
Design Patterns and Frameworks, © Prof. Uwe Aßmann

1

5. Architectural Glue Patterns

Prof. Dr. U. Aßmann

Chair for Software Engineering

Faculty of Computer Science

Dresden University of
Technology

WS 17/18, November 13, 2017

Lecturer: Dr. Sebastian Götz

1) Mismatch Problems

2) Adapter Pattern

3) Facade

4) Some variants of Adapter

5) Adapter Layers

6) Mediator

7) Repository Connector

P
ro

f.
 U

w
e

A
ß

m
an

n
, D

es
ig

n
P

at
te

rn
s

an
d

F
ra

m
ew

or
k s

2

Literature (To Be Read)

► D. Garlan, R. Allen, J. Ockerbloom. Architectural mismatch – or why it is
so hard to build systems out of existing parts. Int. Conf. on Software
Engineering (ICSE'95)
http://repository.cmu.edu/cgi/viewcontent.cgi?article=1714&context=compsci

► D. Garlan, R. Allen, J. Ockerbloom. Architectural Mismatch: Why Reuse is
Still So Hard. IEEE Software 26:4, July/August 2009, pp. 66-69.

► GOF – Adapter, Mediator, Facade

http://repository.cmu.edu/cgi/viewcontent.cgi?article=1714&context=compsci

P
ro

f.
 U

w
e

A
ß

m
an

n
, D

es
ig

n
P

at
te

rn
s

an
d

F
ra

m
ew

or
k s

3

References

► The C++ main memory database OBST from Karlsruhe
– OBST Tutorial

http://citeseerx.ist.psu.edu/viewdoc/download?
doi=10.1.1.38.4966&rep=rep1&type=pdf

– OBST Overview
http://citeseerx.ist.psu.edu/viewdoc/download?
doi=10.1.1.38.2746&rep=rep1&type=pdf

P
ro

f.
 U

w
e

A
ß

m
an

n
, D

es
ig

n
P

at
te

rn
s

an
d

F
ra

m
ew

or
k s

4

Goal

► Understand architectural mismatch
► Understand design patterns that bridge architectural

mismatch

P
ro

f.
 U

w
e

A
ß

m
an

n
, D

es
ig

n
P

at
te

rn
s

an
d

F
ra

m
ew

or
k s

5

Architectural Mismatch

► Case study of Garlan, Allen, Ockerbloom 1995
► Building the architectural system Aesop

P
ro

f.
 U

w
e

A
ß

m
an

n
, D

es
ig

n
P

at
te

rn
s

an
d

F
ra

m
ew

or
k s

6

Architectural Mismatch

► Aesop was built out of 4 off-the-shelf components
– OBST: an object-oriented C++ database

– Interviews and Uniframe, a windowing toolkit

– Softbench, an event bus (event-based mediator)

– RPC interface generator of Mach (MIG)

► All subsystems written in C++ or C

► First version took 5 person years, and was still sluggish, very large

► Problems can be characterized in terms of components and connections

OBST

MIG Softbench

Interviews/Uniframe

P
ro

f.
 U

w
e

A
ß

m
an

n
, D

es
ig

n
P

at
te

rn
s

an
d

F
ra

m
ew

or
k s

7

Classification of
Different Assumptions of the COTS
► Different Assumptions about the component model

– Infrastructure

– Control model

– Data model

► Different assumptions about the connectors
– Protocols

– Data models

► Different assumptions about the global architectural structure

► Different assumptions about the construction process

connectors

global architecture construction process

component model

P
ro

f.
 U

w
e

A
ß

m
an

n
, D

es
ig

n
P

at
te

rn
s

an
d

F
ra

m
ew

or
k s

8

Different Assumptions about the
Component Model
► A component model assembles information and constraints about the nature

of components
– Nature of interfaces

– Substitutability of components

► Here: Component Infrastructure, Control model, Data model

► Different Assumptions about the Component Infrastructure:
– Components assume that they should provide a certain infrastructure, which the

application does not need

– OBST provides many library functions for application classes; Aesop needed only
a fraction of those

► Components assume they have a certain infrastructure, but it is not available
– Softbench assumed that all other components have access to an X window

server (for communication)

► More in “Component-Based Software Engineering”, summer semester

P
ro

f.
 U

w
e

A
ß

m
an

n
, D

es
ig

n
P

at
te

rn
s

an
d

F
ra

m
ew

or
k s

9

Assumptions on Control Model

► COTS think differently in which components have the main control
– Softbench, Interviews, and MIG have an ever-running event loop inside

– They call applications with callbacks (observer pattern)

