

> LearningStyle

learn()

JAN

OnDemandLearning

ExhaustivelLearning

learn()

learn()

22



T6H on the Level of Classes

»  With the Objectifier, we can build now Template&Hook classes

« Additional roles for some classes
The template role
The hook role

» Resulting patterns:
- Template Class
= Generic Template Class
- Dimensional Class Hierarchies for variability with parallel class hierarchies
Implementation of facets
Bridge, Visitor

D 2



Template Class

» |Is combined from TemplateMethod + Objectifier

= Explicitly fix a template class in the Objectifier
- Template method and hook method are found in different classes

templateMethod() @)

( Template ) ( Hook )
TemplateClass hookObject HookClass
> >
hookMethod()

JAN

ConcreteHookValueA

ConcreteHookValueB

hookMethod()

hookMethod()

24



Template Method vs Template Class

primitiveOperationl () i
1
1
1

primitiveOperation2 () »

TemplateClass HookClass

. hookObject
O\ S

Template ) i
templateMethod() Q hookMethod()

1

1

|

|

1

1

|

|

1

AbstractClass

A

TemplateMethod() O

primitiveOperationl()
primitiveOperation2()
E " ConcreteHookValueA
' hookObject.hookMethod () ;E
: hookMethod()
l Hook )] = @ @ Femmmmmmmm o !

ConcreteClass

primitiveOperation1()
primitiveOperation2()




Template Class

» Similar to TemplateMethod, but

= Hook objects can be exchanged at run time
= Exchanging a set of methods at the same time
= Consistent exchange of several parts of an algorithm (not only one method)

D .



Template Class

» This pattern is basis of

- Bridge

= Builder

= Command
- lterator

= Observer
« Prototype

« State
«  Strategy
= Visitor



Actors and Genres as Template Class

» Consistent exchange of recitation and dance behavior possible

( Template ) ( Hook )
Actor o ActorRealization
realization
play() O dance()

| recite()

| /\

1

1
o ShakespeareActor TVActor
' realization.dance () ;
E realization.recite(); : dance() dar_lce()
' | recite() recite()

D .



Variability with TemplateClass

» Binding the hook means to
= Concrete Class provides the implementation of the hook method
= Derive concrete subclass from the abstract hook superclass

Abstract Concrete
hook (slot) method hook (slot) method

0'0 0’0

Abstract
! Hook ! \
7 \ 7
Class

)

Binding the hooks with
hook values (method
implementations)

Concrete Concrete
template method template method

D .



The GOF-PPattern Strategy

» Variant of Template Class

» Hands out the roles client and algorithm

[ Client ) C Algorithm )
Client A Strategy

strategy

contextinterface() algorithminterface()

£\

ConcreteStrategyA ConcreteStrategyB

algorithminterface() algorithminterface()

D .



GOF-Strategy is related to Template Class

» GOF Strategy has the same structure as Objectifier

- Different incentive !
- Itis not for reifying methods, but for varying methods only

» TemplateClass also has a different incentive
- Hence, TemplateClass hands out other roles for the classes
= Client class is the template class

« Strateqgy class is the hook class




Example for Strategy

>

Encapsulate formatting algorithms

( .
( Client ) k Algorithm
TextApplication exporter | EXPOTter
A\ >
save() export(Document d)
TextExporter TeXExporter WordExporter

export(Document d)

export(Document d)

export(Document d)

32



Generic Template Class

» TemplateClass can be realized with GenericTemplateClass

= Inlanguages with generic classes (C++, Java 1.5, C#, Sather, Cecil, Eiffel)

» The subclassing of the hook hierarchy is replaced by static generic expansion
= Hence, more type safety, less runtime dispatch

1
T extends HookClass
TemplateClass @ === === === -——a HookClass

T hookObject hookMethod()

templateMethod() 4&

582ﬁ;?ﬁlﬁ?ﬂ?}:lﬂzzlic'assp\ A ConcreteHookValueA ConcreteHookValueB
with
A hookObject hookMethod() hookMethod()
/
ConcreteTemplateHookClassB
<ConcreteHookValueB>
bind T with

B hookObject
D .



