5. Architectural Glue Patterns

Prof. Dr. U. ARmann 1) Mismatch Problems

Chair for Software Engineering 2) Adapter Pattern

Faculty of Computer Science 3) Facade
Dresden University of 4) Some variants of Adapter

Technology 5) Adapter Layers
WS 17/18, November 13, 2017 6) Mediator
Lecturer: Dr. Sebastian GOtz 7) Repository Connector

Design Patterns and Frameworks, © Prof. Uwe ARBmann

Prof. Uwe ARBmann, Design Patterns and Frameworks

&

Literature (To Be Read)

>

| 2

D. Garlan, R. Allen, J. Ockerbloom. Architectural mismatch - or why it is
so hard to build systems out of existing parts. Int. Conf. on Software
Engineering (ICSE'95)
http://repository.cmu.edu/cgi/viewcontent.cgi?article=1714&context=compsci
D. Garlan, R. Allen, J. Ockerbloom. Architectural Mismatch: Why Reuse is
Still So Hard. |IEEE Software 26:4, July/August 2009, pp. 66-609.

GOF — Adapter, Mediator, Facade

http://repository.cmu.edu/cgi/viewcontent.cgi?article=1714&context=compsci

Prof. Uwe ARBmann, Design Patterns and Frameworks

&

References

» The C++ main memory database OBST from Karlsruhe

- OBST Tutorial
http://citeseerx.ist.psu.edu/viewdoc/download?
doi=10.1.1.38.4966&rep=repl&type=pdf

- OBST Overview
http://citeseerx.ist.psu.edu/viewdoc/download?
doi=10.1.1.38.2746&rep=repl&type=pdf

41 » Understand architectural mismatch

» Understand design patterns that bridge architectural
mismatch

Prof. Uwe ARBmann, Design Patterns and Frameworks

&

Architectural Mismatch

» Case study of Garlan, Allen, Ockerbloom 1995
» Building the architectural system Aesop

e AcmeStudio - [zimple-demo.acme]
Tl Fle Edit Miew lnset Types Toolk Window Help _ ;lii_l
(|| ¢z 22| &) 2lemw x| [F a1

Global Types PP | -

= i@ BinarFilte | #* Pipe
B I || e i

Lok ir: I Sysh?l 'qI I_ﬂ
Capitalize ﬂ o, FeadPort |+ Sink

& S:jmt o WritePart {4 Source
oy stdou
(=] Fepresentat

== Agaregs

IE- Lo
I: ® Mer

I: = Spht

e ler 1 ! I .L] n
4] _] A Show selection details - System Aggregate-ep . PP
Feady \Editing 5 yﬂem'ﬁgg[eggtérﬂp'-hﬂ Desig| | | , Ar.:r

Prof. Uwe ARBmann, Design Patterns and Frameworks

&

Prof. Uwe ARBmann, Design Patterns and Frameworks

&

Architectural Mismatch

| 2

|

|

Aesop was built out of 4 off-the-shelf components
OBST: an object-oriented C++ database
Interviews and Uniframe, a windowing toolkit
Softbench, an event bus (event-based mediator)
RPC interface generator of Mach (MIG)

All subsystems written in C++ or C

First version took 5 person years, and was still sluggish, very large
Problems can be characterized in terms of components and connections

Vs

Interviews/Uniframe

\

2\Ya

MIG J [Softbench

OBST

Classification of
Different Assumptions of the COTS

» Different Assumptions about the component model
- Infrastructure
- Control model
- Data model
» Different assumptions about the connectors
- Protocols

- Data models
» Different assumptions about the global architectural structure
» Different assumptions about the construction process

[component model J

Prof. Uwe ARBmann, Design Patterns and Frameworks

[global architecture J [construction process J

[connectors J

&

Different Assumptions about the
Component Model

8 » A component model assembles information and constraints about the nature
of components

- Nature of interfaces
- Substitutability of components
» Here: Component Infrastructure, Control model, Data model

» Different Assumptions about the Component Infrastructure:

- Components assume that they should provide a certain infrastructure, which the
application does not need

- OBST provides many library functions for application classes; Aesop needed only
a fraction of those

» Components assume they have a certain infrastructure, but it is not available

- Softbench assumed that all other components have access to an X window
server (for communication)

