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3.1 Factory Method 
(Polymorphic Constructor)
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A Restriction of Polymorphism

► Some polymorphic languages (such as Java) do not allow for 
exchange of the constructor

► Problem: constructors are concrete, cannot be varied polymorphically

// Product class
public class Set extends Collection {
   public Set(int initialLength) {
      ....
   }
}
public class ListBasedSet extends Set {
   public ListBasedSet(int initialLength) {
      ....
   }
}

// Creator class abstract
public abstract class Creator {
   public void collect() {
       Set mySet = new Set(10);
       // which set should be allocated?
   }
}

// Creator class concrete
public class CreatorB extends Creator {
   public void collect() {
       Set mySet = new ListBasedSet(10);
   }
}

So, creator methods, which employ 
constructors, must be overridden 
carefully by hand
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Factory Method (Polymorphic Constructor)

► Abstract creator classes offer abstract constructors (polymorphic constructors)

– Concrete subclasses can specialize the constructor

– Constructor implementation is changed with allocation of concrete Creator

// Abstract creator class
public abstract class Creator  {
   // factory method
   public abstract Set createSet(int n);
}

// Abstract creator class
public abstract class Creator  {
   // factory method
   public abstract Set createSet(int n);
}

// Concrete creator class
public class ConcreteCreator extends Creator {
   public Set createSet(int n) {
      return new ListBasedSet(n);
  }
 ... 
}

// Concrete creator class
public class ConcreteCreator extends Creator {
   public Set createSet(int n) {
      return new ListBasedSet(n);
  }
 ... 
}

public class Client {
... Creator cr = new ConcreteCreator(..)
  public void collect() {
    Set mySet = cr.createSet(10);
    ....
  }
}

public class Client {
... Creator cr = new ConcreteCreator(..)
  public void collect() {
    Set mySet = cr.createSet(10);
    ....
  }
}
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Structure for FactoryMethod 

Creator

FactoryMethod()
anOperation()

ConcreteCreatorA

FactoryMethod()

Product

ConcreteProductA

return new ConcreteProductA

...
Product = FactoryMethod()
...

► FactoryMethod is a variant of TemplateMethod
► It hides the allocation of a product

ConcreteCreatorB

FactoryMethod()

return new ConcreteProductB

ConcreteProductB

Client
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Structure for FactoryMethod 

MazeGame

makeRoom()
anOperation()

StandardGame

makeRoom()

Room

StandardRoom

...
room = makeRoom()
...

MagicGame

makeRoom()

MagicRoom

Client

Ext 1

Ext 2

Framework
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Example FactoryMethod for Buildings

► Consider a framework for 
planning of buildings

– Class Building with template 
method construct to plan a 
building interactively

► Users can create new 
subclasses of buildings

– All abstract methods 
createWall, createRoom, 
createDoor, createWindow 
must be implemented

► Problem: How can the 
framework treat new subclasses 
of Buildings? (unforeseen 
extension)

Building

construct()
createBuilding()
createWall()
createDoor()
createWindow()
createRoom()

createBuilding()
createWall()
createDoor()
createWindow()
createRoom()

...
house = createBuilding();
...
house.createWall();
...
house.createDoor();
...
house.createWindow();
...

Skyscraper

Framework

Extensions

createBuilding()
createWall()
createDoor()
createWindow()
createRoom()

Bungalow
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Solution with FactoryMethod 

► Solution: a 
FactoryMethod

► Subclasses can 
specialize the 
constructor and enrich 
with more behavior, e.g., 
additional dialogues

// abstract creator class
public abstract class Building  {
   public abstract 
       Building createBuilding();
   ...
}

// abstract creator class
public abstract class Building  {
   public abstract 
       Building createBuilding();
   ...
}

// concrete creator class
public class Skyscraper extends Building  {
   Skyscraper() {
       //...
   }
   public Building createBuilding() {
      //... fill in more info ...
      return new Skyscraper();
  }
  //...
}

// concrete creator class
public class Skyscraper extends Building  {
   Skyscraper() {
       //...
   }
   public Building createBuilding() {
      //... fill in more info ...
      return new Skyscraper();
  }
  //...
}

// concrete creator class
public class Bungalow extends Building  {
   Bungalow() {
       //...
   }
   public Building createBuilding() {
      //... fill in more info ...
      return new Bungalow();
  }
  //...
}

// concrete creator class
public class Bungalow extends Building  {
   Bungalow() {
       //...
   }
   public Building createBuilding() {
      //... fill in more info ...
      return new Bungalow();
  }
  //...
}
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Flexible Construction with Reflection

► Constructor can allocate objects of statically unknown classes
► Reflection:

– Find the class's name and get the class object
– Then clone the class object

in Java: Class.forName(String name)

► Attention: reflection is usually slow. It has to lookup bytecode 
information and must load class code on-the-fly

… createProduct() {

// reflective function for class name, called in subclass

String className = getClassNameFromSomeWhere();

// get the class object and allocate from there

house = (Building) Class.forName(className).newInstance();

...

