5. Architectural Glue Patterns

Prof. Dr. U. Aßmann1)Chair for Software Engineering2)Faculty of Computer Science3)Dresden University of4)Technology5)

- 1) Mismatch Problems
 - 2) Adapter Pattern
- 3) Facade
- 4) Some variants of Adapter
- 5) Adapter Layers

WS 17/18, November 13, 2017 6) Mediator

Lecturer: Dr. Sebastian Götz 7) Repository Connector

1

Design Patterns and Frameworks, © Prof. Uwe Aßmann

Literature (To Be Read)

- D. Garlan, R. Allen, J. Ockerbloom. Architectural mismatch or why it is so hard to build systems out of existing parts. Int. Conf. on Software Engineering (ICSE'95) http://repository.cmu.edu/cgi/viewcontent.cgi?article=1714&context=compsci
- D. Garlan, R. Allen, J. Ockerbloom. Architectural Mismatch: Why Reuse is Still So Hard. IEEE Software 26:4, July/August 2009, pp. 66-69.
 - GOF Adapter, Mediator, Facade

References

The C++ main memory database OBST from Karlsruhe

- OBST Tutorial

http://citeseerx.ist.psu.edu/viewdoc/download? doi=10.1.1.38.4966&rep=rep1&type=pdf

- OBST Overview

http://citeseerx.ist.psu.edu/viewdoc/download? doi=10.1.1.38.2746&rep=rep1&type=pdf

Goal

- Understand architectural mismatch
 - Understand design patterns that bridge architectural mismatch

Architectural Mismatch

- Case study of Garlan, Allen, Ockerbloom 1995
- Building the architectural system Aesop

Architectural Mismatch

- Aesop was built out of 4 off-the-shelf components
 - OBST: an object-oriented C++ database
 - Interviews and Uniframe, a windowing toolkit
 - Softbench, an event bus (event-based mediator)
 - RPC interface generator of Mach (MIG)
- All subsystems written in C++ or C
- First version took 5 person years, and was still sluggish, very large
- Problems can be characterized in terms of components and connections

Classification of Different Assumptions of the COTS

- Different Assumptions about the component model
 - Infrastructure
 - Control model
 - Data model
- Different assumptions about the connectors
 - Protocols
 - Data models
- Different assumptions about the global architectural structure
- Different assumptions about the construction process

Different Assumptions about the Component Model

- A component model assembles information and constraints about the nature of components
 - Nature of interfaces
 - Substitutability of components
 - Here: Component Infrastructure, Control model, Data model
 - Different Assumptions about the Component Infrastructure:
 - Components assume that they should provide a certain infrastructure, which the application does not need
 - OBST provides many library functions for application classes; Aesop needed only a fraction of those
 - Components assume they have a certain infrastructure, but it is not available
 - Softbench assumed that all other components have access to an X window server (for communication)
 - More in "Component-Based Software Engineering", summer semester

Assumptions on Control Model

- COTS think differently in which components have the main control
 - Softbench, Interviews, and MIG have an ever-running event loop inside
 - They call applications with callbacks (observer pattern)
 - However, they use different event loops:
 - Softbench uses X window event loop
 - MIG and Interviews have their own ones
 - The event loops had to be reengineered, to fit to each other

Assumptions on Data Model

- 10 Different assumptions about the data
 - Uniframe: hierarchical data model
 - Manipulations only on a parent, never on a child
 - However, the application needed that
 - Decision: rebuild the data model from scratch, is cheaper than modification

Assumptions about the Connectors

Design Patterns and Frameworks, © Prof. Uwe Aßmann

Protocol Mismatch

- 12
- Softbench works asynchronously; which superimposes concurrency to tools
 - Softbench is a mediator between tools
- 2 kinds of interaction protocols
 - Request/Reply (callback, observer): tool requests a service, registers a callback routine, is called back by Softbench
 - Notify via Softbench

Protocol Mismatch

Softbench works asynchronously; which superimposes concurrency to tools, when messages of different tools are crossing

Data Format Mismatch

- Components also have different assumptions what comes over a channel (a connection).
 - Softbench: Strings
 - MIG: C data
 - OBST: C++ data
 - Requires translation components
 - When accessing OBST, data must be translated all the time
 - This became a performance bottleneck

Prof. Uwe Aßmann,

Design Patterns and Frameworks

Assumptions about the Global Architecture

- 15 🕨 DBST
 - Assumes a database-centered architecture (Repository Style)
 - Assumes independence of client tools
 - And provides a transaction protocol per single tool, not per combination of tools
 - Doesn't help when tools have interactions