» More in “Component-Based Software Engineering”, summer semester

Prof. Uwe ARBmann, Design Patterns and Frameworks

&

Assumptions on Control Model

9 » COTS think differently in which components have the main control
- Softbench, Interviews, and MIG have an ever-running event loop inside
- They call applications with callbacks (observer pattern)

» However, they use different event loops:
- Softbench uses X window event loop
- MIG and Interviews have their own ones
- The event loops had to be reengineered, to fit to each other

Prof. Uwe ARBmann, Design Patterns and Frameworks

&

Assumptions on Data Model

10 "I » Different assumptions about the data
- Uniframe: hierarchical data model
- Manipulations only on a parent, never on a child
- However, the application needed that

- Decision: rebuild the data model from scratch, is cheaper
than modification

Prof. Uwe ARBmann, Design Patterns and Frameworks

&

Assumptions about the
Connectors

11

Design Patterns and Frameworks, © Prof. Uwe ARBmann

I’rotocol Mismatch

C Softbench works asynchronously; which superimposes

concurrency to tools
- Softbench is a mediator between tools

» 2 kinds of interaction protocols

- Request/Reply (callback, observer): tool requests a
service, registers a callback routine, is called back by
Softbench

- Notify via Softbench

Prof. Uwe ARBmann, Design Patterns and Frameworks

&

I’rotocol Mismatch

13 1 » Softbench works asynchronously; which superimposes
concurrency to tools, when messages of different tools
are crossing

g Tool 1 Tool 2 Softbench Tool 3
% Request A >
% > | Notify B
] -
Notify B
E I
<
2 Concurrency
2 \ < Reply A
\/ \/ \/ \/

&

Data Format Mismatch

141 » Components also have different assumptions what comes
over a channel (a connection).

- Softbench: Strings
- MIG: C data
- OBST: C++ data

» Requires translation components
- When accessing OBST, data must be translated all the
time
- This became a performance bottleneck

Prof. Uwe ARBmann, Design Patterns and Frameworks

&

Assumptions about the Global
Architecture

» OBST
- Assumes a database-centered architecture
(Repository Style)
- Assumes independence of client tools

- And provides a transaction protocol per single tool, not per
combination of tools

- Doesn't help when tools have interactions

Prof. Uwe ARBmann, Design Patterns and Frameworks

&

Assumptions about the Building Process

16 1 » Assumptions about the library infrastructure
» Assumptions about a generic language (C++)
» Assumptions about a tool specific language

» Combination is fatal:

- Some component A may have other expectations on the
generated code of another component B as B itself

- Then, the developer has to patch the generated code of A
with patch scripts (another translation component)

Prof. Uwe ARBmann, Design Patterns and Frameworks

&

Proposed Solutions of [Garlan]

» Make all architectural assumptions explicit

- Problem: how to document or specify them?
- Many of the aforementioned problems are not formalized

- Implicit assumptions are a violation of the information hiding principle, and
hamper variability

» Make components more independent of each other

» Provide bridging technology

- For building language translation components (compiler construction, compiler
generators, XML technology)

Distinguish architectural styles (architectural patterns) explicitly
- Distinguish connectors explicitly
» Solution: design patterns serve all of these purposes

Prof. Uwe ARBmann, Design Patterns and Frameworks
v

&

Usability of Extensibility Patterns

18 » All extensibility patterns can be used to treat architectural mismatch

» Behavior adaptation

Prof. Uwe ARBmann, Design Patterns and Frameworks

&

ChainOfResponsibility as filter for objects, to adapt behavior

Proxy for translation between data formats

Observer for additional behavior extension, listening to the events of the subject
Visitor for extension of a data structure hierarchy with new algorithms

» Bridging data mismatch

Decorator for wrapping, to adapt behavior, and to bridge data mismatch, not for
protocol mismatch

Bridge for factoring designs on different platforms (making abstraction and
implementation components independent)

. 5.2 Adapter

19

Design Patterns and Frameworks, © Prof. Uwe ARBmann

Object Adapter

20 1 » An object adapter is a proxy that maps one interface to
another

- Or a protocol
- Or a data format

» An adapter cannot easily map control flow to each other
- Since it Is passed once when entering the adapted class

Prof. Uwe ARBmann, Design Patterns and Frameworks

&

Object Adapter

21 "1 » Object adapters use delegation

o

Client > Goal Ada_pted .class does|
Inot inherit from goal,

" operation()

5

o /

: -7 /

= ~

g — —

¢ IDecorator-like adapted y

g inheritance _l Adapter Object —p| AdaptedClass

g operation() Of. specificOperation()