Generic Text Exporter

TextApplication L -

T hookObject

save()

/\

TextApplication<TextExporter>

Exporter

export(Document d)

2\

TextExporter hookObject

TextApplication<TeXExporter>

TeXExporter hookObject

bind T
with

TextExporter

TeXExporter

WordExporter

export(Document d)

export(Document d)

export(Document d)

bind T with

/

TextApplication<WordExporter>

WordExporter hookObject

bind T with

/

34




Further Work on Generic Template Parameterization

» See course CBSE

» GenVoca [Batory]
= Generic template instantiation method for nested generics
= Parameterization on many levels
- Layered systems result
= Realizable with nested C++ templates
- See later

» Template Metaprogramming (www.boost.org)
= Using template parameter for other purposes than hook classes



O

2.1.2 Dimensional Class Hierarchies and Bridge

Design Patterns and Frameworks, © Prof. Uwe ABmann, Dr. Sebastian Go6tz, Christian Piechnick 36



Variability Pattern Dimensional Class Hierarchies

( Template )

N
TemplateClass hookObject HookClass

G
T

templateMethod() hookMethod()

JAN 2\

Hook )

)

MoreConcrete MoreConcrete
TemplateClassA TemplateClassB ConcreteHookValueA || ConcreteHookValueB

templateMethod() Q || templateMethod() Q hookMethod() hookMethod()

//Implementation A //Implementation B

hookObject.hookMethod () hookObject.hookMethod ()

D .



Dimensional Class Hierarchies

» Vary also the template class in a class hierarchy

= The sub-template classes can change the template algorithm

- Template method still calls the hook methods

= Important: sub-template classes must fulfil the contract of the superclass
Implementation can be changed,
Interface and visible behavior must be the same

» Upper and lower layer (dimension)
= Template method (upper layer) calls hook methods (lower layer)

» Both hierarchies can be varied independently
= Factoring (orthogonalization)
- Reuse isincreased

» Basis for other patterns (Bridge, Visitor, ...)

» Basis for implementation of facets



Bridge Pattern

» The Bridge pattern is a variant of Dimensional Class Hierarchies (different incentive)

» The left hierarchy is called abstraction hierarchy,
the right implementation

= Also handle vs body

» Separation of two hierarchies



>

Different incentive (Abstraction/Implementation)

( Abstraction )
N

Abstraction

imp

Implementation

( Implementation )

operation()

2\

A4

operationimpl()

2\

MoreConcrete
AbstractionA

MoreConcrete
AbstractionB

ImplementationA

ImplementationB

operationimpl()

operationimpl()

operation() Q

//Implementation A

impl.operationImpl () ;

operation() Q

//Implementation B

impl.operationImpl () ;

40



Example: DataGenerator as Bridge

( Abstraction )
N

DataGenerator ( Implementation )
impl Generatorimpl
Data data > —>
generate() generateData(data)
TestDataGenerator ReportGenerator ExhaustiveGenerator RandomGenerator
generate() 0 generate() o) generateData(data) generateData(data)
: :
1 1
1 1
U (R
Edata = parseTestData () data = readFromForm() ;

imp.generateData (data)

41



>

>

Both hierarchies can be varied independently

- Factoring (orthogonalization)
- Reuse isincreased

An abstraction can have several Bridges
= Bridges can be replicated
- Basis for implementation of facets

42



Example: DataGenerator as Bridge

DataGenerator

( Abstraction )
N

>

Generatorimpl

( Implementation )
(g

generateData(data)

impl
~
7

Data data

o

generate()

2\

TestDataGenerator

ReportGenerator

generate()

generate() Q

data = parseTestData ()
imp.generateData (data)

data = data.cleanData();
imp.generateData (data)

A

ExhaustiveGenerator RandomGenerator
generateData(data) generateData(data)
( Implementation)
data &
> Data

Data cleanData()

A

StringData

GraphData

TestData cleanData()

ReportData cleanData()

43



Basic Variability Patterns - Overview

Objectifier

A4

N A

Bridge

|mmmmmmmm e m e — : A

J
J
J

TemplateMethod TemplateClass

'k ClassHierarchies
J

(

Generic
TemplateClass

.




