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5. Architectural Glue Patterns 

Prof. Dr. U. Aßmann

Chair for Software Engineering

Faculty of Computer Science

Dresden University of 
Technology

WS 17/18, November 13, 2017

Lecturer: Dr. Sebastian Götz

1) Mismatch Problems

2) Adapter Pattern

3) Facade

4) Some variants of Adapter

5) Adapter Layers

6) Mediator

7) Repository Connector
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Literature (To Be Read)

► D. Garlan, R. Allen, J. Ockerbloom. Architectural mismatch – or why it is 
so hard to build systems out of existing parts. Int. Conf. on Software 
Engineering (ICSE'95)  
http://repository.cmu.edu/cgi/viewcontent.cgi?article=1714&context=compsci 

► D. Garlan, R. Allen, J. Ockerbloom.  Architectural Mismatch: Why Reuse is 
Still So Hard.  IEEE Software 26:4, July/August 2009, pp. 66-69. 

► GOF – Adapter, Mediator, Facade

http://repository.cmu.edu/cgi/viewcontent.cgi?article=1714&context=compsci


P
ro

f.
 U

w
e 

A
ß

m
an

n
, D

es
ig

n  
P

at
te

rn
s 

an
d 

F
ra

m
ew

or
k s

3

References

► The C++ main memory database OBST from Karlsruhe
– OBST Tutorial 

http://citeseerx.ist.psu.edu/viewdoc/download?
doi=10.1.1.38.4966&rep=rep1&type=pdf   

– OBST Overview  
http://citeseerx.ist.psu.edu/viewdoc/download?
doi=10.1.1.38.2746&rep=rep1&type=pdf
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Goal

► Understand architectural mismatch
► Understand design patterns that bridge architectural 

mismatch
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Architectural Mismatch

► Case study of Garlan, Allen, Ockerbloom 1995
► Building the architectural system Aesop 
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Architectural Mismatch

► Aesop was built out of 4 off-the-shelf components
– OBST: an object-oriented C++ database

– Interviews and Uniframe, a windowing toolkit

– Softbench, an event bus (event-based mediator)

– RPC interface generator of Mach (MIG)

► All subsystems written in C++ or C

► First version took 5 person years, and was still sluggish, very large

► Problems can be characterized in terms of components and connections

OBST

MIG Softbench

Interviews/Uniframe
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Classification of 
Different Assumptions of the COTS
► Different Assumptions about the component model

– Infrastructure

– Control model

– Data model

► Different assumptions about the connectors
– Protocols

– Data models

► Different assumptions about the global architectural structure

► Different assumptions about the construction process

connectors

global architecture construction process

component model
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Different Assumptions about the 
Component Model
► A component model assembles information and constraints about the nature 

of components
– Nature of interfaces

– Substitutability of components

► Here: Component Infrastructure, Control model, Data model

► Different Assumptions about the Component Infrastructure: 
– Components assume that they should provide a certain infrastructure, which the 

application does not need

– OBST provides many library functions for application classes; Aesop needed only 
a fraction of those

► Components assume they have a certain infrastructure, but it is not available
– Softbench assumed that all other components have access to an X window 

server (for communication)

► More in “Component-Based Software Engineering”, summer semester
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Assumptions on Control Model

► COTS think differently in which components have the main control
– Softbench, Interviews, and MIG have an ever-running event loop inside

– They call applications with callbacks (observer pattern)

► However, they use different event loops:
– Softbench uses X window event loop

– MIG and Interviews have their own ones

– The event loops had to be reengineered, to fit to each other
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Assumptions on Data Model

► Different assumptions about the data 
– Uniframe: hierarchical data model
– Manipulations only on a parent, never on a child
– However, the application needed that
– Decision: rebuild the data model from scratch, is cheaper 

than modification
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Assumptions about the 
Connectors
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Protocol Mismatch

► Softbench works asynchronously; which superimposes 
concurrency to tools

– Softbench is a mediator between tools

► 2 kinds of interaction protocols
– Request/Reply (callback, observer): tool requests a 

service, registers a callback routine, is called back by 
Softbench

– Notify via Softbench
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Protocol Mismatch

► Softbench works asynchronously; which superimposes 
concurrency to tools, when messages of different tools 
are crossing

SoftbenchTool 1 Tool 2 Tool 3

Request A

Reply A

Notify B

Notify B

Concurrency
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Data Format Mismatch

► Components also have different assumptions what comes 
over a channel (a connection).

