
Design Patterns and Frameworks, © Prof. Uwe Aßmann

1

Chapter 3
Variability Patterns for Object Creation

Prof. Dr. U. Aßmann

Chair for Software
Engineering

Department of Computer
Science

Technische Universität
Dresden

Oct 23, 2017

Lecturer:
Dr. Sebastian Götz

1) FactoryMethod

2) AbstractFactory

3) Builder

Design Patterns and Frameworks, © Prof. Uwe Aßmann

2

3.1 Factory Method
(Polymorphic Constructor)

P
ro

f.
 U

w
e

A
ß

m
an

n
, D

es
ig

n
P

at
te

rn
s

an
d

F
ra

m
ew

or
k s

3

A Restriction of Polymorphism

► Some polymorphic languages (such as Java) do not allow for
exchange of the constructor

► Problem: constructors are concrete, cannot be varied polymorphically

// Product class
public class Set extends Collection {
 public Set(int initialLength) {

 }
}
public class ListBasedSet extends Set {
 public ListBasedSet(int initialLength) {

 }
}

// Creator class abstract
public abstract class Creator {
 public void collect() {
 Set mySet = new Set(10);
 // which set should be allocated?
 }
}

// Creator class concrete
public class CreatorB extends Creator {
 public void collect() {
 Set mySet = new ListBasedSet(10);
 }
}

So, creator methods, which employ
constructors, must be overridden
carefully by hand

P
ro

f.
 U

w
e

A
ß

m
an

n
, D

es
ig

n
P

at
te

rn
s

an
d

F
ra

m
ew

or
k s

4

Factory Method (Polymorphic Constructor)

► Abstract creator classes offer abstract constructors (polymorphic constructors)

– Concrete subclasses can specialize the constructor

– Constructor implementation is changed with allocation of concrete Creator

// Abstract creator class
public abstract class Creator {
 // factory method
 public abstract Set createSet(int n);
}

// Abstract creator class
public abstract class Creator {
 // factory method
 public abstract Set createSet(int n);
}

// Concrete creator class
public class ConcreteCreator extends Creator {
 public Set createSet(int n) {
 return new ListBasedSet(n);
 }
 ...
}

// Concrete creator class
public class ConcreteCreator extends Creator {
 public Set createSet(int n) {
 return new ListBasedSet(n);
 }
 ...
}

public class Client {
... Creator cr = new ConcreteCreator(..)
 public void collect() {
 Set mySet = cr.createSet(10);

 }
}

public class Client {
... Creator cr = new ConcreteCreator(..)
 public void collect() {
 Set mySet = cr.createSet(10);

 }
}

P
ro

f.
 U

w
e

A
ß

m
an

n
, D

es
ig

n
P

at
te

rn
s

an
d

F
ra

m
ew

or
k s

5

Structure for FactoryMethod

Creator

FactoryMethod()
anOperation()

ConcreteCreatorA

FactoryMethod()

Product

ConcreteProductA

return new ConcreteProductA

...
Product = FactoryMethod()
...

► FactoryMethod is a variant of TemplateMethod
► It hides the allocation of a product

ConcreteCreatorB

FactoryMethod()

return new ConcreteProductB

ConcreteProductB

Client

P
ro

f.
 U

w
e

A
ß

m
an

n
, D

es
ig

n
P

at
te

rn
s

an
d

F
ra

m
ew

or
k s

6

Structure for FactoryMethod

MazeGame

makeRoom()
anOperation()

StandardGame

makeRoom()

Room

StandardRoom

...
room = makeRoom()
...

MagicGame

makeRoom()

MagicRoom

Client

Ext 1

Ext 2

Framework

P
ro

f.
 U

w
e

A
ß

m
an

n
, D

es
ig

n
P

at
te

rn
s

an
d

F
ra

m
ew

or
k s

7

Example FactoryMethod for Buildings

► Consider a framework for
planning of buildings

– Class Building with template
method construct to plan a
building interactively

► Users can create new
subclasses of buildings

– All abstract methods
createWall, createRoom,
createDoor, createWindow
must be implemented

► Problem: How can the
framework treat new subclasses
of Buildings? (unforeseen
extension)

Building

construct()
createBuilding()
createWall()
createDoor()
createWindow()
createRoom()

createBuilding()
createWall()
createDoor()
createWindow()
createRoom()

...
house = createBuilding();
...
house.createWall();
...
house.createDoor();
...
house.createWindow();
...

