
Future-Proof Software-Systems [Part 3A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 1
Version 1.3

Future-Proof Software-Systems (FPSS)

h
ttp

s
:/

/
s
ta

tic
1
.s

q
u

a
re

s
p
a
c
e
.c

o
m

Part 3A: Architecting for Changeability

Lecture WS 2017/18: Prof. Dr. Frank J. Furrer



Future-Proof Software-Systems [Part 3A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 2

Our journey:


w

w
w

.1
2
3
rf.c

o
m

–
u

s
e
d

w
ith

p
e
rm

is
s
io

n

«Software
everywhere»

Managed Evolution
Strategy

Future-Proof
Software-Systems

Technial Debt
Architecture Erosion

Architecture

The Future-Proof Software-
Systems Engineer

Systems & Software
Engineering

Three devils of
Systems Engineering

Special Topics
Architecting for
Changeability

Architecting for
Dependability





 



Future-Proof Software-Systems [Part 3A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 3

Changeability: Repetition



Future-Proof Software-Systems [Part 3A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 4

Changeability is the capability of an organization to develop

software-systems:

• With high-quality functionality

• With a good cost and time-to-market performance

The most important key factor for changeability is the structure of

the the software

Architecture!



Future-Proof Software-Systems [Part 3A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 5

4.2 k€/UCP

0.8 days/UCP

10.0 k€/UCP

4.0 days/UCP

50.0 k€/UCP

10.0 days/UCP

Changeability

high

low

Metric

Development Cost per Unit of Functionality

Time-to-Market per Unit of Functionality

Company A

Company B

Company C



Future-Proof Software-Systems [Part 3A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 6

Project
250 UCP

Project Cost:
1’050 k€

Time to Market:
200 days

Company A

Project Cost:
2’500 k€

Time to Market:
1’000 days

Company B

Project Cost:
12’500 k€

Time to Market:
2’500 days

Company C

h
ttp

:/
/
w

w
w

.c
lip

a
rts

h
e
e
p
.c

o
m

h
ttp

:/
/
w

w
w

.c
lip

a
rth

u
t.c

o
m

h
ttp

:/
/
w

w
w

.c
lip

a
rtp

a
n

d
a
.c

o
m



Future-Proof Software-Systems [Part 3A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 7

h
tt

p
:/

/w
w

w
.0

lll
.c

o
m

/a
rc

h
it

ec
tu

re
-e

xh
ib

it
io

n
s/

?g
al

=2
4

h
ttp

://w
w

w
.asisb

iz.co
m

/in
d

e
x.h

tm
l

Fact 1:

Good architecture results in good changeability

Fact 2:

Good architecture is governed by proven architecture principles



Future-Proof Software-Systems [Part 3A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 8

h
ttp

s
:/

/
u

p
lo

a
d
.w

ik
im

e
d
ia

.o
rgh

tt
p
:/

/
4
.b

p
.b

lo
g
s
p
o
t.

c
o
m

Fact 1:

Good architecture results in good dependability

Fact 2:

Good architecture is governed by proven architecture principles



Future-Proof Software-Systems [Part 3A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 9

[Information Systems] Architecture Principles

h
ttp

s
:/

/
m

e
tro

u
k
2
.file

s
.w

o
rd

p
re

s
s
.c

o
m

for
Changeability

for
Dependability

for
other Attributes

12 architecture principles
[complete set]

Resilience: 9 principles
[complete set]

Dependability: Examples
Examples



Horizontal Architecture Layers

Vertical
Architecture

Layers

Business
Architecture

Application
Architecture

Information
Architecture

Integration
Architecture

Technical
Architecture

S
a
fe

ty

S
e
c
u

ri
ty

R
e
a
l-

T
im

e …

Hierarchy

SoS

Application Landscape

Application

Component

Sensor/Actuator



Future-Proof Software-Systems [Part 3A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 11

Information (Data)
Architecture
(Information & Data)

Technical
Architecture
(Technical
Infrastructure)

Integration
Architecture
(Cooperation
Mechanisms)

Applications
Architecture
(Functionality)

Business
Architecture
(Business Processes)

Horizontal Architecture Principles
(for Changeability)

Horizontal Architecture Layers



Future-Proof Software-Systems [Part 3A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 12

Security
Architecture

(Defense)

Safety
Architecture

(Accidents)

Performance
Architecture

(Real-Time)

System
Management
Architecture

(Control)
e
tc

.

V
e

rtica
l
A

rch
ite

ctu
re

P
rin

cip
le

s
fo

r
S

e
cu

rity

V
e

rtica
l
A

rch
ite

ctu
re

P
rin

cip
le

s
fo

r
S

a
fe

ty

V
e

rtica
l
A

rch
ite

ctu
re

P
rin

cip
le

s
fo

r
P

e
rfo

rm
a

n
ce

Vertical
Architecture
Principles for
Dependability

… and other
quality
attributes

…
e

tc.

Vertical Architecture Layers



Future-Proof Software-Systems [Part 3A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 13

Architecture Principles
for

Changeability



Future-Proof Software-Systems [Part 3A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 14

h
tt

p
s
:/

/
d
is

a
p
p
e
a
ri

n
g
in

p
la

in
s
ig

h
t.

c
o
m

… we need to:

• understand,

• consistently apply,

• and strongly enforce

the architecture principles

Objective: Provide a set of Architecture Principles which lead to high changeability

Engineering Discipline: Principle-based Architecting



Future-Proof Software-Systems [Part 3A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 15

h
tt

p
:/

/
w

w
w

.t
e
lc

o
2
.n

e
t/

b
lo

g
/
2
0
0
7
/
0
4
/
te

lc
o
_2

0
_e

v
e
n

t_
d
ig

it
a
l_

w
o
rk

e
r.

h
tm

l

You will learn: Proven Architecture Principles
for the Construction of Future-Proof Software-Systems

h
ttp

:/
/
w

w
w

.le
d
v
is

io
n

.c
o
m

Fundamental insights
– formulated as enforcable rules –
how future-proof software-systems
should be built

Architecture
Principles



Future-Proof Software-Systems [Part 3A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 16

 A1: Architecture Layer Isolation

 A2: Partitioning, Encapsulation and Coupling

 A3: Conceptual Integrity

 A4: Redundancy

 A5: Interoperability

 A6: Common Functions

 A7: Reference Architectures, Frameworks and Patterns

 A8: Reuse and Parametrization

 A9: Industry Standards

 A10: Information Architecture

 A11: Formal Modeling

 A12: Complexity and Simplification

Fundamental Principles:

12
for Changeability

(presented in this lecture)

h
ttp

s
:/

/
u

s
.1

2
3
rf.c

o
m

Horizontal Architecture Layer Principles:



h
tt

p
:/

/
a
rt

.f
ri

ts
a
h

le
fe

ld
t.

c
o
m

Sometimes compromises are necessary
(more about later)

h
ttp

s
:/

/
b
ib

le
p
a
e
d
ia

.file
s
.w

o
rd

p
re

s
s
.c

o
m

Future-Proof Software-Systems [Part 3A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 17

The architecture principles are strongly worded rules, often using «never» or «always»

Are they always - without exceptions - to be followed?

… however:



Future-Proof Software-Systems [Part 3A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 18

Architecture Principle A1:

Architecture Layer Isolation

A1



Future-Proof Software-Systems [Part 3A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 19

 A1: Architecture Layer Isolation

 A2: Partitioning, Encapsulation and Coupling

 A3: Conceptual Integrity

 A4: Redundancy

 A5: Interoperability

 A6: Common Functions

 A7: Reference Architectures, Frameworks and Patterns

 A8: Reuse and Parametrization

 A9: Industry Standards

 A10: Information Architecture

 A11: Formal Modeling

 A12: Complexity and Simplification

Horizontal Architecture Layer Principles:



Future-Proof Software-Systems [Part 3A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 20

Business
Architecture

Application
Architecture

Information
Architecture

Integration
Architecture

Technical
Architecture

S
a
fe

ty

S
e
c
u

ri
ty

R
e
a
l-

T
im

e …

Horizontal
Architecture
Layers

Vertical Architecture Layers



Future-Proof Software-Systems [Part 3A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 21

Technical Architecture Layer
(Technical Infrastructure)

Integration Architecture Layer
(Cooperation Mechanisms)

Information (Data) Architecture Layer
(Information & Data)

Applications Architecture Layer
(Functionality)

Business Architecture Layer
(Business Processes)

Isolation

Isolation

Isolation

Isolation

Key Idea: [1]

Always use

standardized,

technology-

independent,

and product-

independent

mechanisms

for transfer of

data and

control

between

layers

A1



Vertical
Architecture

Layers

Horizontal Architecture Layers

Business
Architecture

Application
Architecture

Information
Architecture

Integration
Architecture

Technical
Architecture

S
a
fe

ty

S
e
c
u

ri
ty

R
e
a
l-

T
im

e …

Cell X

[2]