}
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Factory Methods in Parallel Class Hierarchies

► One class hierarchy offers a factory method to create objects of a second hierarchy

► On every level, the factory method is implemented in a parallel class on exactly the same 
level and abstraction level

– E.g, ReadableObject and WritableObject in ReadableFigures and FigureManipulators

► Here, the parallelism constraint is that every readable object must allocate a parallel 
manipulator. 

– This is a constraint on the polymorphic allocator of the manipulators

ManipulatorOfFigure

draw()
drag() 

ConcreteManipulatorA

draw()
drag() 

ConcreteManipulatorB

draw()
drag() 

ReadableFigure

createManipulator()
manipulator

Concrete
ReadableFigureA

ManipulatorOfFigure
createManipulator()

Concrete
ReadableFigureB

ManipulatorOfFigure
createManipulator()
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Analysis of FactoryMethod:
Information Hiding of Abstract Classes

► Abstract classes know when an object should be allocated, but 
do not know which of the subclasses will be filled in at runtime

– The knowledge which subclass should be used is 
encapsulated into the client subclasses

► For frameworks this means:
– The abstract classes of the framework do not know which 

application class they will work on, but they know when to create 
an application object

– The knowledge which application class should be used is 
encapsulated into the application

► Relatives of FactoryMethod
– A FactoryMethod is a HookMethod, used by a TemplateMethod, 

which returns a product, i.e., FactoryMethods are called in 
TemplateMethods
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3.2 Factory Class 
(Abstract Factory)
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Forces of the Factory Class Pattern

► Given a package with a family of classes (a product 
family). Examples

– Widgets in a window system
– Stones in a Tetris game
– Products of a company

► How can the product family be switched in one go to a 
variant?

– Swing widgets to Windows widgets?
– 2D-stones to 3D-stones in the Tetris game?
– Cheap variants of the products of the company to 

expensive variants? 
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Factory Class Pattern

► A Factory (FactoryClass) groups factory methods to a class
– A Factory is a class that groups a family of polymorphic constructors 

of a family of classes (products)
– The products can be classes of a layer or a package
– The products have a strong parallelism constraint (isomorphic 

hierarchies)

► An AbstractFactory contains the interfaces of the constructors

► A ConcreteFactory contains the implementation of the constructors
– The Concrete Factories can be exchanged
– A Concrete Factory represents one concrete family of objects

► Hence, an AbstractFactory offers an interface to create families of 
related objects

– That depend on each other
– Without naming their constructors explicitly
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Structure for Factory Class

AbstractFactory

createProductA()
createProductB()

ConcreteFactory1

createProductA()
createProductB()

ConcreteFactory2

createProductA()
createProductB()

AbstractProductA

ProductA2 ProductA1

AbstractProductB

ProductB2 ProductB1

► By creating the concrete factory, the client determines the entire 
family of products (here: family 1 or 2)

Client

init()

If (..) {
  factory = new 
ConcreteFactory1();
} else {
  factory = new 
ConcreteFactory2();
}

factory
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Example for  Factory Class

WidgetFactory

createScrollbar()
createWindow()

SWTFactory

createScrollbar()
createWindow()

XFactory

createScrollbar()
createWindow()

Window

XWindow SWTWindow

Scrollbar

XScrollbar SWTScrollbar

Client



P
ro

f.
 U

w
e 

A
ß

m
an

n
, D

es
ig

n  
P

at
te

rn
s 

an
d 

F
ra

m
ew

or
k s

17

Example for Factory Class in Compilers

ElementFactory

createAssign()
createPlus()

EiffelFactory

createAssign()
createPlus()

JavaFactory

createAssign()
createPlus()

Assign

JavaAssign EiffelAssign

Plus

JavaPlus EiffelPlus

Client
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Employment of Factory Class

► For window styles
– All widgets are used by the framework abstractly
– The concrete style is determined by a concrete factory 

class
– Swing, AWT, ...

► In office systems
– For families of similar documents

► In business systems
– For families of similar products

► For tools on several languages
► Factory Class is related to Tools-and-Materials (TAM), 

because products are materials (see later)
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Pragmatics of Factory Class

WidgetFactory

createScrollbar()
createWindow()

ConcreteFactory1

CreateScrollbar()
createWindow()

ConcreteFactory2

CreateScrollbar()
createWindow()

Window

XWindow SWTWindow

Scrollbar

XScrollbar SWTScrollbar

Client

► A factory deals with 3+x inheritance hierarchies (factory, 
product 1, ..., product n)

► The n product hierarchies must be maintained in parallel, 
i.e., they form ParallelHierarchies

► The factory pattern ensures that all objects are created 
with the parallelism constraint

Same height of products
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Variant: The Prototyping Factory

► Concrete factories need not be created; one instance is 
enough, if prototypes of the products exist