Relations of Basic [Patterns

» Pree book vs Gamma book

= Pree and the GOF worked together for some time,
but then they published two different books

= Pree's focus was on templates and hooks (framework patterns)
= GOF on arbitrary patterns in arbitrary context

» One can take any GOF pattern and make it a framework pattern by introducing the
template-and-hook constraint

- Or if you take away the template-hook constraint from a framework pattern,
you get an unconstrained general pattern



O

2.1.3 Parallel Class Hierarchies
(Bridges with Constraints)

Design Patterns and Frameworks, © Prof. Uwe ABmann, Dr. Sebastian Go6tz, Christian Piechnick

46



When the Dimensions cannot be Independently Varied

» Dimensions of Dimensional Class Hierarchies sometimes not independent

- If one is varied, another must also be varied
» Dimensions have equal size and structure, i.e., are isomorphic

» Typically Example: Container classes and their elements
- UML diagrams and their node and edge types
= Figures and their figure elements
= Record lists and their record types

D .



[Parallel Hierarchies with Parallelism Constraint

» Both hierarchies, must be varied consistently

Diagram clements BoxElement

b
Ll

draw() * | draw()

N\ JAN

ClassDiagram StateChart ClassBox StateBox

draw() draw() draw() draw()




O

2.1.4 Visitor

Design Patterns and Frameworks, © Prof. Uwe ABmann, Dr. Sebastian Go6tz, Christian Piechnick

49



Visitor

» Variant of DimensionalClassHierarchies

= Template class hierarchy models a polymorphic data structure
= In most cases a tree

» Hook hierarchy models a polymorphic algorithm
= Encapsulate an operation on a collection (tree) as an object
= Hook is an objectifier pattern (reified method)

» Separate tree inheritance hierarchy from command hierarchy
= Simple extensibility of both hierarchies

- Factoring (orthogonalization): simpler inheritance structures, otherwise
multiplication of classes



Structure for Visitor

Client > ObjectStructure ~ K>—>{ Element
accept(Visitor v)
I
ConcreteElementA ConcreteElementB

accept(Visitorv) Q accept(Visitor v) Q

operationA() : operationB()

Visitor

visitConcreteElementA(ConcreteElementA e)
visitConcreteElementB(ConcreteElementB e)

JAN

ConcreteVisitorA ConcreteVisitorB
visitConcreteElementA(ConcreteElementA e) visitConcreteElementA(ConcreteElementA e)
visitConcreteElementB(ConcreteElementB e) visitConcreteElementB(ConcreteElementB e)

D 51



Sequence Diagram Visitor

» First dispatch on data, then on visitor

aConcreteClient aConcreteElementA aConcreteVisitor

accept(visitor)
N >

visitConcreteElementA(element)
N

N -

First Dispatch

Second Dispatch




Structure for Visitor

Client > ObjectStructure ~ K>—>] Element
accept(Visitor v)
/ \€ First Dispatch
I
ConcreteElementA ConcreteElementB

accept(Visitorv) Q accept(Visitorv) Q

operationA() . operationB()

Visitor

visitConcreteElementA(ConcreteElementA e)
visitConcreteElementB(ConcreteElementB e)

Z>< Second Dispatch

ConcreteVisitorA ConcreteVisitorB
visitConcreteElementA(ConcreteElementA e) visitConcreteElementA(ConcreteElementA e)
visitConcreteElementB(ConcreteElementB e) visitConcreteElementB(ConcreteElementB e)

D .



Visitor

» Implementation of a dimensional structure

= First dispatch on dimension 1 (data structure)
= Second dispatch on dimension 2 (algorithm)
- Dimensions are not independent (no facets)

Chosen implementation of the algorithm depends on the chosen
implementation of the data

» Abbreviation for multimethods
= Dispatch/polymorphism on two arguments, not only the first (double dispatch)
= First on data object (method accept), second on operation object (method visit)

D y



Remember: DimensionalClassHierarchies

C Template ) ( Hook )

TemplateClass hook | TOOKClass

A

templateMethod() hookMethod()

N\ 2\

MoreConcrete MoreConcrete
TemplateA TemplateB ConcreteHookClassA ConcreteHookClassB
templateMethod() Q || templateMethod() Q hookMethod() hookMethod()
1 1
: |
1 1
--------------------- I-----l '________________I_________'
E //Implementation A E E //Implementation B E

D .