Never

implement

functionality

from vertical

layers in the

horizontal

layers

Cell X

A1



h
ttp

:/
/
m

e
d
ia

.is
to

c
k
p
h

o
to

.c
o
m

Future-Proof Software-Systems [Part 3A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 23

Breaking Layers

Technical Architecture Layer
(Technical Infrastructure)

Integration Architecture Layer
(Cooperation Mechanisms)

Information (Data) Architecture Layer
(Information & Data)

Applications Architecture Layer
(Functionality)

Business Architecture Layer
(Business Processes)

Isolation

Isolation

Isolation

Isolation

Direct access – bypassing the
standardized, technology-
independent mechanisms

Result:
• Technology dependence
• Vendor lock-in
• No standards-compliance



Future-Proof Software-Systems [Part 3A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 24

Example: Misuse of SQL (1/2)
[SQL = Structured Query Language]

T
e
c
h

n
ic

a
l

In
fr

a
s
tr

u
c
tu

re

A
p
p
li
c
a
ti

o
n

s

ISO/IEC 9075-1:
2011
Information
Technology
Database
Languages

SQL

Standard
SQL


Vendor

extensions

?
Specific functionality

from vendor A
[not in ISO 9075]

Breaking Layers

DB
Data Base

DBMS Vendor A
Data Base Management System

Application SoftwareApplication SoftwareApplication Software



Future-Proof Software-Systems [Part 3A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 25

T
e
c
h

n
ic

a
l

In
fr

a
s
tr

u
c
tu

re

A
p
p
li
c
a
ti

o
n

s

ISO/IEC 9075-1:
2011
Information
Technology
Database
Languages

SQL


Standard

SQL

Application SoftwareApplication SoftwareApplication Software

DB
Data Base

DBMS Vendor B
Data Base Management System

DBMS Product
Change:
 Vendor B

Vendor A
extensions

www.beta.jootix.comExample: Misuse of SQL (2/2)
[SQL = Structured Query Language]



Future-Proof Software-Systems [Part 3A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 26

NOT Breaking Layers

Technical Architecture Layer
(Technical Infrastructure)

Integration Architecture Layer
(Cooperation Mechanisms)

Information (Data) Architecture Layer
(Information & Data)

Applications Architecture Layer
(Functionality)

Business Architecture Layer
(Business Processes)

Isolation

Isolation

Isolation

Isolation

Industry-standard,
technology-independent
mechanism

Result:
• Technology independence
• Vendor indepence
• Full standards-compliance

h
ttp

s
:/

/
i1

.w
p
.c

o
m



Future-Proof Software-Systems [Part 3A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 27

Example: CORBA-services to Web-services migration (1/2)
[CORBA = Common Object Request Broker Architecture]

Technical
Architecture
(Technical Infrastructure)

Integration
Architecture

Applications
Architecture

Industry
Standard

CORBA Middleware

Interface
Design
Guidelines

Interface Specification:
IDL (CORBA Interface
Definition Language

Interface Repository:
Managed, reviewed repository

of the interfaces

NOT Breaking Layers



Future-Proof Software-Systems [Part 3A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 28

Example: CORBA-services to Web-services migration (2/2)

IDL Interface
Design

Guidelines

Interface Specification:
IDL (CORBA Interface
Definition Language

Interface Repository:
Managed, reviewed repository

of the IDL interfaces

CORBA World Web-Services WorldMigration

Interface Specification:
WSDL (Web Service
Definition Language

Interface Repository:
Managed, reviewed repository

of the WSDL interfaces

Transformation

Highly
automated,
low-risk
migration

WSDL = Web Service Description Language

WSDL Interface
Design
Guidelines



Future-Proof Software-Systems [Part 3A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 29

Misplacing Vertical Functionality

Business
Architecture

Application
Architecture

Information
Architecture

Integration
Architecture

Technical
Architecture S

a
fe

ty

S
e
c
u

ri
ty

R
e
a
l-

T
im

e …

Access
Control

Access
Control



Future-Proof Software-Systems [Part 3A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 30

Misplacing Vertical Functionality

Customer Information / Financial Transaction Data

Security
Functionality

«Access Control»
implemented in
the applications

UID,PW UID,PW

UID,PW

UID,PW

Access Control

Application
ACL

Access Control

Application
ACL

Access Control

Application
ACL

Access Control

Application
ACL

Access Control

Application
ACL

Access Control

Application
ACL

Access Control

Application
ACL

Access Control

Application
ACL



Future-Proof Software-Systems [Part 3A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 31

Misplacing Vertical Functionality

Customer Information / Financial Transaction Data

UID,PW UID,PW

UID,PW

UID,PW

Access Control

Application
ACL

Access Control

Application
ACL

Access Control

Application
ACL

Access Control

Application
ACL

Access Control

Application
ACL

Access Control

Application
ACL

Access Control

Application
ACL

Access Control

Application
ACL

Digital
Certificate

Digital
Certificate

Digital
Certificate Digital

Certificate Security
enhancement:

Digital
Certificates

> 5’000 Applications



Future-Proof Software-Systems [Part 3A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 32

Misplacing Vertical Functionality

Customer Information / Financial Transaction Data

Application

Application

Application

Application

Application

Application

Application Application

UID,PW UID,PW

UID,PW

UID,PW

Access Control

Digital
Certificate

Digital
Certificate

Digital
Certificate Digital

Certificate



Future-Proof Software-Systems [Part 3A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 33

Industry
Standards

Technology
& Product
Independence

Technical
Architecture (Technical Infrastructure)

Integration
Architecture (Cooperation Mechanisms)

Applications
Architecture (Functionality)

Business
Architecture (Business Processes)

Information
Architecture (Information & Data)

B
u

s
in

e
s
s

P
ro

c
e
s
s

O
rc

h
e
s
tr

a
ti

o
n

T
e
c
h

n
o
lo

g
y

S
e
rv

ic
e
s

T
e
c
h

n
o
lo

g
y

S
e
rv

ic
e
s

T
e
c
h

n
o
lo

g
y

S
e
rv

ic
e
s

Horizontal
Layer
Interoperability

(Formalized)
Services



Future-Proof Software-Systems [Part 3A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 34

Which are the mechanisms for layer-isolation ?

 Interlayer-access standards
e.g. SQL-standard between technical infrastructure and applications

 „Clean accesses“
No use of vendor- or product-specific additions or enhancements

 Strict separation of layer functionality
e.g. never implement technical functionality in the applications

 Strict, enforced programming guidelines
e.g. explicitly allow/restrict/forbid certain programming constructs
(Example: restrict stored procedures in DB-accesses)

 Open, long-term planning of the evolution of the infrastructure
Evolution cycles with upward compatibility, well communicated

 Middleware
Industry- or company-standard, stable middleware, such as an
Enterprise Service Bus



Future-Proof Software-Systems [Part 3A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 35

Middleware:

provides the

standardized

infrastructure

for the delivery

of services in a

distributed

environment

Additional Middleware Functionality:

 Load balancing (adaptive distribution of processing loads to servers)

 Business continuity (automatic mirroring of data and transactions)

 Monitoring (diagnostic and statistical information gathering, audit trail)

 Security infrastructure (access control to services, transport encryption)

Information Architecture Layer

Technical Architecture Layer

Integration Architecture Layer

Applications Architecture Layer

Business Architecture Layer

h
tt

p
s
:/

/
b
ig

d
a
ta

lo
n

d
o
n

.f
il
e
s
.w

o
rd

p
re

s
s
.c

o
m



Future-Proof Software-Systems [Part 3A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 36

Middleware Example: Enterprise Service Bus
(Large Company)

Exchanges
[synchronous]

Events
[asynchronous]

Bulk Transfer
[asynchronous]

Portals
[synchronous &
asynchronous]

Exchange
Infra-
structure

Messaging
Infra-
structure

Messaging
Infrastructure

Portal
Infrastructure

Workflow

Workflow
Infra-
structure

Integration
Broker

Integration
Broker
Infrastructure

Monitoring

Interface
Management
System

Service

Applica-
tion

Applica-
tion

Service

Applica-
tion

Applica-
tion



Future-Proof Software-Systems [Part 3A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 37

Architecture Principle A1:
Architecture Layer Isolation

[1] Always use standardized, technology-independent, and product-independent
mechanisms for transfer of data and control between layers

[2] Never implement functionality from vertical layers in the horizontal layers
(especially no technical functionality in the applications)

A1

Justification: Any reliance on specific technologies or product features generates
dependencies which (massively) reduce changeability.

Architecture layers should be able to evolve in their own pace without impacting the
other layers by force.

Vertical functionality should not be implemented in the applications (but accessed via
services), otherwise changes impact the application landscape.