< AN

5

& g

adaptedObject.specificOperation()

&

Example: Use of Legacy Systems:
Using External Class Library For Texts

22 External Library
/// \\\\
*]] e N
DrawingEditor > GraficObject J/ AN
/ \
frame() P . \
createManipulator() / 7| TextDisplay \

\
A / largeness|() \
/

—_——————
— —_——

Prof. Uwe ABmann, Design Patterns and Frameworks

Linie Text \ [N /
: turn text.l

frame() frame() ok ---1 return text.largeness|() //
createManipulator() createManipulator() G\\’: < /

- /

\\ return new TextManipuIator/

N 7
No d

SN—_— -

/
\
\

Adapters for COTS

23 "1 » Adapters are often used to adapt components-off-the-
shelf (COTS) to applications

» For instance, an EJB-adapter allows for reuse of an
Enterprise Java Bean in an application

Client interface

2

o

=

(O]

5

5 EJBHome EJBODbject Metadata Handle Container-

T A A component-

2 | | interface

(]

g Serialization SessionBean

Dé 4 } EntityBean

3 MessageBean
2 Packaging <« P SessionContext
é 3

% HTML-Doku < J» NamingContext
Z;)_ ‘ - _} Transaction

;9‘_ Context

EJB-references

&

EJIB Adapter

Client interface
EJBHome EJBObject Metadata Handle

| Bi EJBHome
BillingApplication > Bill N
addltem(ltem) getBean()
calculateSum()

> EJBObject

/\

> EJBMetaData

g
LL
S
E > EJBHandle
N\
g OtherBill EJBBiIll | .. contact EJBHome for EJB...
é addltem(Iitem) fetchBean() ok ---- .. if not there, create EJBObject
< calculateSum() addltem(ltem) . _ N
E calculateSum() + | .. EJBObject = fet.chBean(),
< - .. addltem(EJBODbject, Item)
& :
"7 .. EJBObject = fetchBean(); \

.. sum up (EJBObject)

&

A RemarR to Adapters in Component
Systems

25 "1 » Component models define standard, unspecific interfaces
- E.g., EJBHome / EJBODbject

» Classes usually define application-specific interfaces

» To increase reuse of classes, the Adapter pattern(s) can
be used to map the application-specific class interfaces to
the unspecific component interfaces

» Example:

- In the UNIX shell, all components obey to the pipe-filter
Interfaces stdin, stdout, stderr (untyped channels or
streams of bytes)

- The functional parts of the components have to be mapped
by some adapter to the unspecific component interfaces.

Prof. Uwe ARBmann, Design Patterns and Frameworks

&

Adapters and Decorators

26 "1 » Similar to a decorator, an adapter inherits its interface
from the goal class

- but adapts the interface

» Hence, adapters can be inserted into inheritance
hierarchies later on

Prof. Uwe ARBmann, Design Patterns and Frameworks

Library Library
New A ~—
Extensions / P
Adapter with
New Features
/4 W \
Adapted
Class

&

27

5.3 Facade

» Afacade is an object adapter that
hides a complete set of objects
(subsystem)

» Or: a proxy that hides a subsystem

» The facade has to map its own interface to
the interfaces of the hidden objects

Design Patterns and Frameworks, © Prof. Uwe ARBmann

Prof. Uwe ARBmann, Design Patterns and Frameworks

&

Facade Hides a Subsystem

Client

Abstract
>

Facade

operation()

AN

Concrete

HiddenSubsystem

adapted
Object1

HiddenClass1

specificOperation()

adapted

Object2

Facade

operation() Q ™

adaptedObiject.specificOperation()
adaptedObiject2.specificOperation()

apted
ObjecC

> HiddenClass2

specificOperation()

HiddenClass3

specificOperation()

5.4 Class Adapter (Integrated
Adapter)

20 'l » Instead of delegation, class adapters use multiple

Inheritance
P Client > GoalClass AdaptedClass
S
% operation() specificOperation()
g Can also be |
2 interface (Implementation)
(a)
;«_% Adapter
f;f- operation() O ------- N
£ specificOperation()

&

2-Way Class Adapter

30

(Role Mediator)

Client

Prof. Uwe ARBmann, Design Patterns and Frameworks

GoalClass

GoalClass2

operation()

operation2()

L

/N

AdaptedClass

specificOperation1()
specificOperation2()

Adapter

operation() O

operation2(PD

More than one goal class may exist.