Assumptions about the Building Process

- Assumptions about the library infrastructure
 - Assumptions about a generic language (C++)
 - Assumptions about a tool specific language
 - Combination is fatal:
 - Some component A may have other expectations on the generated code of another component B as B itself
 - Then, the developer has to patch the generated code of A with patch scripts (another translation component)

Proposed Solutions of [Garlan]

- Make *all* architectural assumptions explicit
 - Problem: how to document or specify them?
 - Many of the aforementioned problems are not formalized
 - Implicit assumptions are a violation of the information hiding principle, and hamper variability
- Make components more independent of each other
- Provide bridging technology
 - For building language translation components (compiler construction, compiler generators, XML technology)
- Distinguish architectural styles (architectural patterns) explicitly
 - Distinguish connectors explicitly
- Solution: design patterns serve all of these purposes

Usability of Extensibility Patterns

- All extensibility patterns can be used to treat architectural mismatch
 - Behavior adaptation
 - ChainOfResponsibility as filter for objects, to adapt behavior
 - **Proxy** for translation between data formats
 - **Observer** for additional behavior extension, listening to the events of the subject
 - Visitor for extension of a data structure hierarchy with new algorithms
 - Bridging data mismatch
 - Decorator for wrapping, to adapt behavior, and to bridge data mismatch, not for protocol mismatch
 - Bridge for factoring designs on different platforms (making abstraction and implementation components independent)

	5.2 Adapter
19	
	Design Patterns and Frameworks, © Prof. Uwe Aßmann

Object Adapter

- An object adapter is a proxy that maps one interface to another
 - Or a protocol
 - Or a data format
 - An adapter cannot easily map control flow to each other
 - Since it is passed *once* when entering the adapted class

Object Adapter

²¹ Dbject adapters use delegation

Example: Use of Legacy Systems: Using External Class Library For Texts

Adapters for COTS

- Adapters are often used to adapt components-off-theshelf (COTS) to applications
 - For instance, an EJB-adapter allows for reuse of an Enterprise Java Bean in an application

A Remark to Adapters in Component Systems

- ²⁵ Component models define *standard, unspecific* interfaces
 - E.g., EJBHome / EJBObject
 - Classes usually define *application-specific* interfaces
 - To increase reuse of classes, the Adapter pattern(s) can be used to map the application-specific class interfaces to the unspecific component interfaces
 - Example:
 - In the UNIX shell, all components obey to the pipe-filter interfaces *stdin, stdout, stderr* (untyped channels or streams of bytes)
 - The functional parts of the components have to be *mapped* by some adapter to the unspecific component interfaces.

Adapters and Decorators

- Similar to a decorator, an adapter inherits its interface from the goal class
 - but adapts the interface
 - Hence, adapters can be *inserted* into inheritance hierarchies later on

S

S

5.4 Class Adapter (Integrated Adapter)

Instead of delegation, class adapters use multiple inheritance

2-Way Class Adapter (Role Mediator)

More than one goal class may exist. Every goal class plays a *role* of the concrete object (see later).

Adapter Layer

- An Adapter Layer is a set of adapters hiding a sublayer
 - Every layer has different interfaces (services) that are mapped
- Similar to Decorator Layer, but with different interfaces or protocols on each layer

Mediator (Broker)

- ³⁴ A mediator is an n-way proxy for communication
 - Combined with a Bridge
 - A mediator serves for
 - Anonymous communication
 - *Dynamic* communication nets

Intent of Mediator

³⁷ Proxy object hides all communication partners

- Every partner uses the mediator object as proxy
- Clear: real partner is hidden
- Bridge links both communication partners
 - Both mediator and partner hierarchies can be varied
- ObserverWithChangeManager combines Observer with Mediator

Web Service Brokers

Some constraints of the services of the services

5.7 Coupling Tools with the Repository Connector Pattern

39

Design Patterns and Frameworks, © Prof. Uwe Aßmann

Coupling of Tools via Repositories

- How can two tools collaborate that did not know of each other?
 - Answer: by coupling their repositories
 - Choose a master and a slave tool
 - Choose a master repository
 - Shadow the master repository in the slave repository
 - Consequence: all data lies in slave repository, and can be worked on by slave and master

- Architectural mismatch between components and tools consists of different assumptions about components, connections, architecture, and building procedure
 - Design patterns, such as extensibility patterns or communication patterns, can bridge architectural mismatches
 - Data mismatch
 - Interface mismatch
 - Protocol mismatch
 - Coupling two tools that had not been foreseen for each other is possible with lazy indirection proxies (RepositoryConnector)
 - With Glue Patterns, reuse of COTS becomes much better