Future-Proof Software-Systems [Part 3A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 38

Architecture Principle A2:

Partitioning, Encapsulation and
Coupling

A2



Future-Proof Software-Systems [Part 3A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 39

 A1: Architecture Layer Isolation

 A2: Partitioning, Encapsulation and Coupling

 A3: Conceptual Integrity

 A4: Redundancy

 A5: Interoperability

 A6: Common Functions

 A7: Reference Architectures, Frameworks and Patterns

 A8: Reuse and Parametrization

 A9: Industry Standards

 A10: Information Architecture

 A11: Formal Modeling

 A12: Complexity and Simplification

Horizontal Architecture Layer Principles:



Future-Proof Software-Systems [Part 3A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 40

h
ttp

s
:/

/
i.y

tim
g
.c

o
m

«Spaghetti-Architecture»

Control
Flow

Data
Flow

Database
Relations

Interface
Definitions

Why?



Future-Proof Software-Systems [Part 3A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 41

Therefore, good engineering is:

1. Reduce complexity as much as possible (Simplify)

2. Limit the effects and propagation of changes

3. Contain the risks of uncertainty

The most powerful concepts to do so are:

1. Partitioning of the system ( smaller subsystems)

2. Encapsulation ( hide the inner workings)

3. Coupling ( stable interfaces and loose coupling)

„The three devils of systems engineering are:

 Complexity,

 Change,

 Uncertainty”
Anonymous

The Power of …



Future-Proof Software-Systems [Part 3A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 42

Functionality

Data

Internal
dependency
(relationship)

External
dependency
(relationship)

F

FF

F

F

F

F

F

F

FF

F

F

F
F

F

F

F

F

F
F F

F
F

F
F

F

F

F

F

F
F

FF

F
F

F

F
F

F
FF

F F

System
boundary

Definitions:



Future-Proof Software-Systems [Part 3A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 43

FF

F

F

F

F

F

FF

F

F

F
F

F
F

F

F

F

F

F
F

FF

F
F

F

F
F

F
FF

F F

F

F
F

F
F

F

F

F

F

F
F

Partitioning: Break up the system
into „encapsulation units“



Future-Proof Software-Systems [Part 3A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 44

FF

F

F

F

F

F

FF

F

F

F
F

F
F

F

F

F

F

F
F

FF

F
F

F

F
F

F
FF

F F

F

F
F

F
F

F

F

F

F

F
F

Encapsulation: Hide the inner workings
of the „encapsulation units“



Future-Proof Software-Systems [Part 3A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 45

FF

F

F

F

F

F

FF

F

F

F
F

F
F

F

F

F

F

F
F

FF

F
F

F

F
F

F
FF

F F

F

F
F

F
F

F

F

F

F

F
F

Coupling: Enable controlled access to
the „encapsulation units“

IF

IF

IF

IF

IF

IF

IF

IF

IF

IF

IF

IF

IF

IF

IF

IF

IFIF
IFIF

IF IF

IF

IF

IF IF

IF

IF

IF
IFIF



Future-Proof Software-Systems [Part 3A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 46

A2

Partitioning Encapsulation Coupling

Simplest possible structure:

• Highest cohesion

• Minimal redundancy

• Conceptual integrity

Minimal complexity:

• Hiding

• Reduction to essentials

• Formalization

Minimal rigidity:

• Weakest coupling

• Managed dependencies

• Contracts

 Changeability



Future-Proof Software-Systems [Part 3A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 47

FF

F
F

F

F
F

F
FF

F F

FF

F
F

F

F
F

F
FF

F F

Partitioning

h
ttp

:/
/
im

g
.fo

to
c
o
m

m
u

n
ity

.c
o
m

Functionality

FF

F
F

F

F
F

F
FF

F F

Partitions

Partitioning Rules



Future-Proof Software-Systems [Part 3A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 48

Partitioning Rules

= Decision criteria for good partitioning

Primary Rule:
• Respect cohesion
• Avoid redundancy

Other (secondary) criteria:

• Critical  non-critical (safety, confidentiality, …)

• Real-time  non real-time

• Rate of change: high  low

• Governance (Owner, stakeholder, country, …)

• Certified  uncertified



Partitions

Partitions

Future-Proof Software-Systems [Part 3A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 4949 Prof. Dr. Frank J. Furrer - WS 2016/17

Functional Cohesion: Assign functions to encapsulation units based on their cohesion

(„Dogs to Dogs, Cats to Cats“)

Data/Information Cohesion: Assign data and information to encapsulation units based on their
similarity

(„Apples to Apples, Pears to Pears“)

Respect cohesion



Future-Proof Software-Systems [Part 3A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 50

Example: Cohesion

Functional and Data/Information Cohesion: Assign functions and data to encapsulation units based on
least dependencies (= weak cohesion)

Strong Cohesion:
• Team A

• Trained Cooperation
• Mutual Understanding

• Common Objective

Strong Cohesion:
• Team B

• Trained Cooperation
• Mutual Understanding

• Common Objective

Weak Cohesion:
• Ball Contact



Future-Proof Software-Systems [Part 3A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 51

Loud-
speaker

Amplifier

iPodMP3
CD-

Player
Tuner

Dials &
Controls

Control
Panel

Audio System

High cohesion  good partitioning High cohesion  good partitioning

Example: Automotive Partitioning (1/2)

Engine
Block

Alternator

Motor
Control

Fuel
Injection

Battery

Spark
Plug

Camshaft

Cylinder

Engine



Future-Proof Software-Systems [Part 3A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 52

Example: Automotive Partitioning (2/2)

Loud-
speaker

Alternator

Motor
Control

Engine
Block

MP3

iPod

Control
Panel

Camshaft

System A

CD-
Player

Tuner

Dials &
Controls

Spark
Plug

Fuel
Injection

Cylinder

Amplifier

Battery
System B

Low cohesion 
bad partitioning

Low cohesion 
bad partitioning



Future-Proof Software-Systems [Part 3A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 53

Primary Rule:
• Respect cohesion
• Avoid redundancy

FF

F
F

F

F
F

F
FF

F F

FF

F
F

F

F
F

F
FF

F F

FF

F
F

F

F
F

F
FF

F F

Partitions

Functional redundancy

h
ttp

:/
/
im

a
g
e
s
.fo

to
c
o
m

m
u

n
ity

.d
e

Redundancy!

A4



Future-Proof Software-Systems [Part 3A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 54

Primary Rule:
• Respect cohesion
• Avoid redundancy

FF

F
F

F

F
F

F
FF

F F

FF

F
F

F

F
F

F
FF

F F

FF

F
F

F

F
F

F
FF

F F

Partitions

Redundancy!

A4Data redundancy

h
ttp

:/
/
b
lo

g
s
.te

ra
d
a
ta

.c
o
m



Future-Proof Software-Systems [Part 3A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 55

FF

F

F

F

F

F

FF

F

F

F
F

F
F

F

F

F

F

F
F

FF

F
F

F

F
F

F
FF

F F

F

F
F

F
F

F

F

F

F

F
F

System Extension: Partitioning

Requirements

F

FF F

F

F

F

F

F F

F

F

Note:
Breaking partitions
often occurs during
requirements phase



Future-Proof Software-Systems [Part 3A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 56

Partitioning Rules for Extensions

1. Assign the new functionality and data to existing encapsulation units according to their cohesion, i.e. respecting
their „natural“ relationships („Apples to apples, pears to pears“)

2. Assign the functionality and data to existing encapsulation units according to their cohesion, i.e. minimize the
number of external dependencies – especially tightly coupled dependencies

3. Create a new encapsulation unit whenever the required functionality or new data does not fit into the existing
architecture

4. Keep functionality with the following properties:

• Critical  non-critical (safety, confidentiality, …)

• Real-time  non real-time

• Rate of change: high  low

• Governance (Owner, stakeholder, country, …)

• Certified  uncertified

• User interface layer  Process layer  Business logic layer

• Specific functions & data  Common (X-system) functions & data

in separate encapsulation units

WARNING:

Never implement functionality or data
following the „least effort“ route!



Future-Proof Software-Systems [Part 3A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 57

Partitioning, Encapsulation and Coupling: Domain Model

Module:
• Definition: Programmer
• Concepts: Programming Language Constructs

Component:
• Definition: Software Engineer
• Concepts: Interface Contracts

System-of-Systems:
• Definition: Mission Engineer
• Concepts: Service Contracts

System:
• Definition: Software Architect
• Concepts: Interface Contracts

Domain Model:
• Definition: Business Engineer
• Concepts: Semantic Model

The domain model is a
strong instrument to
correctly assign
functionality and data
and to avoid unmanaged
redundancy



Future-Proof Software-Systems [Part 3A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 58

Domain model:

Conceptual model defining the entities, their attributes,

roles, relationships, and constraints that form

an application domain

A domain model does not describe solutions to problems

The domain model represents the (business) concepts and their relationships
in the application domain. A domain model shows a structural view of the

domain.