– Softbench: Strings
– MIG: C data
– OBST: C++ data

► Requires translation components 
– When accessing OBST, data must be translated all the 

time
– This became a performance bottleneck
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Assumptions about the Global 
Architecture

► OBST 
– Assumes a database-centered architecture 

(Repository Style)
– Assumes independence of client tools
– And provides a transaction protocol per single tool, not per 

combination of tools
– Doesn't help when tools have interactions
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Assumptions about the Building Process

► Assumptions about the library infrastructure
► Assumptions about a generic language (C++)
► Assumptions about a tool specific language
► Combination is fatal:

– Some component A may  have other expectations on the 
generated code of another component B as B itself

– Then, the developer has to patch the generated code of A 
with patch scripts (another translation component)
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Proposed Solutions of [Garlan]

► Make all architectural assumptions explicit
– Problem: how to document or specify them?

– Many of the aforementioned problems are not formalized

– Implicit assumptions are a violation of the information hiding principle, and 
hamper variability

► Make components more independent of each other

► Provide bridging technology
– For building language translation components (compiler construction, compiler 

generators, XML technology)

► Distinguish architectural styles (architectural patterns) explicitly
– Distinguish connectors explicitly

► Solution: design patterns serve all of these purposes
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Usability of Extensibility Patterns

► All extensibility patterns can be used to treat architectural mismatch

► Behavior adaptation
– ChainOfResponsibility as filter for objects, to adapt behavior

– Proxy for translation between data formats

– Observer for additional behavior extension, listening to the events of the subject

– Visitor for extension of a data structure hierarchy with new algorithms

► Bridging data mismatch
– Decorator for wrapping, to adapt behavior,  and to bridge data mismatch, not for 

protocol mismatch

– Bridge for factoring designs on different platforms (making abstraction and 
implementation components independent)
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5.2 Adapter
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Object Adapter

► An object adapter is a proxy that maps one interface to 
another

– Or a protocol 
– Or a data format

► An adapter cannot easily map control flow to each other
– Since it is passed once when entering the adapted class 



P
ro

f.
 U

w
e 

A
ß

m
an

n
, D

es
ig

n  
P

at
te

rn
s 

an
d 

F
ra

m
ew

or
k s

21

Object Adapter

Goal

operation()

Client

AdaptedClass

specificOperation()

Adapter

operation()

adaptedObject.specificOperation()

adapted
Object

Decorator-like
inheritance

Adapted class does
not inherit from goal

► Object adapters use delegation
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Example: Use of Legacy Systems:
Using External Class Library For Texts

GraficObject

frame()
createManipulator()

DrawingEditor

TextDisplay

largeness()

return text.largeness()

Linie

frame()
createManipulator()

Text

frame()
createManipulator()

return new TextManipulator

External Library

*
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Adapters for COTS

► Adapters are often used to adapt components-off-the-
shelf (COTS) to applications

► For instance, an EJB-adapter allows for reuse of an 
Enterprise Java Bean in an application

Serialization

EJBHome

Packaging

Metadata

HTML-Doku

EJBObject Handle

EJB-references

SessionBean

SessionContext

EntityBean
MessageBean

NamingContext

Transaction
Context

Client interface
Container-
component-
interface
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.. contact EJBHome for EJB... 

.. if not there, create EJBObject

EJB Adapter

EJBHome MetadataEJBObject Handle

Client interface

Bill

addItem(Item)
calculateSum()

BillingApplication
EJBHome

getBean()

OtherBill

addItem(Item)
calculateSum()

EJBBill

fetchBean()
addItem(Item)
calculateSum()

*

.. EJBObject =  fetchBean();

.. addItem(EJBObject, Item)

.. EJBObject =  fetchBean();

.. sum up (EJBObject)

EJBObject

EJBMetaData

EJBHandle
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A Remark to Adapters in Component 
Systems

► Component models define standard, unspecific interfaces
– E.g., EJBHome / EJBObject

► Classes usually define application-specific interfaces
► To increase reuse of classes, the Adapter pattern(s) can 

be used to map the application-specific class interfaces to 
the unspecific component interfaces

► Example: 
– In the UNIX shell, all components obey to the pipe-filter 

interfaces stdin, stdout, stderr (untyped channels or 
streams of bytes)

– The functional parts of the components have to be mapped 
by some adapter to the unspecific component interfaces.
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Adapters and Decorators