Skyscraper

Framework

Extensions

createBuilding()
createWall()
createDoor()
createWindow()
createRoom()

Bungalow

P
ro

f.
 U

w
e

A
ß

m
an

n
, D

es
ig

n
P

at
te

rn
s

an
d

F
ra

m
ew

or
k s

8

Solution with FactoryMethod

► Solution: a
FactoryMethod

► Subclasses can
specialize the
constructor and enrich
with more behavior, e.g.,
additional dialogues

// abstract creator class
public abstract class Building {
 public abstract
 Building createBuilding();
 ...
}

// abstract creator class
public abstract class Building {
 public abstract
 Building createBuilding();
 ...
}

// concrete creator class
public class Skyscraper extends Building {
 Skyscraper() {
 //...
 }
 public Building createBuilding() {
 //... fill in more info ...
 return new Skyscraper();
 }
 //...
}

// concrete creator class
public class Skyscraper extends Building {
 Skyscraper() {
 //...
 }
 public Building createBuilding() {
 //... fill in more info ...
 return new Skyscraper();
 }
 //...
}

// concrete creator class
public class Bungalow extends Building {
 Bungalow() {
 //...
 }
 public Building createBuilding() {
 //... fill in more info ...
 return new Bungalow();
 }
 //...
}

// concrete creator class
public class Bungalow extends Building {
 Bungalow() {
 //...
 }
 public Building createBuilding() {
 //... fill in more info ...
 return new Bungalow();
 }
 //...
}

P
ro

f.
 U

w
e

A
ß

m
an

n
, D

es
ig

n
P

at
te

rn
s

an
d

F
ra

m
ew

or
k s

9

Flexible Construction with Reflection

► Constructor can allocate objects of statically unknown classes
► Reflection:

– Find the class's name and get the class object
– Then clone the class object

in Java: Class.forName(String name)

► Attention: reflection is usually slow. It has to lookup bytecode
information and must load class code on-the-fly

… createProduct() {

// reflective function for class name, called in subclass

String className = getClassNameFromSomeWhere();

// get the class object and allocate from there

house = (Building) Class.forName(className).newInstance();

...

}

P
ro

f.
 U

w
e

A
ß

m
an

n
, D

es
ig

n
P

at
te

rn
s

an
d

F
ra

m
ew

or
k s

10

Factory Methods in Parallel Class Hierarchies

► One class hierarchy offers a factory method to create objects of a second hierarchy

► On every level, the factory method is implemented in a parallel class on exactly the same
level and abstraction level

– E.g, ReadableObject and WritableObject in ReadableFigures and FigureManipulators

► Here, the parallelism constraint is that every readable object must allocate a parallel
manipulator.

– This is a constraint on the polymorphic allocator of the manipulators

ManipulatorOfFigure

draw()
drag()

ConcreteManipulatorA

draw()
drag()

ConcreteManipulatorB

draw()
drag()

ReadableFigure

createManipulator()
manipulator

Concrete
ReadableFigureA

ManipulatorOfFigure
createManipulator()

Concrete
ReadableFigureB

ManipulatorOfFigure
createManipulator()

P
ro

f.
 U

w
e

A
ß

m
an

n
, D

es
ig

n
P

at
te

rn
s

an
d

F
ra

m
ew

or
k s

11

Analysis of FactoryMethod:
Information Hiding of Abstract Classes

► Abstract classes know when an object should be allocated, but
do not know which of the subclasses will be filled in at runtime

– The knowledge which subclass should be used is
encapsulated into the client subclasses

► For frameworks this means:
– The abstract classes of the framework do not know which

application class they will work on, but they know when to create
an application object

– The knowledge which application class should be used is
encapsulated into the application