(Implementation)

specificOperation1 ()\
specificOperation2()

specificOperationZ()\
specificOperation1()

Every goal class plays a role of the concrete object (see later).

&

. 5.5 Adapter Layers

31

Adapter Layer

32 » An Adapter Layer is a set of adapters hiding a sublayer
- Every layer has different interfaces (services) that are mapped

» Similar to Decorator Layer, but with different interfaces or protocols on each

layer
: AL2
5
v ¥ ¥ v ¥
3 AL1
g
S Y v Y Y Y
3
- Repository

&

. 5.6 Mediator (Broker)

33

Design Patterns and Frameworks, © Prof. Uwe ARBmann

Mediator (BroRer)

341 » A mediator is an n-way proxy for communication
- Combined with a Bridge
» A mediator serves for

- Anonymous communication
- Dynamic communication nets

Prof. Uwe ARBmann, Design Patterns and Frameworks

&

Mediator

35

mediator
<<

Mediator Colleague

/\ /\

% ConcreteMediator ~| ConcreteColleague1 ”| ConcreteColleague?
S
5 Typical Object Structure:
E’) 4 .) 4
e (ACoIIeague AConcreteMediator AColleague 1
£
< LMediator - - 1 f o = > * MediatorJ
= J - J -
> J A A
“é) 4
o (ACoIIeague < | ‘ AColleague 1
L Mediator o— \—0 MediatorJ

&

Mediator As n-Proxy and Bridge

| Realization of

 Service |

/__

| Abstraction L —»

Colleague

Mediator

Mediator

| of Service |

/\

/\

ConcreteColleague1
A

<

ConcreteMediator

ConcreteColleague2

(AColleague A

| Proxy Object]\

— —

y 8
(AConcreteMediator)

- AColleague

=1

Prof. Uwe ARBmann, Design Patterns and Frameworks

LMediator o > f : : — > Mediator
(AColleague \<J \ ‘ - AColleague 1
@ L Mediator e— —® MediatorJ

Intent of Mediator

37 "1 » Proxy object hides all communication partners
- Every partner uses the mediator object as proxy
- Clear: real partner is hidden
» Bridge links both communication partners
- Both mediator and partner hierarchies can be varied

» ObserverWithChangeManager combines Observer with
Mediator

Prof. Uwe ARBmann, Design Patterns and Frameworks

&

Web Service Brokers

38 I » Communication between Web services can be mediated
via a broker object (aka object request broker, ORB)

WebServiceMediator (medlator <>| WebService
N
5 buy() query() G+----| mediator.query(this)
g query(WebService) /\
g
§ Google | HotelBooking
<
. . ._._| google search()
..:;_’- ConcreteServiceMediator————>| search() reserve()
: buy() hotel buy()
query(Widget)

&

5.7 Coupling Tools with
the Repository Connector Pattern

39

Design Patterns and Frameworks, © Prof. Uwe ARBmann

Coupling of Tools via Repositories

40 "I » How can two tools collaborate that did not know of each
other?

» Answer: by coupling their repositories
- Choose a master and a slave tool
- Choose a master repository
- Shadow the master repository in the slave repository

» Consequence: all data lies in slave repository, and can be
worked on by slave and master

Prof. Uwe ARBmann, Design Patterns and Frameworks

&

Summary

41 "I » Architectural mismatch between components and tools consists of
different assumptions about components, connections, architecture,
and building procedure

» Design patterns, such as extensibility patterns or communication
patterns, can bridge architectural mismatches

- Data mismatch
- Interface mismatch
- Protocol mismatch

» Coupling two tools that had not been foreseen for each other is
possible with lazy indirection proxies (RepositoryConnector)

» With Glue Patterns, reuse of COTS becomes much better

Prof. Uwe ARBmann, Design Patterns and Frameworks

&

The End

42

SyJoMaWelH pue suiaed ubisaq ‘uuewsy amn *Joid

=

	Coaster in Space
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19
	Folie 20
	Adapter (2)
	Example: Use of an External Class Library
	Folie 23
	Folie 24
	Folie 25
	Folie 26
	Folie 27
	Folie 28
	Adapter (Wrapper)
	Folie 30
	Folie 31
	Folie 32
	Folie 33
	Folie 34
	Folie 35
	Folie 36
	Folie 37
	Folie 38
	Folie 39
	Folie 40
	Folie 41
	Folie 42