► Similar to a decorator, an adapter inherits its interface 
from the goal class

– but adapts the interface

► Hence, adapters can be inserted into inheritance 
hierarchies later on

Library

New 
Extensions

Library

Adapter with 
New Features

Adapted
Class
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5.3 Facade

● A facade is an object adapter  that 
hides a complete set of objects 
(subsystem)

● Or: a proxy that hides a subsystem
● The facade has to map its own interface to 

the interfaces of the hidden objects
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Facade Hides a Subsystem

Abstract
Facade

operation()

Client

HiddenClass2

specificOperation()

Concrete
Facade

operation()

....
adaptedObject.specificOperation()
adaptedObject2.specificOperation()
....

adapted
Object2

HiddenClass1

specificOperation()

adapted
Object1

HiddenClass3

specificOperation()

adapted
Object3

....
adaptedObject.specificOperation()
adaptedObject2.specificOperation()
....

HiddenSubsystem
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5.4 Class Adapter (Integrated 
Adapter)

GoalClass

operation()

Client AdaptedClass

specificOperation()

Adapter

operation()

(Implementation)

specificOperation()

Can also be 
interface

► Instead of delegation, class adapters use multiple 
inheritance
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2-Way Class Adapter
(Role Mediator)

GoalClass

operation()

Client AdaptedClass

specificOperation1()
specificOperation2()

Adapter

operation()
operation2()

(Implementation)

specificOperation1()
specificOperation2()

More than one goal class may exist.
Every goal class plays a role of the concrete object (see later).

GoalClass2

operation2()

specificOperation2()
specificOperation1()
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5.5 Adapter Layers
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Adapter Layer

► An Adapter Layer is a set of adapters hiding a sublayer 
– Every layer has different interfaces (services) that are mapped

► Similar to Decorator Layer, but with different interfaces or protocols on each 
layer

Repository

AL2

AL1
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5.6 Mediator (Broker)



P
ro

f.
 U

w
e 

A
ß

m
an

n
, D

es
ig

n  
P

at
te

rn
s 

an
d 

F
ra

m
ew

or
k s

34

Mediator (Broker)

► A mediator is an n-way proxy for communication
– Combined with a Bridge

► A mediator serves for 
– Anonymous communication
– Dynamic communication nets
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Mediator

ColleagueMediator
mediator

ConcreteMediator ConcreteColleague1 ConcreteColleague2

AColleague

Mediator

AConcreteMediator AColleague

           Mediator

Typical Object Structure:

AColleague

           Mediator

AColleague

Mediator
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Mediator As n-Proxy and Bridge

Colleague MediatorMediator

ConcreteMediatorConcreteColleague1 ConcreteColleague2

AColleague

Mediator

AConcreteMediator AColleague

           Mediator

Proxy Object

AColleague

           Mediator

AColleague

Mediator

Proxy Class

Abstraction
of Service

Realization of
Service



P
ro

f.
 U

w
e 

A
ß

m
an

n
, D

es
ig

n  
P

at
te

rn
s 

an
d 

F
ra

m
ew

or
k s

37

Intent of Mediator

► Proxy object hides all communication partners
– Every partner uses the mediator object as proxy
– Clear: real partner is hidden

► Bridge links both communication partners
– Both mediator and partner hierarchies can be varied

► ObserverWithChangeManager combines Observer with 
Mediator
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Web Service Brokers

WebServiceWebServiceMediator
mediator

Google HotelBooking

buy()
query(WebService)

ConcreteServiceMediator

buy()
query(Widget)

search()

query() mediator.query(this)

google

hotel

search()
reserve()
buy()

► Communication between Web services can be mediated 
via a broker object (aka object request broker, ORB)
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5.7 Coupling Tools with
the Repository Connector Pattern
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Coupling of Tools via Repositories

► How can two tools collaborate that did not know of each 
other?

► Answer:  by coupling their repositories
– Choose a master and a slave tool
– Choose a master repository
– Shadow the master repository in the slave repository

► Consequence: all data lies in slave repository, and can be 
worked on by slave and master 
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Summary

► Architectural mismatch between components and tools consists of 
different assumptions about components, connections, architecture, 
and building procedure

► Design patterns, such as extensibility patterns or communication 
patterns, can bridge architectural mismatches

– Data mismatch
– Interface mismatch
– Protocol mismatch

► Coupling two tools that had not been foreseen for each other is 
possible with lazy indirection proxies (RepositoryConnector)

► With Glue Patterns, reuse of COTS becomes much better
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The End
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