Remember: DimensionalClassHierarchies

( Template ) (
\_ — k Hook
Element hook Visitor
e >
. hookMethodA(Element e)
templateMethod(Visitor v) hookMethodB(Element e)
A Explicit reference
{ 5 is replaced by Z 5
argument
MoreConcrete MoreConcrete _ -
ElementA ElementB ConcreteVisitorA ConcreteVisitorB
. . . . hookMethodA(Element e) hookMethodA(Element e
templateMethod(Visitor v) Q || templateMethod(Visitor v) Q hookMethodB(Element e) hookMethodBEElemem eg
1 1
| :
1 1
P s e e s - ——— I-----l P e e s - -—-— I--|
E v.hookMethodA (this) ; E E v.hookMethodB (this) ; E

56



Visitor As Multimethod

Element

" ( Template )

N\

templateMethod(Visitor v)

JA\

method(Element a, Visitor v)

Visitor

hookMethodA(Element e)
hookMethodB(Element e)

2\

MoreConcrete
ElementA

MoreConcrete
ElementB

ConcreteVisitorA

ConcreteVisitorB

templateMethod(Visitor v)

hookMethodA(Element e)
hookMethodB(Element e)

hookMethodA(Element e)
hookMethodB(Element e)

templateMethod(Visitor v) O

<
oy
e}
]
=
=<
®
o
oy
e}
o}
>
ct
o
'_l.
0
<
=
)
o
~
=<
®
o
=
o}
o
o]
ct
o
’_l.
0]

57




Example: Compiler Abstract Syntax Trees (ASTs)

» The operations are distributed over the classes.
» In case of extensions, all classes must be extender

Node

typeCheck()
generateCode()
prettyPrint()

N\

VariableRefNode AssignmentNode

typeCheck() typeCheck()
generateCode() generateCode()
prettyPrint() prettyPrint()

58



Abstract Syntax Trees with Visitors

Program > Node

accept(NodeVisitor v)

4 I

VariableRefNode

AssignmentNode

accept(NodeVisitor v) Q

accept(NodeVisitor v) Q

'v visitVariableRefNode (thi s)- . v.visitAssignmentNode (this) -

> NodeVisitor

visitVariableRefNode(VariableRefNode v)
visitAssignmentNode(AssignmentNode v)

LF

TypeCheckingVisitor

CodeGenerationVisitor

visitVariableRefNode(VariableRefNode v)
visitAssignmentNode(AssignmentNode v)

visitVariableRefNode(VariableRefNode v)
visitAssignmentNode(AssignmentNode v)

59



2) Dimensional Class Hierarchies (Bridges) as
an Implementation of Facet Classifications

... In the following, we use the patterns Bridge and
DimensionalClassHierarchies interchangeably

@ Design Patterns and Frameworks, © Prof. Uwe ABmann, Dr. Sebastian Go6tz, Christian Piechnick 60



Facet Classifications

» A facet is an orthogonal dimension of a model

- Every facet has its separate model
= All facet classes are abstract

» Facets factorize inheritance hierarchies
= Hence, facets simplify inheritance hierarchies

» Concrete classes in the (combined) model inherit from every dimension (every facet)
= All classes in facets are independent (i.e., don't know of each other)
= A concrete class offers the union of all features



DijRstra on Aspeclts

"Let me try to explain to you, what to my taste is characteristic for all intelligent

thinking. It is, that one is willing to study in depth an aspect of one's subject matter in

isolation for the sake of its own consistency, all the time knowing that one is occupying

oneself only with one of the aspects. We know that a program must be correct and we

can study it from that viewpoint only; we also know that it should be efficient and we
can study its efficiency on another day, so to speak. In another mood we may ask

ourselves whether, and if so: why, the program is desirable. But nothing is gained --on

the contrary!-- by tackling these various aspects simultaneously.”