A domain model is used to verify and validate the understanding of the
application domain among various stakeholders (e.g. business  IT) and to

document the evolution of the application domain



Future-Proof Software-Systems [Part 3A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 59

5: Communications & Collaboration

Business Partner Applications (BPA) Financial Instruments, Research & Market Data (FIN)Enterprise Content Management (ECM)

Client Communication (CHA) Street Side Interfaces (SSI)

1
:

P
ar

tn
e

rs
&

P
e

rs
o

n
s

2
:

Fi
n

an
ce

,I
n

ve
st

m
e

n
t

&
Sa

le
s

3
:

Tr
ad

in
g

an
d

M
ar

ke
ts

4
:

C
as

h
an

d
A

ss
et

O
p

e
ra

ti
o

n
s

C
u

s
to

m
e
r

&
P
a
rt

n
e
r

(C
U

S
)

Wealth Management &
Advisory

(WMA)

Credits and Syndication

(CRS)

6
:

A
cc

o
u

n
ti

n
g,

C
o

n
tr

o
lli

n
g

an
d

R
e

p
o

rt
in

g

F
in

a
n

c
ia

l
A

c
c
o
u

n
ti

n
g

(F
A

C
)

R
e
g
u

la
to

ry
,

R
is

k
a
n

d
L
iq

u
id

it
y

(R
R

L
)

Accounting Control

(AOC)

Logistics

(LOG)

Basic Facilities

(BAS)

Trading

(TRA)

Product Control

(PRC)

Payments

(PAY)

Settlement and Clearing

(SCL)

Single Accounts

(SAC)

Custody
(CDY)

Corporate Actions

(COA)

7: Enterprise Common Services

Example: Domain Model for a Financial Institution This domain contains
all applications for the
communication with
exchanges, clearing

etc.



Future-Proof Software-Systems [Part 3A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 60

Example: Use of the Financial Institution Domain Model (1/3):
h

tt
p
:/

/
w

w
w

.n
zz

.c
h

/
a
k
tu

e
ll
/
w

ir
ts

c
h

a
ft

/
w

ir
ts

c
h

a
ft

s
n

a
c
h

ri
c
h

te
n

The Foreign Account Tax Compliance Act (FATCA)
requires foreign financial institutions to report to
the U.S. Internal Revenue Service (IRS) about their
American clients (to combat offshore tax evasion)

March 18, 2010:

Massive IT-
Problem!



Future-Proof Software-Systems [Part 3A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 61

Example: Use of the Financial Institution Domain Model (2/3):

h
tt

p
:/

/
w

w
w

.n
zz

.c
h

/
a
k
tu

e
ll
/
w

ir
ts

c
h

a
ft

/
w

ir
ts

c
h

a
ft

s
n

a
c
h

ri
c
h

te
n

The Foreign Account Tax Compliance Act (FATCA)
requires foreign financial institutions to report to
the U.S. Internal Revenue Service (IRS) about their
American clients (to combat offshore tax evasion)

March 18, 2010:5: Communications & Collaboration

Business Partner Applications (BPA) Financial Instruments, Research & Market Data (FIN)Enterprise Content Management (ECM)

Client Communication (CHA) Street Side Interfaces (SSI)

1
:

P
ar

tn
e

rs
&

P
e

rs
o

n
s

2
:

Fi
n

an
ce

,I
n

ve
st

m
e

n
t

&
Sa

le
s

3
:

Tr
ad

in
g

an
d

M
ar

ke
ts

4
:

C
as

h
an

d
A

ss
et

O
p

e
ra

ti
o

n
s

C
u

s
to

m
e
r

&
P
a
rt

n
e
r

(C
U

S
)

Wealth Management &
Advisory

(WMA)

Credits and Syndication

(CRS)

6
:

A
cc

o
u

n
ti

n
g,

C
o

n
tr

o
lli

n
g

an
d

R
e

p
o

rt
in

g

F
in

a
n

c
ia

l
A

c
c
o
u

n
ti

n
g

(F
A

C
)

R
e
g
u

la
to

ry
,

R
is

k
a
n

d
L
iq

u
id

it
y

(R
R

L
)

Accounting Control

(AOC)

Logistics

(LOG)

Basic Facilities

(BAS)

Trading

(TRA)

Product Control

(PRC)

Payments

(PAY)

Settlement and Clearing

(SCL)

Single Accounts

(SAC)

Custody
(CDY)

Corporate Actions

(COA)

7: Enterprise Common Services



Future-Proof Software-Systems [Part 3A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 62

Example: Use of the Financial Institution Domain Model (3/3):

h
tt

p
:/

/
w

w
w

.n
zz

.c
h

/
a
k
tu

e
ll
/
w

ir
ts

c
h

a
ft

/
w

ir
ts

c
h

a
ft

s
n

a
c
h

ri
c
h

te
n

The Foreign Account Tax Compliance Act (FATCA)
requires foreign financial institutions to report to
the U.S. Internal Revenue Service (IRS) about their
American clients (to combat offshore tax evasion)

March 18, 2010:5: Communications & Collaboration

Business Partner Applications (BPA) Financial Instruments, Research & Market Data (FIN)Enterprise Content Management (ECM)

Client Communication (CHA) Street Side Interfaces (SSI)

1
:

P
ar

tn
e

rs
&

P
e

rs
o

n
s

2
:

Fi
n

an
ce

,I
n

ve
st

m
e

n
t

&
Sa

le
s

3
:

Tr
ad

in
g

an
d

M
ar

ke
ts

4
:

C
as

h
an

d
A

ss
et

O
p

e
ra

ti
o

n
s

C
u

s
to

m
e
r

&
P
a
rt

n
e
r

(C
U

S
)

Wealth Management &
Advisory

(WMA)

Credits and Syndication

(CRS)

6
:

A
cc

o
u

n
ti

n
g,

C
o

n
tr

o
lli

n
g

an
d

R
e

p
o

rt
in

g

F
in

a
n

c
ia

l
A

c
c
o
u

n
ti

n
g

(F
A

C
)

R
e
g
u

la
to

ry
,

R
is

k
a
n

d
L
iq

u
id

it
y

(R
R

L
)

Accounting Control

(AOC)

Logistics

(LOG)

Basic Facilities

(BAS)

Trading

(TRA)

Product Control

(PRC)

Payments

(PAY)

Settlement and Clearing

(SCL)

Single Accounts

(SAC)

Custody
(CDY)

Corporate Actions

(COA)

7: Enterprise Common Services

FACTA
Report



Future-Proof Software-Systems [Part 3A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 63

Example: Avionics Domain Model (1/3)

Flight Management
(FMS)

Autopilot Pitch Channel

(APC)

Autopilot Roll Channel

(APR)

Auto-Throttle

(AT)

Flight Data Storage

(FDS)

Flight Control Display

(FCD)

Primary Flight Display

(PFS)

Navigation Display

(ND)

VHF Navigation Receiver

(VNR)

Global Positioning System

(GPS)

VHF Navigation Receiver

(VNR)

Inertial Navigation System

(INS)

Air Data Computer

(ADC)

Engine Data

(ED)



Future-Proof Software-Systems [Part 3A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 64

Example: Avionics Domain Model (2/3)

h
tt

p
:/

/
w

w
w

.h
y
p
e
rr

a
u

m
.t

v
/
ta

g
/
g
a
li
le

o
-s

a
te

ll
it

/

Change Request:

U.S. Global Positioning System (GPS)

 European Positioning System (Galileo)



Future-Proof Software-Systems [Part 3A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 65

Example: Avionics Domain Model (3/3)

Flight Management
(FMS)

Autopilot Pitch Channel

(APC)

Autopilot Roll Channel

(APR)

Auto-Throttle

(AT)

Flight Data Storage

(FDS)

Flight Control Display

(FCD)

Primary Flight Display

(PFS)

Navigation Display

(ND)

VHF Navigation Receiver

(VNR)

Global Positioning System

(GPS)

VHF Navigation Receiver

(VNR)

Inertial Navigation System

(INS)

Air Data Computer

(ADC)

Engine Data

(ED)

http://www.hyperraum.tv/tag/galileo-satellit/

European Positioning System
(Galileo)



Future-Proof Software-Systems [Part 3A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 66

Encapsulation

FF

F
F

F

F

F

F

FF

F F

h
ttp

:/
/
s
c
h

o
rs

c
h

.e
fi.fh

-n
u

e
rn

b
e
rg

.d
e

The inner workings of the encapsulation unit are hidden from the outside

All accesses are only allowed through well-specified (formally defined) interfaces

IF
IF

IF

IF
IF

IF



Future-Proof Software-Systems [Part 3A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 67

F

F
F

F
F

F

F

F

F

F
F

IF

IF
IF

IF

Extension
(New functionality or new data)

F

Refactoring
(New implementation or new technology)

F
F

IF

System Extension: Encapsulation






Refactoring must not modify interfaces

IF
Extensions should leave interfaces
unchanged, upwards-compatible or
introduce new interfaces



Future-Proof Software-Systems [Part 3A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 68

System Extension: Encapsulation

Interfaces are strong instruments to maintain and improve changeability.
Interfaces are at the heart of loose coupling and reuse capability

System
Element

A

System
Element

B
IF IF

Technical Interoperability

Syntactic Interoperability

Semantic Interoperability defines the meaning of the information

defines the structure of the data

communications infrastructure

A5



Future-Proof Software-Systems [Part 3A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 69

System Extension: Encapsulation Rules for Extensions

1. Keep the interfaces coherent, i.e. group only functionality and data into one interface which belong together
(from a business point of view)

2. Maintain an adequate granularity of interfaces (in the number of functions offered)

3. Refactoring must not change the interfaces. Extensions should offer upwards-compatible or new interfaces –
for both the provider and the consumer (beware of functional redundancy!)