► Relatives of FactoryMethod
– A FactoryMethod is a HookMethod, used by a TemplateMethod,

which returns a product, i.e., FactoryMethods are called in
TemplateMethods

Design Patterns and Frameworks, © Prof. Uwe Aßmann

12

3.2 Factory Class
(Abstract Factory)

P
ro

f.
 U

w
e

A
ß

m
an

n
, D

es
ig

n
P

at
te

rn
s

an
d

F
ra

m
ew

or
k s

13

Forces of the Factory Class Pattern

► Given a package with a family of classes (a product
family). Examples

– Widgets in a window system
– Stones in a Tetris game
– Products of a company

► How can the product family be switched in one go to a
variant?

– Swing widgets to Windows widgets?
– 2D-stones to 3D-stones in the Tetris game?
– Cheap variants of the products of the company to

expensive variants?

P
ro

f.
 U

w
e

A
ß

m
an

n
, D

es
ig

n
P

at
te

rn
s

an
d

F
ra

m
ew

or
k s

14

Factory Class Pattern

► A Factory (FactoryClass) groups factory methods to a class
– A Factory is a class that groups a family of polymorphic constructors

of a family of classes (products)
– The products can be classes of a layer or a package
– The products have a strong parallelism constraint (isomorphic

hierarchies)

► An AbstractFactory contains the interfaces of the constructors

► A ConcreteFactory contains the implementation of the constructors
– The Concrete Factories can be exchanged
– A Concrete Factory represents one concrete family of objects

► Hence, an AbstractFactory offers an interface to create families of
related objects

– That depend on each other
– Without naming their constructors explicitly

P
ro

f.
 U

w
e

A
ß

m
an

n
, D

es
ig

n
P

at
te

rn
s

an
d

F
ra

m
ew

or
k s

15

Structure for Factory Class

AbstractFactory

createProductA()
createProductB()

ConcreteFactory1

createProductA()
createProductB()

ConcreteFactory2

createProductA()
createProductB()

AbstractProductA

ProductA2 ProductA1

AbstractProductB

ProductB2 ProductB1

► By creating the concrete factory, the client determines the entire
family of products (here: family 1 or 2)

Client

init()

If (..) {
 factory = new
ConcreteFactory1();
} else {
 factory = new
ConcreteFactory2();
}

factory

P
ro

f.
 U

w
e

A
ß

m
an

n
, D

es
ig

n
P

at
te

rn
s

an
d

F
ra

m
ew

or
k s

16

Example for Factory Class

WidgetFactory

createScrollbar()
createWindow()

SWTFactory

createScrollbar()
createWindow()

XFactory

createScrollbar()
createWindow()

Window

XWindow SWTWindow

Scrollbar

XScrollbar SWTScrollbar

Client

P
ro

f.
 U

w
e

A
ß

m
an

n
, D

es
ig

n
P

at
te

rn
s

an
d

F
ra

m
ew

or
k s

17

Example for Factory Class in Compilers

ElementFactory

createAssign()
createPlus()

EiffelFactory

createAssign()
createPlus()

JavaFactory

createAssign()
createPlus()

Assign

JavaAssign EiffelAssign

Plus

JavaPlus EiffelPlus

Client

P
ro

f.
 U

w
e

A
ß

m
an

n
, D

es
ig

n
P

at
te

rn
s

an
d

F
ra

m
ew

or
k s

18

Employment of Factory Class

► For window styles
– All widgets are used by the framework abstractly
– The concrete style is determined by a concrete factory

class
– Swing, AWT, ...