E. W. Dijkstra, On the Role of Scientific Thought, EWD 447 Selected Writings on Computing: A Personal Perspective, pages 60-66, 1982.

D .



Separation of Concerns (So(C)

It is what | sometimes have called "the separation of concerns", which, even if not

perfectly possible, is yet the only available technique for effective ordering of one's
thoughts, that | know of. This is what | mean by "focussing one's attention upon some
aspect": it does not mean ignoring the other aspects, it is just doing justice to the fact

that from this aspect's point of view, the other is irrelevant. It is being one- and

multiple-track minded simultaneously.

D .



Facets in Living Beings

» The following model of Living Beings has 3 facets

= Domain (where does an animal live?); Age; Group of Animal
» Final, concrete classes inherit from all facets.

» Facets Factorize Models: A full model would multiply all classes (3")

Animal
\% \% \ 4
Facet 1: Habitat Facet 2: Age Facet 3: Group
[ Everywhere ] [ Born ] [ Group ]
7\
[ Air ][ Land ][ Sea ] [ Young ][ Middle ][ Old ] [ Mammal ][ Insect ][ Reptile ]
O, N i i O I
[ Don‘t know ] [ Don‘t know ] [ Don‘t know ]




Remember: DataGenerator as Bridge

( Implementation )

] Generatorimpl pN
Abstraction
NS impl
DataGenerator <> Imp > generateData(data)
Data data <> ;
[ |
generate() ExhaustiveGenerator || RandomGenerator
A generateData(data) generateData(data)
dat ( Implementation)
TestDataGenerator ReportGenerator i > Data (S
Data cleanData()

A

data = data.cleanData():; StringData GraphData

generate() Q || generate() Q

imp.generateData (data)

. TestData cleanData() ReportData cleanData()

D .




Facets of the Data Generator

DataGenerator

v
Facet 1. TypeOfData

\

[ Type of Data ]

[ TestData ] [ ReportData ]

1 7

[ Nothing ]

ExhaustiveTestDataGenerator

RandomTestDataGenerator

Y

Facet 2: Completeness

[ Completeness ]

\

[ Exhaustive

Random ]

/I\

i)

[

Nothing

)

ExhaustiveReportDataGenerator

RandomReportDataGenerator

67



Facets Can Be Implemented by Multi-Bridges

» One central facet (abstraction)
» Others are delegatees in bridges (habitate, age, group, etc.)

» Advantage
+ All facets can be varied independently
+  Simple models

» Restriction: facets model only one logical object
= With several physical objects

D .



Multi-Bridge with Core Facet

» Animal as core facet, all others are hook classes

» Bottom (e.g., “Don’t know”) dispappears (transferred to multiplicity)
= Multiplicity 1 = no bottom construct
= Multiplicity O ... 1 = bottom available

<> Animal >

<>
Facet 1: Habitat Facet 2: Age Facet 3: Group
V
>{ Everywhere ] [ Born ] [ Group ]<

JaN
| | | | | |

(i )(cana ) sea )| | (o ) (i ) (o0 )| | (wammar | (imsee | oot




Multiple Bridge Without Core

» Select a primary facet, relate others by bridges (n-Bridge)

» Problem: primary facet knows the others

—<> Animal
Facet 1: Habitat Facet 3: Group
> Everywhere ]() > Group ]
| | Facet 2: Age | |
[ Air ][ Land ][ Sea ] [ Mammal ][ Insect ][ Reptile ]
é[ Born ]
JAN

(oung [ wiaae )[ o |




How Can | Recognize Facets in Modelling?