► However, they use different event loops:
– Softbench uses X window event loop

– MIG and Interviews have their own ones

– The event loops had to be reengineered, to fit to each other

P
ro

f.
 U

w
e

A
ß

m
an

n
, D

es
ig

n
P

at
te

rn
s

an
d

F
ra

m
ew

or
k s

10

Assumptions on Data Model

► Different assumptions about the data
– Uniframe: hierarchical data model
– Manipulations only on a parent, never on a child
– However, the application needed that
– Decision: rebuild the data model from scratch, is cheaper

than modification

Design Patterns and Frameworks, © Prof. Uwe Aßmann

11

Assumptions about the
Connectors

P
ro

f.
 U

w
e

A
ß

m
an

n
, D

es
ig

n
P

at
te

rn
s

an
d

F
ra

m
ew

or
k s

12

Protocol Mismatch

► Softbench works asynchronously; which superimposes
concurrency to tools

– Softbench is a mediator between tools

► 2 kinds of interaction protocols
– Request/Reply (callback, observer): tool requests a

service, registers a callback routine, is called back by
Softbench

– Notify via Softbench

P
ro

f.
 U

w
e

A
ß

m
an

n
, D

es
ig

n
P

at
te

rn
s

an
d

F
ra

m
ew

or
k s

13

Protocol Mismatch

► Softbench works asynchronously; which superimposes
concurrency to tools, when messages of different tools
are crossing

SoftbenchTool 1 Tool 2 Tool 3

Request A

Reply A

Notify B

Notify B

Concurrency

P
ro

f.
 U

w
e

A
ß

m
an

n
, D

es
ig

n
P

at
te

rn
s

an
d

F
ra

m
ew

or
k s

14

Data Format Mismatch

► Components also have different assumptions what comes
over a channel (a connection).

– Softbench: Strings
– MIG: C data
– OBST: C++ data

► Requires translation components
– When accessing OBST, data must be translated all the

time
– This became a performance bottleneck

P
ro

f.
 U

w
e

A
ß

m
an

n
, D

es
ig

n
P

at
te

rn
s

an
d

F
ra

m
ew

or
k s

15

Assumptions about the Global
Architecture

► OBST
– Assumes a database-centered architecture

(Repository Style)
– Assumes independence of client tools
– And provides a transaction protocol per single tool, not per

combination of tools
– Doesn't help when tools have interactions

P
ro

f.
 U

w
e

A
ß

m
an

n
, D

es
ig

n
P

at
te

rn
s

an
d

F
ra

m
ew

or
k s

16

Assumptions about the Building Process

► Assumptions about the library infrastructure
► Assumptions about a generic language (C++)
► Assumptions about a tool specific language
► Combination is fatal:

– Some component A may have other expectations on the
generated code of another component B as B itself

– Then, the developer has to patch the generated code of A
with patch scripts (another translation component)

P
ro

f.
 U

w
e

A
ß

m
an

n
, D

es
ig

n
P

at
te

rn
s

an
d

F
ra

m
ew

or
k s

17

Proposed Solutions of [Garlan]

► Make all architectural assumptions explicit
– Problem: how to document or specify them?

– Many of the aforementioned problems are not formalized

– Implicit assumptions are a violation of the information hiding principle, and
hamper variability

► Make components more independent of each other

► Provide bridging technology
– For building language translation components (compiler construction, compiler

generators, XML technology)

► Distinguish architectural styles (architectural patterns) explicitly
– Distinguish connectors explicitly

► Solution: design patterns serve all of these purposes

P
ro

f.
 U

w
e

A
ß

m
an

n
, D

es
ig

n
P

at
te

rn
s

an
d

F
ra

m
ew

or
k s

18

Usability of Extensibility Patterns

► All extensibility patterns can be used to treat architectural mismatch

► Behavior adaptation
– ChainOfResponsibility as filter for objects, to adapt behavior

– Proxy for translation between data formats

– Observer for additional behavior extension, listening to the events of the subject

– Visitor for extension of a data structure hierarchy with new algorithms

► Bridging data mismatch
– Decorator for wrapping, to adapt behavior, and to bridge data mismatch, not for

protocol mismatch

– Bridge for factoring designs on different platforms (making abstraction and
implementation components independent)

Design Patterns and Frameworks, © Prof. Uwe Aßmann

19

5.2 Adapter

P
ro

f.
 U

w
e

A
ß

m
an

n
, D

es
ig

n
P

at
te

rn
s

an
d

F
ra

m
ew

or
k s

20

Object Adapter

► An object adapter is a proxy that maps one interface to
another

– Or a protocol
– Or a data format

► An adapter cannot easily map control flow to each other
– Since it is passed once when entering the adapted class

P
ro

f.
 U

w
e

A
ß

m
an

n
, D

es
ig

n
P

at
te

rn
s

an
d

F
ra

m
ew

or
k s

21

Object Adapter

Goal

operation()

Client

AdaptedClass

specificOperation()