► In office systems
– For families of similar documents

► In business systems
– For families of similar products

► For tools on several languages
► Factory Class is related to Tools-and-Materials (TAM),

because products are materials (see later)

P
ro

f.
 U

w
e

A
ß

m
an

n
, D

es
ig

n
P

at
te

rn
s

an
d

F
ra

m
ew

or
k s

19

Pragmatics of Factory Class

WidgetFactory

createScrollbar()
createWindow()

ConcreteFactory1

CreateScrollbar()
createWindow()

ConcreteFactory2

CreateScrollbar()
createWindow()

Window

XWindow SWTWindow

Scrollbar

XScrollbar SWTScrollbar

Client

► A factory deals with 3+x inheritance hierarchies (factory,
product 1, ..., product n)

► The n product hierarchies must be maintained in parallel,
i.e., they form ParallelHierarchies

► The factory pattern ensures that all objects are created
with the parallelism constraint

Same height of products

P
ro

f.
 U

w
e

A
ß

m
an

n
, D

es
ig

n
P

at
te

rn
s

an
d

F
ra

m
ew

or
k s

20

Variant: The Prototyping Factory

► Concrete factories need not be created; one instance is
enough, if prototypes of the products exist

► To produce new products, the ConcreteFactory clones the
set of available products

► The variability of products is handled by the cloning of the
prototypes

► Especially useful, if products have complex default state
or do not vary much

P
ro

f.
 U

w
e

A
ß

m
an

n
, D

es
ig

n
P

at
te

rn
s

an
d

F
ra

m
ew

or
k s

21

Structure for Prototyping Factory

AbstractFactory

createProductA()
createProductB()

ConcreteFactory

createProductA()
createProductB()

 :Prototype

copyProductA()
copyProductB()

AbstractProductA

ProductA2 ProductA1

AbstractProductB

ProductB2 ProductB1

Client

P
ro

f.
 U

w
e

A
ß

m
an

n
, D

es
ig

n
P

at
te

rn
s

an
d

F
ra

m
ew

or
k s

22

Variant: Factory with Interpretive
FactoryMethod
► If more factory methods should be added, this becomes

tedious, since the AbstractFactory and all concrete
factories must be edited

► Instead: one factory method with parameter string

public class abstractFactory {
 abstract Product createProduct(String what);
}

public class ConcreteFactory extends AbstractFactory {
 Product createProduct(String what) {
 if (what.eq(“p1”)) {
 return new P1();
 else
 }
}

P
ro

f.
 U

w
e

A
ß

m
an

n
, D

es
ig

n
P

at
te

rn
s

an
d

F
ra

m
ew

or
k s

23

Structure for Interpretive Factory

AbstractFactory

createProduct(String what)

ConcreteFactory1

createProduct(String what)

AbstractProductA

ProductA2 ProductA1

AbstractProductB

ProductB2 ProductB1

Client

ConcreteFactory2

createProduct(String what)

P
ro

f.
 U

w
e

A
ß

m
an

n
, D

es
ig

n
P

at
te

rn
s

an
d

F
ra

m
ew

or
k s

24

Factory Class - Employment

► Make a system independent of the way how its objects
are created

► Hide constructors to make the way of creation
exchangable with types

► For product families
– In which families of objects need to be created together;

but the way how is varied

► Related Patterns
– An abstract factory is a special form of hook class, to be

called by some template classes.
– Often, a factory is a Singleton (a Singleton is a class with

only one instance)
– Concrete factories can be created by parametrizing the

factory with Prototype objects

Design Patterns and Frameworks, © Prof. Uwe Aßmann

25

3.3 Builder (Factory with Protocol,
Structured Factory)

P
ro

f.
 U

w
e

A
ß

m
an

n
, D

es
ig

n
P

at
te

rn
s

an
d

F
ra

m
ew

or
k s

26

Structure for Builder

Director

construct()

AbstractBuilder

buildPart()
getResult()

ConcreteBuilder

buildPart()
getResult()

Structured
Product

builder

for all objects in structure
 according to protocol {
 builder.buildPart()
}

► The Builder is a Factory Class that produces a structured
product (a whole with parts)

– e.g., a business object or product data

P
ro

f.
 U

w
e

A
ß

m
an

n
, D

es
ig

n
P

at
te

rn
s

an
d

F
ra

m
ew

or
k s

27

Example RTF-Document Builder

TextConverter

convChar(char)
convCharSet(CharSet)
convParagraph()
getText()

TeXConverterASCIIConverter

convChar(char)
convCharSet(CharSet)
convParagraph()
getText()