4. Define the interfaces as precisely as possible, both syntactically and semantically (preferably by formal
modeling and interface contracts)

5. Keep the interfaces technology-independent

6. Explicitly specify the context of interface use (preconditions, postconditions)

7. Carefully maintain an interface repository

8. Avoid duplication or overlap of interface-functionality between different interfaces (redundancy!)

WARNING:

Carefully control and review the introduction of new interfaces into your system !



Future-Proof Software-Systems [Part 3A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 70

Example: Syntactically and semantically upward-compatible interface

<xs:complexType name="RequestSlotType">
<xs:sequence>

<xs:element name="SlotStatus" type="dss:SlotStatus"/>
<xs:element name="BusinessUnit" type="cs:businessUnitType"/>
<xs:element name="HashtreeUUID" type="cs:uuid20AsCharType"/>
<!
<xs:element name="HashtreeRootValueLeft" type="xs:base64Binary"/>
<xs:element name="HashtreeRootValueRight" type="xs:base64Binary"/>
<xs:element name="HashtreeCheckLeftValueLeft" type="xs:base64Binary"/>
<xs:element name="HashtreeCheckLeftValueRight" type="xs:base64Binary"/>
xs:element name="HashtreeCheckRightValueLeft" type="xs:base64Binary"/>
xs:element name="HashtreeCheckRightValueRight" type="xs:base64Binary"/>

</xs:sequence
</xs:complexType> p

re
c
is

e
X

M
L
-s

y
n

ta
x

Precise meaning
(Ontology, taxonomy)

<xs:element name="HashtreeCheckRightValueLeft" type="xs:base64Binary"/>
<xs:element name="HashtreeCheckRightValueRight" type="xs:base64Binary"/>

Upward-compatible interface extension:

Any consumer which does not require the 2 new values ignores
them and does not have to be changed!



Future-Proof Software-Systems [Part 3A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 71

F

F

F

F

F

F

F

IF

IF

IF

IF

Coupling:
Transfer of information or control

Coupling causes dependencies:

• Functional dependencies

• Temporal dependencies

• Technical dependencies

• Semantic dependencies

• Operational dependencies

Dependencies exist both during

development time and during

run-time

System Extension: Coupling

h
ttp

s
:/

/
w

w
w

.a
c
o
rn

-in
d
.c

o
.u

k
/

System A System B



Future-Proof Software-Systems [Part 3A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 72

How to minimize dependencies:

• Functional dependencies: Implementation-independent contracts with explicit context

• Temporal dependencies: Coupling as loosely as possible

• Technical dependencies: Isolate architecture layers (Architecture Principle)

• Semantic dependencies: Precisely align semantics (Conceptual Integrity, Ontology-matching)

• Operational dependencies: Explicitly identify and manage

Coupling:

h
ttp

:/
/
w

w
w

.ta
rin

d
.c

o
m

/
d
e
p
g
ra

p
h

.h
tm

l

Each dependency reduces changeability

Why?

• Any change in a system may impact the dependent systems and also force changes

• For any change in your system you may be constrained by the dependent systems

h
ttp

s
:/

/
p
b
s
.tw

im
g
.c

o
m



Future-Proof Software-Systems [Part 3A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 73

Example:
Coupling
mechanisms

Coupling
mechanism

Functional
dependency

Temporal
dependency

Technical
dependency

Semantic
dependency

Operational
dependency

Data sharing:

Memory high medium high low medium

DB high medium high low medium

Synchronous:

CORBA n.a. high high low high

DCE/RPC n.a. high high low high

COM/DCOM high high high low high

Java/RMI high high high low high

Asynchronous:

Message
passing (MQ)

n.a. low low low medium

Web services low low low low medium

Time-slotted:

TTA n.a. high medium low medium

FlexRay n.a. high medium low medium

Transaction Monitor:

Java (Oracle) high high high medium high

Java (Arjuna) high high high medium high

IMS (IBM) high high high medium high



Future-Proof Software-Systems [Part 3A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 74

System Extension: Coupling Rules for Extensions

1. Minimize and standardize the number of coupling mechanisms which can be used by the
developpers

2. Rely on standards, do not use product-specific features for coupling mechanisms

3. Couple as loosely as the application allows (preferably asynchronous, by message queuing)

4. Separate semantic issues as much as possible from the coupling mechanism

WARNING:

Beware of unnecessary tight coupling!

h
ttp

:/
/
p
h

o
ta

q
.c

o
m



Future-Proof Software-Systems [Part 3A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 75

F

F

IF

IF

F

F

F

F

F

IF

IF

Coupling:
Transfer of information or control

System Extension: Coupling via Contracts

h
tt

p
:/

/
w

w
w

.y
e
ll
o
w

ja
c
k
e
td

is
p
o
s
a
l.
c
o
m



Future-Proof Software-Systems [Part 3A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 76

Are there other partitioning rules?

Hierarchical Partitioning
(Dominant Quality Property)

Level 1 Very High
Performance

Safety

Level 2
HPC

(High Performance
Computing)

Standard
(Standard Performance

Computing)

Safety-critical
Non safety-

critical

Reduced
Architecture
Principles

Full
Architecture
Principles

Full
Architecture
Principles

Full
Architecture
Principles

h
tt

p
:/

/
w

w
w

.b
ri

c
k
b
y
b
ri

c
k
in

v
e
s
ti

n
g
.c

o
m

m



Future-Proof Software-Systems [Part 3A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 77

Architecture Principle A2:

Partitioning, Encapsulation & Coupling

1. Partition the functionality and data into encapsulation units according to their cohesion
(thus minimizing dependencies)

2. Isolate the encapsulation units by strictly hiding any internal details. Allow access to
functionality and data only through stable, well specified interfaces governed by contracts

3. Minimize the impact of dependencies between the encapsulation units by using adequate
coupling mechanisms

A2

Justification: These 3 rules minimize the number and the impact of dependencies. The

resulting system therefore offers the least resistance to change, because any change affects

the smallest possible number of system elements. A low resistance to change corresponds to

high changeability.



Future-Proof Software-Systems [Part 3A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 78

Textbook Textbook

Luke Hohmann:
Beyond Software Architecture – Creating
and Sustaining Winning Solutions
Addison-Wesley Professional, USA, 2003.
ISBN 978-0-201-77594-5

Doug Kaye:
Loosely Coupled – The Missing Pieces of Web
Services
RDS Press, California, USA, 2003. ISBN 978-1-
881378-24-2



Future-Proof Software-Systems [Part 3A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 79

Architecture Principle A3:

Conceptual Integrity

A3



Future-Proof Software-Systems [Part 3A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 80

 A1: Architecture Layer Isolation

 A2: Partitioning, Encapsulation and Coupling

 A3: Conceptual Integrity

 A4: Redundancy

 A5: Interoperability

 A6: Common Functions

 A7: Reference Architectures, Frameworks and Patterns

 A8: Reuse and Parametrization

 A9: Industry Standards

 A10: Information Architecture

 A11: Formal Modeling

 A12: Complexity and Simplification

Horizontal Architecture Layer Principles:



Future-Proof Software-Systems [Part 3A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 81

Wheel rotation sensor

Book

Stock price

Car

Velocity

Rotation rate

Gravitation constant

Stopping distance

Systems developpers

Users

Software-System

How do we assure that all
stakeholders have a common
and correct understanding?

Legal system



Future-Proof Software-Systems [Part 3A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 82

h
tt

p
s
:/

/
th

u
m

b
9
.s

h
u

tt
e
rs

to
c
k
.c

o
m

All systems are based on concepts

All systems use a terminology

All systems have models (implicit or explicit)

Divergence between
stakeholders

Search Term Google Search Results

Definition "system" 769’000’000

Definition «car" 321’000’000

Definition «velocity" 129’000’000

Definition «gravitational constant" 296’000 11.11.2017



Future-Proof Software-Systems [Part 3A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 83

h
ttp

s
:/

/
lilp

ic
k
m

e
u

p
d
o
tc

o
m

.file
s
.w

o
rd

p
re

s
s
.c

o
m

Conceptual integrity is the quality of an organization and its IT-systems,

where all the concepts, the terminology and the models, including their

relationships with each other are unambiguously defined,

applied and enforced in a consistent way

http://architecture.typepad.com/architecture_blog/2011/10/the-importance-of-conceptual-integrity.html



Future-Proof Software-Systems [Part 3A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 84

Conceptual integrity is the quality of an organization and its IT-systems,

where all the concepts, the terminology and the models, including their

relationships with each other are unambiguously defined,

applied and enforced in a consistent way

http://architecture.typepad.com/architecture_blog/2011/10/the-importance-of-conceptual-integrity.html

Concepts are the fundamental building blocks of our thoughts and beliefs.