» If a class has several different partitions

» A model is not a facet model, if some class exists,
whose heirs do not partition the class (non-partitioned inheritance)

TypeOfEater
[ Type of eater ]
( Gourmet ] T
I I
[ Vegetarian H Meat Eater ] [ Quality of eater] [ Sort of eater ]
1 1
L Gourmand J | | | |

[ Gourmet ] [ Gourmand ] [ Vegetarian ] [ Meat Eater ]




Resolve with DimensionalClassHierarchies (Bridge)

Simple Bridge
QualityOfEater <>—> SortOfEater
I I I I
Gourmet Gourmand Vegetarian Meat Eater

Double Bridge with Core

Eater <>

Vv

SortOfEater

V

QualityOfEater

I I
4 Vegetarian Meat Eater
I I

Gourmet Gourmand




Modeling of Facet with Bridges

» Advantages:

+ Dynamic variations possible
+ Fewer classes

» Disadvantages:
- No type check on product classes
- No control over which combinations are created (illegal ones or undefined ones)
- Object schizophrenia
- Memory consumption with allocations
- Speed
- -->not for embedded systems!

D .



Example: Classification of Research Papers after Shaw

» How to classify a research paper?

» Whenis it bad, when is it good?

» Mary Shaw proposed a facet-based classification with the facets
Research question

= Result
Evaluation



Classification of Research Papers

» 5x7 x5 facet classes—175 product classes (types of research papers)

Development method Procedure or technique Analysis
Analysis method Qualitative or decriptive model Experience
Design or evaluation Analytic model Example
Generalization Emperical model Evaluation
Feasability study Tool or notation Persuasion
Specification
Report

Mary Shaw, Writing good software engineering research papers: minitutorial, In Proceedings of the 25th International
Conference on Software Engineering, 2003, Pages 726-736, IEEE Computer Society Washington, DC, USA



Classification of Research Papers

- CQassification ][]

Classify document 1
Question Result Validation
|Develupment method j |Fru|:ess j |Analysis j
Comment | | |
Classify I Close I

Classified documents
Document Cuestion Result Walidation
1 Development method Process Analysis
4 Analysis method Process Aanalysis
3 Evaluate instance Descriptive model Experience
4 Evaluate instance Analytic model Example
3 Evaluate instance  Empirical model  Example
B Generalization Tool Evaluation
7 Generalization Specific solution  Evaluation
il Feasibility Report Persuasion
3 Development method  Specific solution  Example
10 Ewaluate instance Empirical mocdel Example
Grouping: List ﬂ Regroup |
Close |




Classification of Research Papers

[ Resur [

Classified documents
Question'\Validation  Analysis Experience Example Evaluation Persuasion
Development method 1 9
Analysis method 2
Evaluate instance 3 4510
Generalization 67
Feasibility il
Grouping: Question/Yalidation j Regroup
Close




When to Use Facet-based Models

» When the model consists of independent dimensions

» When the model is very complicated

» Realizations:

= Use multiple inheritance,
when type checking is necessary (e.g., in frameworks)

- Use Bridge,
when language does not support multiple inheritance,
or dimensions change dynamically



Several Facet Groups are [Possible

<<facet>> <<facet>> <<facet>>
NetworkAccessLayer InternetLayer HostToHostLayer
T2l
JAN
<<facet>> <<facet>> <<facet>>
CPU Memory Network
[ CPU1 ] [ CPU2 ] [ MEM1 ] [ MEM2 ] { UDP/IP ] [TCP/IP]

A JAN JaN

Computer




O

2.3) Layered Objects

Design Patterns and Frameworks, © Prof. Uwe ABmann, Dr. Sebastian Go6tz, Christian Piechnick

80



Be Aware

» If you meet a Bridge, you may have a facet classification

» Only question: are the dimensions independent?