Adapter

operation()

adaptedObject.specificOperation()

adapted
Object

Decorator-like
inheritance

Adapted class does
not inherit from goal

► Object adapters use delegation

P
ro

f.
 U

w
e

A
ß

m
an

n
, D

es
ig

n
P

at
te

rn
s

an
d

F
ra

m
ew

or
k s

22

Example: Use of Legacy Systems:
Using External Class Library For Texts

GraficObject

frame()
createManipulator()

DrawingEditor

TextDisplay

largeness()

return text.largeness()

Linie

frame()
createManipulator()

Text

frame()
createManipulator()

return new TextManipulator

External Library

*

P
ro

f.
 U

w
e

A
ß

m
an

n
, D

es
ig

n
P

at
te

rn
s

an
d

F
ra

m
ew

or
k s

23

Adapters for COTS

► Adapters are often used to adapt components-off-the-
shelf (COTS) to applications

► For instance, an EJB-adapter allows for reuse of an
Enterprise Java Bean in an application

Serialization

EJBHome

Packaging

Metadata

HTML-Doku

EJBObject Handle

EJB-references

SessionBean

SessionContext

EntityBean
MessageBean

NamingContext

Transaction
Context

Client interface
Container-
component-
interface

P
ro

f.
 U

w
e

A
ß

m
an

n
, D

es
ig

n
P

at
te

rn
s

an
d

F
ra

m
ew

or
k s

24

.. contact EJBHome for EJB...

.. if not there, create EJBObject

EJB Adapter

EJBHome MetadataEJBObject Handle

Client interface

Bill

addItem(Item)
calculateSum()

BillingApplication
EJBHome

getBean()

OtherBill

addItem(Item)
calculateSum()

EJBBill

fetchBean()
addItem(Item)
calculateSum()

*

.. EJBObject = fetchBean();

.. addItem(EJBObject, Item)

.. EJBObject = fetchBean();

.. sum up (EJBObject)

EJBObject

EJBMetaData

EJBHandle

P
ro

f.
 U

w
e

A
ß

m
an

n
, D

es
ig

n
P

at
te

rn
s

an
d

F
ra

m
ew

or
k s

25

A Remark to Adapters in Component
Systems

► Component models define standard, unspecific interfaces
– E.g., EJBHome / EJBObject

► Classes usually define application-specific interfaces
► To increase reuse of classes, the Adapter pattern(s) can

be used to map the application-specific class interfaces to
the unspecific component interfaces

► Example:
– In the UNIX shell, all components obey to the pipe-filter

interfaces stdin, stdout, stderr (untyped channels or
streams of bytes)

– The functional parts of the components have to be mapped
by some adapter to the unspecific component interfaces.

P
ro

f.
 U

w
e

A
ß

m
an

n
, D

es
ig

n
P

at
te

rn
s

an
d

F
ra

m
ew

or
k s

26

Adapters and Decorators

► Similar to a decorator, an adapter inherits its interface
from the goal class

– but adapts the interface

► Hence, adapters can be inserted into inheritance
hierarchies later on

Library

New
Extensions

Library

Adapter with
New Features

Adapted
Class

Design Patterns and Frameworks, © Prof. Uwe Aßmann

27

5.3 Facade

● A facade is an object adapter that
hides a complete set of objects
(subsystem)

● Or: a proxy that hides a subsystem
● The facade has to map its own interface to

the interfaces of the hidden objects

P
ro

f.
 U

w
e

A
ß

m
an

n
, D

es
ig

n
P

at
te

rn
s

an
d

F
ra

m
ew

or
k s

28

Facade Hides a Subsystem

Abstract
Facade

operation()

Client

HiddenClass2

specificOperation()

Concrete
Facade

operation()

....
adaptedObject.specificOperation()
adaptedObject2.specificOperation()
....

adapted
Object2

HiddenClass1

specificOperation()

adapted
Object1

HiddenClass3

specificOperation()

adapted
Object3

....
adaptedObject.specificOperation()
adaptedObject2.specificOperation()
....

HiddenSubsystem

P
ro

f.
 U

w
e

A
ß

m
an

n
, D

es
ig

n
P

at
te

rn
s

an
d

F
ra

m
ew

or
k s

29

5.4 Class Adapter (Integrated
Adapter)

GoalClass

operation()

Client AdaptedClass

specificOperation()

Adapter

operation()

(Implementation)

specificOperation()

Can also be
interface

► Instead of delegation, class adapters use multiple
inheritance

P
ro

f.
 U

w
e

A
ß

m
an

n
, D

es
ig

n
P

at
te

rn
s

an
d

F
ra

m
ew

or
k s

30

2-Way Class Adapter
(Role Mediator)

GoalClass

operation()

Client AdaptedClass

specificOperation1()
specificOperation2()

Adapter

operation()
operation2()

(Implementation)

specificOperation1()
specificOperation2()

More than one goal class may exist.
Every goal class plays a role of the concrete object (see later).