ASCIIText TeXText

RTFReader

ParseRTF()

builder

► RTF grammar defines a protocol for the sequence of text
converter functions

convChar(char)
convCharSet(CharSet)
convParagraph()
getText()

for all objects in text file
 according to RTF
 protocol {
 builder.convParagraph()
}

P
ro

f.
 U

w
e

A
ß

m
an

n
, D

es
ig

n
P

at
te

rn
s

an
d

F
ra

m
ew

or
k s

28

Builder Protocol (E.g., Specified by
EBNF)

-- Grammar in EBNF
RTFDocument ::= RTFHeader RTFBody RTFFooter.
RTFHeader ::= RTFParagraph*.
RTFParagraph ::= Word*.
Word ::= Char*.
RTFBody ::= RTFParagraph*.
RTFFooter ::= RTFParagraph*.

-- Grammar in EBNF
RTFDocument ::= RTFHeader RTFBody RTFFooter.
RTFHeader ::= RTFParagraph*.
RTFParagraph ::= Word*.
Word ::= Char*.
RTFBody ::= RTFParagraph*.
RTFFooter ::= RTFParagraph*.

P
ro

f.
 U

w
e

A
ß

m
an

n
, D

es
ig

n
P

at
te

rn
s

an
d

F
ra

m
ew

or
k s

29

RTF Builder Protocol

RTFDocument

RTFBody RTFFooterRTFHeader

RTFParagraph*

Word *

Char *

RTFParagraph*

Word *

Char *

RTFParagraph*

Word *

Char *

P
ro

f.
 U

w
e

A
ß

m
an

n
, D

es
ig

n
P

at
te

rn
s

an
d

F
ra

m
ew

or
k s

30

The Builder

► Maintains an internal state that memorizes the point of
time in construction of the complex data structure

► Data structure defines a protocol for calls to the
elementary functions

► Data structure must be defined by a
– Grammar
– regular expression
– Protocol machine (statechart acceptor)
– Other mechanisms, such as Petri nets

► The other way round: as soon as we have a data
structure

– Defined by a grammar or regular expressions
– We can build a constructor with the Builder pattern

P
ro

f.
 U

w
e

A
ß

m
an

n
, D

es
ig

n
P

at
te

rn
s

an
d

F
ra

m
ew

or
k s

31

Builder: Information Hiding

► The builder hides
– The protocol (the structure of the data)
– The current status
– The implementation of the data structure

► Similar to an Iterator, the structure is hidden

P
ro

f.
 U

w
e

A
ß

m
an

n
, D

es
ig

n
P

at
te

rn
s

an
d

F
ra

m
ew

or
k s

32

Known Uses

► Parsers in compilers are builders that contain the
grammar of the concrete syntax of the programming
language

► Builders for intermediate representations of all kinds of
languages

– Programming languages
– Specification languages
– Graphic languages such as UML

► Builders for all complex data structures
– Databases with integrity constraints

P
ro

f.
 U

w
e

A
ß

m
an

n
, D

es
ig

n
P

at
te

rn
s

an
d

F
ra

m
ew

or
k s

33

What have we learned?

► Factory Method
– Problem: constructors cannot be varied
– Solution: Application of Template Method for Creation

► Factory Class
– Problem: No variability of constructors in dimensional

class hierarchies
– Solution: Application of Template Class for Creation

► Builder
– Problem: Complex products are build according to a

protocol, which is to be varied, too.
– Solution: Application of Template Class with stateful

template method

	Coaster in Space
	Folie 2
	Folie 3
	Folie 4
	Structure for FactoryMethod
	Folie 6
	Beispiel for FactoryMethod
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Structure for Abstract Factory
	Beispiel for Abstract Factory
	Folie 17
	Folie 18
	Folie 19
	Folie 20
	Folie 21
	Folie 22
	Folie 23
	Abstract Factory
	Folie 25
	Structure for Erbauer
	Beispiel for Erbauer
	Folie 28
	Folie 29
	Folie 30
	Folie 31
	Folie 32
	Folie 33