» Sometimes, dependencies exist (e.g., one dimension calls another)
= This requires an interface (contract) between the dimensions

D o



Layered Objects with Chain-Bridge

Chain Bridge with Core

TypeOftater K>—> QualityOfEater <——> SortOfEater

ZF

Gourmet Gourmand Vegetarian Meat Eater




Chain-Bridge for Layered Object Implementation

» Select a primary facet, relate others by chain-Bridges

» Here without core

% Animal

Facet 1. Habitat Facet 2: Age Facet 3: Group

H[ Everywhere ]() >[ Born ]() >[ Group ]

(air )(cana ) sea )| [ voung [ wiaae ) 0 ]| [ wammar |[ msect|[ meoue




Layered Objects

» Upper layers depend on information of lower layers

Facet 1: Habitat Facet 2: Age Facet 3: Group
[ Everywhere ]() > Born ]() > Group ]
/A 7A

(ar )(cana )( sea )| |[(voung |( wiaate | ot )| | ammar | msec ) repue |




Remember: DataGenerator as Bridge

( Implementation )

( Abstraction) Generatorimpl \
N

impl

DataGenerator O > generateData(data)

A

Data data > Control Flow :
generate() I |
A : ExhaustiveGenerator RandomGenerator
generateData(data) generateData(data)
TestDataGenerator ReportGenerator (Im erEmEen
: data g P
> Data
R\
Q\o 4 Data cleanData()

generate() Q || generateq) O

‘ ““
______________________________________________ A ‘\\' “‘
: 1 :- : 00 “o‘
idata = parseTestData(); data = data.cleanData () ; RS

:imp.generateData(data);
1

1,¢°
?mp.generateData(data);ﬁ I I
1 1

s N SRR StringData GraphData

TestData cleanData() ReportData cleanData()

D .




DataGenerator as 2-Chain-Bridge

( Abstraction )
N

DataGenerator (}

Generatorimpl

( Implementation )
\

Data data

generate()

......................

imp1.gnerateData(data]

TestDataGenerator

ReportGenerator

generate()

generate()

impl
> generateData(data) Co—
kg
Ol
| |
ExhaustiveGenerator RandomGenerator
generateData(data) Q generateData(data)

................... N [P—

( Implementation )
L

Data cleanData()

data
.

~

A

StringData

GraphData

TestData cleanData()

ReportData cleanData()

86



Compare to Facets

» Dimensions do not depend on information of others

Facet 1. Habitat Facet 3: Group
depends on
o

[ Everywhere ]() > Group ]

| | Facet 2: Age | T |
(e (]G] [ ) [ ammn ) nsect ) mentte

[ Young ][ Middle ][ old ]

no dependency




Layered Object Spaces

» A layered object space is similar to a facet space

» Layers exchange information in a directed way

- Upper layers call lower layers,
which deliver information to upper layers

= Abstract topmost classes in a layer provide abstract methods
that can be called from other layers

- The dependencies are directed and acyclic (form a DAG)
» All classes in a layer can be exchanged (must conform to the interface)

» Layered object spaces are much broader applicable than facet spaces

D .



O

2.4) Facet-Bridge FrameworRks and Dimensional Systems

Design Patterns and Frameworks, © Prof. Uwe ABmann, Dr. Sebastian Go6tz, Christian Piechnick

89



Multiple Bridges for Facet-Based Systems

» So far, we looked at implementations of faceted or layered objects, i.e., models of
complex objects

» Facet classifications and layered objects can be generalized to facet-based or
dimensional frameworks and systems



Facet-Bridge Dimensional Systems

» Bridge patterns can be divided upon different dimensions
» Here: a triple Bridge with core and 3 dimensions, all independent

Core Facet: Abstraction (e.g., Group)
<> <& <&

Vv

Facet of
Implementation

(e.g., Age)

Other facet
(e.g., Domain)

Other facet
(e.g., Nurture)




Facet-Bridge FrameworRs for Facet-Based Systems

» If one or several layers are fixed, and the rest is variable, facet frameworks result

Core Layer Reuse
Abstraction 0
Framework

0&1

N N N ? N ﬂ} Reuse
v

First facet | Reuse
irst facet layer 0-2

(first concretization)

Reuse
0-3

Second facet layer
(second concretization)

Third facet layer
(third concretization)




Facet-Bridge FrameworRs for Facet-Based Systems

Ol anaiiamimmatlvedelallall

» Products can be instantiated on every level

» Every dimension provides additional reuse

Core Facet: Abstraction (e.g., Group)

< < <
I I
\4 e _ € ~
Facet of € o S
Implementation g © g =
(e.g., Age) T 3 T *g
S| 82
9 9 >
O O

Other facet
(e.g., Domain)

Other facet
(e.g., Nurture)

D .