► To produce new products, the ConcreteFactory clones the 
set of available products

► The variability of products is handled by the cloning of the 
prototypes

► Especially useful, if products have complex default state 
or do not vary much
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Structure for Prototyping Factory

AbstractFactory

createProductA()
createProductB()

ConcreteFactory

createProductA()
createProductB()

   :Prototype

copyProductA()
copyProductB()

AbstractProductA

ProductA2 ProductA1

AbstractProductB

ProductB2 ProductB1

Client
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Variant: Factory with Interpretive 
FactoryMethod 
► If more factory methods should be added, this becomes 

tedious, since the AbstractFactory and all concrete 
factories must be edited

► Instead: one factory method with parameter string

public class abstractFactory {
     abstract Product createProduct(String what);
}

public class ConcreteFactory extends AbstractFactory {
     Product  createProduct(String what) {
           if (what.eq(“p1”)) {
                return new P1();
           else .....
     }
}
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Structure for Interpretive Factory

AbstractFactory

createProduct(String what)

ConcreteFactory1

createProduct(String what)

AbstractProductA

ProductA2 ProductA1

AbstractProductB

ProductB2 ProductB1

Client

ConcreteFactory2

createProduct(String what)
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Factory Class - Employment

► Make a system independent of the way how its objects 
are created

► Hide constructors to make the way of creation 
exchangable with types

► For product families
– In which families of objects need to be created together; 

but the way how is varied

► Related Patterns
– An abstract factory is a  special form of hook class, to be 

called by some template  classes.
– Often, a factory is a Singleton (a Singleton is a class with 

only one instance)
– Concrete factories can be created by parametrizing the 

factory with Prototype objects



Design Patterns and Frameworks, © Prof. Uwe Aßmann

25

3.3 Builder (Factory with Protocol, 
Structured Factory)
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Structure for Builder

Director

construct()

AbstractBuilder

buildPart()
getResult()

ConcreteBuilder

buildPart()
getResult()

Structured
Product

builder

for all objects in structure 
  according to protocol {
    builder.buildPart()
}

► The Builder is a Factory Class that produces a structured 
product (a whole with parts)

– e.g., a business object or product data 
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Example RTF-Document Builder

TextConverter

convChar(char)
convCharSet(CharSet)
convParagraph()
getText()

TeXConverterASCIIConverter

convChar(char)
convCharSet(CharSet)
convParagraph()
getText()

ASCIIText TeXText

RTFReader

ParseRTF()

builder

► RTF grammar defines a protocol for the sequence of text 
converter functions

convChar(char)
convCharSet(CharSet)
convParagraph()
getText()

for all objects in text file 
  according to RTF 
  protocol {
   builder.convParagraph()
}
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Builder Protocol (E.g., Specified by 
EBNF)

-- Grammar in EBNF
RTFDocument ::= RTFHeader RTFBody RTFFooter.
RTFHeader ::= RTFParagraph*.
RTFParagraph ::= Word*.
Word ::= Char*.  
RTFBody ::= RTFParagraph*.
RTFFooter ::= RTFParagraph*.

-- Grammar in EBNF
RTFDocument ::= RTFHeader RTFBody RTFFooter.
RTFHeader ::= RTFParagraph*.
RTFParagraph ::= Word*.
Word ::= Char*.  
RTFBody ::= RTFParagraph*.
RTFFooter ::= RTFParagraph*.
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RTF Builder Protocol 

RTFDocument

RTFBody RTFFooterRTFHeader

RTFParagraph*

Word *

Char *

RTFParagraph*

Word *

Char *

RTFParagraph*

Word *

Char *
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The Builder

► Maintains an internal state that memorizes the point of 
time in construction of the complex data structure

► Data structure defines a protocol for calls to the 
elementary functions

► Data structure must be defined by a 
– Grammar
– regular expression
– Protocol machine (statechart acceptor)
– Other mechanisms, such as Petri nets

► The other way round: as soon as we have a data 
structure 

– Defined by a grammar or regular expressions
– We can build a constructor with the Builder pattern
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Builder: Information Hiding

► The builder hides
– The protocol (the structure of the data)
– The current status
– The implementation of the data structure

► Similar to an Iterator, the structure is hidden
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Known Uses

► Parsers in compilers are builders that contain the 
grammar of the concrete syntax of the programming 
language

► Builders for intermediate representations of all kinds of 
languages

– Programming languages
– Specification languages
– Graphic languages such as UML

► Builders for all complex data structures
– Databases with integrity constraints
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What have we learned?

► Factory Method
– Problem: constructors cannot be varied
– Solution: Application of Template Method for Creation

► Factory Class
– Problem: No variability of constructors in dimensional 

class hierarchies
– Solution: Application of Template Class for Creation

► Builder
– Problem: Complex products are build according to a 

protocol, which is to be varied, too.
– Solution: Application of Template Class with stateful 

template method
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