GoalClass2

operation2()

specificOperation2()
specificOperation1()

Design Patterns and Frameworks, © Prof. Uwe Aßmann

31

5.5 Adapter Layers

P
ro

f.
 U

w
e

A
ß

m
an

n
, D

es
ig

n
P

at
te

rn
s

an
d

F
ra

m
ew

or
k s

32

Adapter Layer

► An Adapter Layer is a set of adapters hiding a sublayer
– Every layer has different interfaces (services) that are mapped

► Similar to Decorator Layer, but with different interfaces or protocols on each
layer

Repository

AL2

AL1

Design Patterns and Frameworks, © Prof. Uwe Aßmann

33

5.6 Mediator (Broker)

P
ro

f.
 U

w
e

A
ß

m
an

n
, D

es
ig

n
P

at
te

rn
s

an
d

F
ra

m
ew

or
k s

34

Mediator (Broker)

► A mediator is an n-way proxy for communication
– Combined with a Bridge

► A mediator serves for
– Anonymous communication
– Dynamic communication nets

P
ro

f.
 U

w
e

A
ß

m
an

n
, D

es
ig

n
P

at
te

rn
s

an
d

F
ra

m
ew

or
k s

35

Mediator

ColleagueMediator
mediator

ConcreteMediator ConcreteColleague1 ConcreteColleague2

AColleague

Mediator

AConcreteMediator AColleague

 Mediator

Typical Object Structure:

AColleague

 Mediator

AColleague

Mediator

P
ro

f.
 U

w
e

A
ß

m
an

n
, D

es
ig

n
P

at
te

rn
s

an
d

F
ra

m
ew

or
k s

36

Mediator As n-Proxy and Bridge

Colleague MediatorMediator

ConcreteMediatorConcreteColleague1 ConcreteColleague2

AColleague

Mediator

AConcreteMediator AColleague

 Mediator

Proxy Object

AColleague

 Mediator

AColleague

Mediator

Proxy Class

Abstraction
of Service

Realization of
Service

P
ro

f.
 U

w
e

A
ß

m
an

n
, D

es
ig

n
P

at
te

rn
s

an
d

F
ra

m
ew

or
k s

37

Intent of Mediator

► Proxy object hides all communication partners
– Every partner uses the mediator object as proxy
– Clear: real partner is hidden

► Bridge links both communication partners
– Both mediator and partner hierarchies can be varied

► ObserverWithChangeManager combines Observer with
Mediator

P
ro

f.
 U

w
e

A
ß

m
an

n
, D

es
ig

n
P

at
te

rn
s

an
d

F
ra

m
ew

or
k s

38

Web Service Brokers

WebServiceWebServiceMediator
mediator

Google HotelBooking

buy()
query(WebService)

ConcreteServiceMediator

buy()
query(Widget)

search()

query() mediator.query(this)

google

hotel

search()
reserve()
buy()

► Communication between Web services can be mediated
via a broker object (aka object request broker, ORB)

Design Patterns and Frameworks, © Prof. Uwe Aßmann

39

5.7 Coupling Tools with
the Repository Connector Pattern

P
ro

f.
 U

w
e

A
ß

m
an

n
, D

es
ig

n
P

at
te

rn
s

an
d

F
ra

m
ew

or
k s

40

Coupling of Tools via Repositories

► How can two tools collaborate that did not know of each
other?

► Answer: by coupling their repositories
– Choose a master and a slave tool
– Choose a master repository
– Shadow the master repository in the slave repository

► Consequence: all data lies in slave repository, and can be
worked on by slave and master

P
ro

f.
 U

w
e

A
ß

m
an

n
, D

es
ig

n
P

at
te

rn
s

an
d

F
ra

m
ew

or
k s

41

Summary

► Architectural mismatch between components and tools consists of
different assumptions about components, connections, architecture,
and building procedure

► Design patterns, such as extensibility patterns or communication
patterns, can bridge architectural mismatches

– Data mismatch
– Interface mismatch
– Protocol mismatch

► Coupling two tools that had not been foreseen for each other is
possible with lazy indirection proxies (RepositoryConnector)

► With Glue Patterns, reuse of COTS becomes much better

P
ro

f.
 U

w
e

A
ß

m
an

n
, D

es
ig

n
P

at
te

rn
s

an
d

F
ra

m
ew

or
k s

42

The End

	Coaster in Space
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19
	Folie 20
	Adapter (2)
	Example: Use of an External Class Library
	Folie 23
	Folie 24
	Folie 25
	Folie 26
	Folie 27
	Folie 28
	Adapter (Wrapper)
	Folie 30
	Folie 31
	Folie 32
	Folie 33
	Folie 34
	Folie 35
	Folie 36
	Folie 37
	Folie 38
	Folie 39
	Folie 40
	Folie 41
	Folie 42