A4
N




Facet-Bridge FrameworRs for Business Software

» SAP, Peoplesoft, Intentia, IFS

Core Facet: Business Objects
S > > z ||z
0 0
S S
g g
c c
. A4 = =
Domain Ow O 5
(public sector, 23 25
company, private) S = 8 5
g g -
o £ o =
. A @) @)
Production facet S S
(Industry, Service, = =
Administration)) m m
\
Language
(English, Swedish) > <

D y



Facet-based Design and FrameworRks

» Best practice: whenever you have a huge class hierarchy
(that is not completely based on partitioning)

= Find out the facets
= Factor the inheritance hierarchy into the facets

= Choose a core facet
= And implement the facets with a facet framework with Bridges.
- For an n-dimensional facet problem you need at least n-1 Bridges

» If the “facets” are not independent, introduce layers
= And implement them with Chain-Bridges

D .



O

2.5) Layered FrameworRs and Systems with
Chain Bridges

Design Patterns and Frameworks, © Prof. Uwe ABmann, Dr. Sebastian Go6tz, Christian Piechnick

96



Layered FrameworRs for Layered Systems

» Whenever a system is a layered architecture (stack architecture),
a layered (object) framework can be used

= Chain-Bridge can implement them, if the layers are independent of each other
(layered chain-bridge framework)

= The layering is an abstraction layering
(more detailed things appear as lower layer)

» Modelling criterion: every class must contribute to every layer of a layered system
= Classes crosscut the layers
= In general, layered system do not meet this criterion

» Different products can be configured easily by varying the dimensions



NetworR StacRks as Layered Bridge System

» ISO/OSI has 7 layers (leads to a 7-Bridge)

» Every layer knows the next underlying

» All partial objects call partial objects in lower layers

Core Facet
(Database
application)

Facet of transport
(e.g., TCP, IPX) <> <>

Paket protocol <> <>

(e.g., UDP)

Basic protocol
(e.g., Ethernet,
token ring)




Databases and Layered Bridge FrameworRs

» An object-oriented database should be a layered bridge framework

Core Facet
(Database < 0
application) <> — S S
b 5 %
l( Q Q
g g
Facet of transport
(e.g., TCP, IPX) <> <> <a§ <a§
< <
Qo Qo
s s
\ 4 8 8
Paket protocol
(e.g., UDP) <> <>
_ \ 2 \ 4
Basic protocol
(e.g., Ethernet, > <
token ring)

99



The Role of Layered FrameworRks

» Layered frameworks are a very important structuring method for large systems

« Parameterization
« Variation
« Extension

» On every layer, reuse is possible
= Enourmous variability

» Every layer corresponds to an aspect of the application
= All layers form stacked aspects

» A large system must be reducible or layered
- Hence, layered frameworks provide a wonderful, very general methods for product
lines of very large products
= And additionally, for extensible systems

@ 100



The Role of Layered FrameworRks

» Currently, there are three competing implementation technologies
= Aspect-oriented weaving

- View-based weaving (hyperslice programming)
(see Component-Based Software Engineering, summer semester)

= Hand programming
Chain-Bridges
Role Object Pattern (see later)

» Layered frameworks are one of the most important
software engineering concepts

@ 101



The End

102



Figures

Slide 6
Slide 7
Slide 8
Slide 9

http://furniture-blog.de/wp-content/uploads/2013/12/Schraube-im-Holz.ipg

https://farm4.staticflickr.com/3804/10033443254 8671330728 Kk.jpqg

http://www.duden.de/ media /full/S/Schraubenkopf-201020591820.ipg

https://www.flickr.com/photos/eastgermanpics/4381203299

103


http://furniture-blog.de/wp-content/uploads/2013/12/Schraube-im-Holz.jpg
https://farm4.staticflickr.com/3804/10033443254_8671330728_k.jpg
http://www.duden.de/_media_/full/S/Schraubenkopf-201020591820.jpg
https://www.flickr.com/photos/eastgermanpics/4381203299