They play an important role in all aspects of cognition, communications and

systems engineering.
https://en.wikipedia.org/wiki/Concept

h
ttp

s
:/

/
w

w
w

.im
a
g
e
fa

c
to

ry
.c

h



Future-Proof Software-Systems [Part 3A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 85

h
ttp

s
:/

/
i1

.w
p
.c

o
m

Lack of conceptual integrity leads to:

• Misunderstandings of stakeholders

• Diverging implementations

• Unsatisfied users

• Unnecessary development and maintenance effort

h
ttp

:/
/
d
c
n

e
p
a
lo

n
lin

e
.c

o
m

In cyber-physical systems:

• Risk

• Accidents



Future-Proof Software-Systems [Part 3A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 86

h
ttp

:/
/
w

w
w

.ju
b
ile

e
-c

e
n

tre
.o

rg

Creating, maintaining, and enforcing conceptual integrity is mandatory in IT systems

How can we ensure conceptual integrity?

… with a solid model foundation • Taxonomy
• Ontology
• Domain model
• Business object model



Future-Proof Software-Systems [Part 3A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 87

Module

Component

System-of-Systems:
Cooperating systems

System:
Application Landscape

Vertical
Conceptual
Integrity

Horizontal
Conceptual
Integrity

Business
Unit A

Business
Unit B

Business
Unit Z

…
Cooperation

Partner 1
Cooperation
Partner N

…

Concepts,
Terminology,
Models

Naming conventions,
Programming guidelines,
…



Future-Proof Software-Systems [Part 3A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 88

Conceptual Integrity Definition

• Terminology

• Domain Model Expertise

• Business Object Model Expertise

Conceptual Integrity Formalization

• Taxonomy/Ontology

• Domain Model

• Business Object Model

B
u

si
n

e
ss

A
rc

h
it

e
ct

u
re

Im
p

le
m

e
n

ta
ti

o
n

Conceptual Integrity Implementation

• Code

• Documentation

C
o
n

c
e
p
tu

a
l
In

te
g
rity

E
n

fo
rc

e
m

e
n

t

Review



Future-Proof Software-Systems [Part 3A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 89

B
u

si
n

e
ss

Conceptual Integrity Definition

• Terminology

• Domain Model Expertise

• Business Object Model Expertise

h
ttp

s
:/

/
m

e
d
ia

.lic
d
n

.c
o
m

Interviews
Workshops

DomainsTerminology
Business
Objects



Future-Proof Software-Systems [Part 3A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 90

A
rc

h
it

e
ct

u
re Conceptual Integrity Formalization

• Taxonomy/Ontology

• Domain Model

• Business Object Model

Terminology
Definition

h
ttp

:/
/
s
p
a
rx

s
y
s
te

m
s
.c

o
mDomain

Model

Business
Object
Model



Future-Proof Software-Systems [Part 3A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 91

A
rc

h
it

e
ct

u
re Domain

Model

Domain model:

Conceptual model defining the entities, their attributes,

roles, relationships, and constraints that form

an application domain

A domain model does not describe solutions to problems

Trading

(TRA)
Domain Trading (TRA)

Container for all
functionality and data used
in the trading operations of

the bank

All domains = Full compartimentalization of the total bank functionality and data



Future-Proof Software-Systems [Part 3A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 92

5: Communications & Collaboration

Business Partner Applications (BPA) Financial Instruments, Research & Market Data (FIN)Enterprise Content Management (ECM)

Client Communication (CHA) Street Side Interfaces (SSI)

1
:

P
ar

tn
e

rs
&

P
e

rs
o

n
s

2
:

Fi
n

an
ce

,I
n

ve
st

m
e

n
t

&
Sa

le
s

3
:

Tr
ad

in
g

an
d

M
ar

ke
ts

4
:

C
as

h
an

d
A

ss
et

O
p

e
ra

ti
o

n
s

C
u

s
to

m
e
r

&
P
a
rt

n
e
r

(C
U

S
)

Wealth Management &
Advisory

(WMA)

Credits and Syndication

(CRS)

6
:

A
cc

o
u

n
ti

n
g,

C
o

n
tr

o
lli

n
g

an
d

R
e

p
o

rt
in

g

F
in

a
n

c
ia

l
A

c
c
o
u

n
ti

n
g

(F
A

C
)

R
e
g
u

la
to

ry
,

R
is

k
a
n

d
L
iq

u
id

it
y

(R
R

L
)

Accounting Control

(AOC)

Logistics

(LOG)

Basic Facilities

(BAS)

Trading

(TRA)

Product Control

(PRC)

Payments

(PAY)

Settlement and Clearing

(SCL)

Single Accounts

(SAC)

Custody
(CDY)

Corporate Actions

(COA)

7: Enterprise Common Services

Example: Domain Model for a Financial Institution This domain contains
all applications for the
communication with
exchanges, clearing

etc.

This domain contains
all applications for the

payments

This domain contains
all applications and
information used in
many other domains
(Common functions)



Future-Proof Software-Systems [Part 3A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 93

A
rc

h
it

e
ct

u
re

Business
Object
Model

Business Domain Objects

h
ttp

:/
/
w

w
w

.o
tta

w
a
lo

g
is

tic
s
.c

o
m

Wheel rotation sensor
Customer

WheelRotationSensor

RotationRate

ReadRotationRate

CalibrateZero

Properties

Methods

Customer

Name

Read Properties
Update Properties

Adress
Nationality

Add/Delete/Archive Customer



Future-Proof Software-Systems [Part 3A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 94

AgreementPortfolio
eBO

OrganizationEntity
eBO

Request
eBO

Operation
eBO

Product
eBO

obligates/entitles

obligates/entitlesAgreement
eBO

Party
eBO

aggregatesmanages

co
n
ta

in
s

(in
d
iv

id
u
a
l)

is
c
o
n
tra

ctu
a
l

b
a
s
e

fo
r

iss
u
e
s
/a

cts
o
n

iss
u
e
s
/a

c
ts

o
n

provides
rules for

produces

offers specifies

contains
(standard)

su
p
p
o
rts/in

clu
d

e
s

n
e
e
d
s/re

c
e
iv

e
s

n
e
e
d
s/re

c
e
iv

e
s

in
itia

te
s/re

s
u
lts

fro
m

o
w

n
s
/c

o
n

tro
ls

FinancialInstrument
eBO

is
c
o
m

m
itte

d
to

embodies

in
c
lu

d
e
s/sp

e
cifie

s

Transfers/
transforms

EconomicResource
eBO

Document/Report
eBO

TermCondition
eBO

Refinement

Example:
Financial
Business
Object Model
(1/2)



Future-Proof Software-Systems [Part 3A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 95

Partner
dBO

Contact
dBO

Servicing
dBO

AdressingInstruction
dBO

Address
dBO

VariousData
dBO

Compliance
dBO

Instruction
dBO

Segmentation
dBO

PartnerPartnerContext
dBO

PartnerDossierContext
dBO

Party
eBO

Agreement
eBOEnterprise

Level

Domain
Level

Dossier
dBO

PartnerAgreement
dBO

refinement refinement

PartnerGroup
dBO

Refinement

Example:
Financial
Business
Object Model
(2/2)



Future-Proof Software-Systems [Part 3A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 96

Architecture Principle A3:

Conceptual Integrity

1. Define all the concepts, the full terminology and models (including their relationships and
relevant properties) precisely (whenever possible formally)

2. Draw the boundary of the system in which the definitions apply

3. Consistently and consequently use the definitions in all areas of the system

4. Strictly enforce the correct use of the definitions

5. When cooperating with systems outside the boundary, match the concepts and the
terminology between all systems and interfaces

A3

Justification: Misunderstandings between stakeholders lead to unsatisfactory IT-systems

with divergence in many areas. Misunderstandings of all sorts must therefore be eliminated in

all phases of systems engineering



Future-Proof Software-Systems [Part 3A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 97

Textbook Textbook

Antoni Olivé:
Conceptual Modeling of Information Systems
Springer-Verlag, Germany, 2007. ISBN 978-3-
540-39389-4

Frederick P. Brooks:
The Mythical Man-Month – Essays on
Software Engineering
Addison-Wesley Longman (1975), New Edition,
1995. ISBN 978-0-201-83595-3



Future-Proof Software-Systems [Part 3A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 98

Textbook Textbook

Peter Herzum, Oliver Sims:
Business Component Factory – A
Comprehensive Overview of Component-
Based Development for the Enterprise
John Wiley & Sons Inc., USA, 2000. ISBN 978-
0-471-32760-8

Petra Drewer, Klaus-Dirk Schmitz:
Terminologiemanagement – Grundlagen -
Methoden – Werkzeuge
Springer Vieweg Verlag, Germany, 2017. ISBN
978-3-6625-3314-7



Future-Proof Software-Systems [Part 3A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 99

Architecture Principle A4:

Redundancy

A4



Future-Proof Software-Systems [Part 3A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 100

 A1: Architecture Layer Isolation

 A2: Partitioning, Encapsulation and Coupling

 A3: Conceptual Integrity

 A4: Redundancy

 A5: Interoperability

 A6: Common Functions

 A7: Reference Architectures, Frameworks and Patterns

 A8: Reuse and Parametrization

 A9: Industry Standards

 A10: Information Architecture

 A11: Formal Modeling

 A12: Complexity and Simplification

Horizontal Architecture Layer Principles:



Future-Proof Software-Systems [Part 3A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 101

Redundancy in an IT-system is – in most cases –

poison for the structure and for many quality

properties of an IT-system

Definition:

Redundancy: The duplication of functionality or data as

a whole or in parts



Future-Proof Software-Systems [Part 3A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 102

Requirements redundancy: The same or similar requirements are
stipulated in different documents

Specification redundancy: Functional or data overlap in the
specifications

Functional redundancy: The same or similar function is implemented
several times in the IT-system

Data redundancy: Same elements of data are stored in different
places and have different, unsynchronized sources

Interface redundancy: Interface functionality is implemented in more
than one interface or overlaps interfaces

Code redundancy: The same or similar code-sequence is used in
several programs

Redundancy Classification:

Implementation redundancyImplementation redundancy



Future-Proof Software-Systems [Part 3A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 103

Example: Different applications work with inconsistent data (data redundancy)

Information
(Content)

Information
Source

Information
Source

Data
Source

Data
Source

Snap-
shot

Application
UserApplication

UserApplication
User

Application
UserApplication

User

Application
User

Multiple, uncoordinated
acquisition of the same
information

Redundant, often
inconsistent data

Applications or users
work with different,
inconsistent data

Balance:
2’910 €

Balance:
3’090 €

material inconsistency

t
i
m
i
n
g
i
n
c
o
n
s
i
s
t
e
n
c
y



Future-Proof Software-Systems [Part 3A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 104

The data is generated,
synchronized,
and propagated in a
consistent way

Applications or users
work with consistent data

Information
(Content)

Information
Source

Information
Source

Master Data
Source

Synchronization/Consistency

Snap-
shot

Data
Source

Data
Source

Application
UserApplication

UserApplication
User

Application
UserApplication

User

Application
User



Future-Proof Software-Systems [Part 3A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 105

• disaster recovery (backup)

• high availability (faults & failures)

• load-balancing (multiple applications on multiple servers)

• performance requirements (parallel processing, DB accesses)

• geographical distribution (worldwide operations)

• electronic archiving

• 3rd party software (sometimes difficult)

• safety (3-way voting)

• etc.

Wanted redundancy = Managed redundancy

… on the other hand:

In some cases we need redundancy !



Future-Proof Software-Systems [Part 3A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 106

Example: Transaction Data Base Mirroring

Transaction Data Base

Main Computing System

Interactive
User

Backup
Transaction Data Base

BackupComputing System

35 km

Real-time copy
«Mirroring»= Managed Redundancy



Future-Proof Software-Systems [Part 3A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 107

Managed
redundancy

Unmanaged
redundancy

Known and
wanted

Yes

(if valid reason)

NO!

Unknown or
unwanted

? NO!

… what is the solution?

Manage redundancy !  Managed redundancy

Managed redundancy definition:

• There is only exactly one source for the functionality and for the data (both during
development time and during run-time)

• All redundant copies must be materially and time-wise synchronized (also partial
copies)



Future-Proof Software-Systems [Part 3A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 108

Is the management of redundancy difficult?

h
tt

p
:/

/
w

w
w

.s
h

o
p
c
lu

e
s
.c

o
m

/
ru

b
ik

s
-c

u
b
e
-e

n
-2

.h
tm

l Yes!
… very

You need specific policies, processes and

tools to successfully manage redundancy

 and a strong awareness!



Future-Proof Software-Systems [Part 3A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 109

Redundancy is very difficult to identify
and to eliminate – especially in large,
complex IT systems

Unmanaged redundancy infiltrates the system via:

• Requirements

• Specifications

• Architecting + Design Decisions

• Implementation (Evolution)

• Maintenance (adaptive and corrective)

h
ttp

:/
/
g
a
lle

ry
.y

o
p
ric

e
v
ille

.c
o
m

The redundancy-ghost
• You don’t hear it
• You don’t see it



Future-Proof Software-Systems [Part 3A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 110

During:

• Operations: inconsistent data & diverging functionality

• Refactoring/Rearchitecting: Hidden redundancy

• Evolution (Extensions): Changes in multiple parts

• Maintenance (Corrective): «search & hide»

h
tt

p
:/

/
g
a
ll
e
ry

.y
o
p
ri

c
e
v
il
le

.c
o
m

The redundancy-ghost
… but you see its impact !



Future-Proof Software-Systems [Part 3A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 111

Example: Code-Redundancy (1/2)

Code Sequence
xyz

Program A

Code Sequence
xyz

Program B

Copy & Paste

Copy & Paste

Unwanted,
unmanaged
redundancy



Future-Proof Software-Systems [Part 3A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 112

Example: Code-Redundancy (1/2)

Code Sequence
xyz

Program A

Code Sequence
xyz

Program B

long forgotten

Bug
remains
in the
system

Unwanted,
unmanaged
redundancy



Future-Proof Software-Systems [Part 3A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 113

Can we avoid the generation of unmanaged redundancy?

Tool 1: Domain-Model

F

F
F

F
F

F

F

F

F

F
F

IF

IF
IF

IF

IF

New
Requirements

F

IF

F
u

n
c
ti
o

n
a

l
G

ro
u

p
A

D
o

m
a

in
-M

o
d

e
l

F
u

n
c
ti
o

n
a

l
G

ro
u

p
D

F
u

n
c
ti
o

n
a

l
G

ro
u

p
C

F
u

n
c
ti
o

n
a

l
G

ro
u

p
B

D
a

ta
G

ro
u

p
R

D
a

ta
G

ro
u

p
S

D
a

ta
G

ro
u

p
T The domain

model
unambiguously
assigns data
and
functionality to
one and only
one part



Future-Proof Software-Systems [Part 3A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 114

Tool 2: Configuration Management

F

F
F

F
F

F

F

F

F

F
F

IF

IF
IF

IF

IF
F

IF

Config
Mgmt

Config Data

Can we avoid the generation of unmanaged redundancy?

The
configuration
management
data base
records and
manages all
wanted
redundancy
 Managed
redundancy



Future-Proof Software-Systems [Part 3A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 115

New
Requirements
(Specification)

Development Process

h
ttp

:/
/
g
a
lle

ry
.y

o
p
ric

e
v
ille

.c
o
m

Redundancy ghost

Check redundancy generation
(Reviews, Model-, Code-Checkers, …)

Tool 3: Reviews

Can we avoid the generation of unmanaged redundancy?



Future-Proof Software-Systems [Part 3A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 116

FF

F

F

F

F

F

FF

F

F

F F

F
F

F

F

F

F

F
F

FF

F F

F

F
F

F
FF

F F

F

F F

F
F

F

F

F

F

F
F

F

F

F F

F

F

Existing unmanaged redundancy must be identified and eliminated

h
ttp

:/
/
w

w
w

.d
u

d
e
n

.d
e

Search & Identify

h
ttp

:/
/
w

w
w

.m
e
d
ie

n
-d

o
k
to

r.d
eEliminate

Rearchitecture-
/Refactoring-
Programs

Tool 4: Rearchitecting/Refactoring



Future-Proof Software-Systems [Part 3A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 117

Architecture Principle A4:

Redundancy

1. There is only exactly one source for the functionality and for the data (both during
development time and during run-time)

2. All redundant copies must be content-wise and time-wise synchronized (thus
avoiding divergence)

3. The creation of unmanaged redundancy is not allowed under any circumstances.
Existing unmanaged redundancy must be identified and eliminated in due course

4. Managed redundancy is allowed if there is a good (documented) reason

A4

Justification: Any unmanaged redundancy may cause divergence and thus severely
impact quality properties of the system’s output. Any unmanaged redundancy will
negatively impact the maintenance and evolution of the system



Future-Proof Software-Systems [Part 3A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 118

Architecture Principle A5:

Interoperability

A5



Future-Proof Software-Systems [Part 3A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 119

 A1: Architecture Layer Isolation

 A2: Partitioning, Encapsulation and Coupling

 A3: Conceptual Integrity

 A4: Redundancy

 A5: Interoperability

 A6: Common Functions

 A7: Reference Architectures, Frameworks and Patterns

 A8: Reuse and Parametrization

 A9: Industry Standards

 A10: Information Architecture

 A11: Formal Modeling

 A12: Complexity and Simplification

Horizontal Architecture Layer Principles:



Future-Proof Software-Systems [Part 3A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 120

System
Part
A

System
Part
B

One of the most essential capabilities
of collaborating systems is interoperability

Technical Interoperability

Syntactic Interoperability

Semantic Interoperability

Applications InteroperabilityInteroperability must be assured on 4 levels:

Definition: Interoperability is the capability to
exchange and make use of information and control

Interoperability
Levels



Future-Proof Software-Systems [Part 3A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 121

System
Part
A

System
Part
B

Interoperability is the capability to exchange
and make use of information and control

Technical Interoperability Interaction infrastructure

Syntactic Interoperability Structure of the data

Semantic Interoperability Meaning of the data

Applications Interoperability
Collaborating applications must
share a common conceptual
model

Instruments:
• Conceptual Models

• Domain Models
• Ontologies

Instruments:
• Controlled Vocabularies

•Taxonomies

Instruments:
• Syntax specification

languages

Instruments:
• Network standards
• Internet standards



Future-Proof Software-Systems [Part 3A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 122

Example: Technical Error
(TSL Vulnerability)

In the SSL (Secure Socket
Layer) and TLS (Transport Level
Security)-protocol a serious
security vulnerability was
detected (November 2009)

RFC5746: SSL and TLS renegotiation
are vulnerable to an attack in which the
attacker forms a TLS connection with
the target server, injects content of his
choice, and then splices in a new TLS
connection from a client.
http://tools.ietf.org/html/rfc5746

Because this security vulnerability is in

the original ietf-specification, all

SSL/TSL-implementations can be

attacked via this vulnerability. All

implementations and deployments must

be patched – worldwide!

Technical Interoperability



Future-Proof Software-Systems [Part 3A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 123

h
tt

p
:/

/w
w

w
.jz

ep
ce

vs
ki

.c
o

m
/m

u
n

d
an

e-
ex

p
lo

si
o

n
s/

Example: Syntax Error
(Ariane 5 Explosion)

On 4th June 1996 the
Ariane rocket exploded
during its first commercial
flight

The value for the horizontal velocity was stored as a 16-bit integer value in the inertial guidance

system, a heritage from the Ariane 4. The measured value, however, was stored in a 64-bit floating

format. Because the Ariane 5 was considerably faster than the Ariane 4, the conversion of the 64-bit

floating value into the 16-bit integer value exceeded 32,767 and caused an operand error – resulting

in the loss of guidance and the self-destruction of the rocket. This syntactic error caused losses of

1.7 billions of US$

(http://esamultimedia.esa.int/docs/esa-x-1819eng.pdf).

Syntactic Interoperability



Future-Proof Software-Systems [Part 3A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 124

The root cause for the loss of the MCO spacecraft was a semantic mismatch. The spacecraft
software was correctly programmed to use metric units (Newtonseconds). The ground software was
programmed to use English units (pound-seconds). The same measurement values therefore had a
different meaning – differing by a factor of 4.45 – in the spacecraft and in the ground software
resulting in an erroneous trajectory and in the crash of the spacecraft. This semantic mismatch
caused a loss of 193.1 million US$.
(ftp://ftp.hq.nasa.gov/pub/pao/reports/1999/MCO_report.pdf).

h
tt

p
:/

/w
w

w
.v

u
w

.a
c.

n
z/

st
af

f/
st

ep
h

e
n

_
m

ar
sh

al
l/

SE
/F

ai
lu

re
s/

m
ed

ia
/M

C
O

_O
rb

it
.jp

g

Example: Semantic Mismatch
(Mars Climate Orbiter Crash)

The Mars Climate Orbiter (MCO) mission objective was to

orbit Mars as the first interplanetary weather satellite.

The MCO was launched on December 11, 1998, and was

lost sometime following the spacecraft's entry into Mars

occultation during the Mars Orbit Insertion (MOI)

maneuver.

Semantic Interoperability



Future-Proof Software-Systems [Part 3A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 125

1996, 1998: Failed syntactic and semantic interoperability

Could that still happen in 2016?

h
tt

p
:/

/
w

w
w

.a
a
rg

a
u

e
rz

e
it

u
n

g
.c

h
h

ttp
:/

/
w

w
w

.s
c
in

e
x
x
.d

e

19. October 2016:

The Mars Lander «Schiaparelli» crashes to the ground



Future-Proof Software-Systems [Part 3A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 126

“A software error is ultimately good news for the ExoMars mission”

Andrea Accomazzo (ESA)

h
tt

p
s
:/

/
d
e
.w

ik
ip

e
d
ia

.o
rg

h
ttp

:/
/
w

w
w

.m
ilita

ry
a
e
ro

s
p
a
c
e
.c

o
m

Radar-Altimeter

Navigation Computer

First Analysis (November 2016)

Software Interoperability problem between

Radar-Altimeter and Navigation Computer in the Lander



Future-Proof Software-Systems [Part 3A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 127

h
tt

p
:/

/a
n

ci
e

n
th

is
to

ry
.a

b
o

u
t.

co
m

/o
d

/p
yr

am
id

s/
tp

/9
10

12
-T

h
e-

M
ai

n
-P

yr
am

id
s-

O
f-

Eg
yp

t.
h

tm

The Pyramid of Knowledge

Chaos Sy
n

ta
x

Data

Information

Knowledge

Wisdom

D
o

m
ai

n
M

o
d

e
l

Se
m

an
ti

cs

R
e

as
o

n
in

g

Context



Future-Proof Software-Systems [Part 3A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 128

The context of the specific information determines to a significant degree its full
understanding and correct interpretation. Thus, for interoperability, the context of the
semantic layer must be clearly defined

Example: Context Mismatch
The American and the Russian
president agree on a running
competition over 5 km. The American
president clearly wins the race. The
reporting in the Russian press reads:
“The Russian president ran to an
excellent second place, whereas
the American president only
finished second last in the race”.

Definition: Context is the circumstances that form the setting for an event, statement, or idea
and in terms of which it can be fully understood and assessed ([Oxford98]).

h
ttp

://w
w

w
.lin

k-gr.ch
/n

e
w

s/20
08062

8/grau
b

u
en

d
en

-m
arath

o
n

-w
yatt/

Without knowing the
context that only 2
competitors ran the race,
the meaning of the
information is completely
distorted – people
implicitly assume that the
race had 50 … 100
runners.



… by specifying interfaces

Future-Proof Software-Systems [Part 3A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 129

How can we assure interoperability?

System
Part
A

System
Part
B

I
n
t
e
r
f
a
c
e

I
n
t
e
r
f
a
c
e

• Technology alignment
• Syntax alignment
• Semantic alignment
• Model alignment

Interface Contract
Service Contract

Interface Contract
Service Contract

… and formally describe
their behaviour, properties,
attributes etc. in contracts



Future-Proof Software-Systems [Part 3A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 130

Interface & Service Contracts:

Service
Provider

(Functionality & Data)

Service
Requester

Service Provider
Operational Parameters:

• Response time [ms]
• Throughput [calls/s]

• Availability [%]
• etc.

Service Provider
Commercial Parameters:

• Access rights
• Cost/call [€]
• Guarantees

• etc.

O
p
e
ra

ti
o
n

a
l

S
p
e
c
if
ic

a
ti

o
n

Operational
Agreement

C
o
m

m
e
rc

ia
l

S
p
e
c
if
ic

a
ti

o
n

Commercial
Agreement

Service
Contract

F
u

n
c
ti

o
n

a
l
In

te
rf

a
c
e

(B
e
h

a
v
io

r)

Interface Contract:

• Behaviour

• Constraints

Interface
Contract



Future-Proof Software-Systems [Part 3A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 131

<%@ WebService language = "C#" class = "FirstService" %>

using System;
using System.Web.Services;
using System.Xml.Serialization;

[WebService(Namespace="http://localhost/MyWebServices/")]
public class FirstService : WebService{

[WebMethod]
public int Add(int a, int b) {

return a + b;
}

[WebMethod]
public String SayHello() {

return "Hello World";
}

}

https://www.tutorialspoint.com/webservices/web_services_examples.htm

Web service which works as a

service provider and exposes

two methods (add and SayHello)

as the web services to be used

by applications

Example:
Simple Web-Service Formalization



Future-Proof Software-Systems [Part 3A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 132

Interface Contracts:

Service
Provider

(Functionality & Data)

Service
Requester

F
u

n
c
ti

o
n

a
l
In

te
rf

a
c
e

(B
e
h

a
v
io

r)

Interface Contract:
• Preconditions

• Functionality/Data

• Postconditions

P
re

c
o
n

d
it

io
n

s

P
o
s
tc

o
n

d
itio

n
s

A
c
c
e
s
s



Future-Proof Software-Systems [Part 3A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 133

Example:
Add new customer (ID and name)

#ofCustomers

Customer_Manager

customerCount
activeID
addCustomerID
addCustomerName

etc.

customerID
customerName

etc.

Customer

1

0…*

addCustomerID

addCustomerName

Precondition:
1. ID not already active

Precondition:
1. ID active

Postconditions:
1. ID now active
2. #ofCustomers + 1

Postcondition:
1. Name registered



Future-Proof Software-Systems [Part 3A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 134

Contract-Based
Software Engineering:

Business Process

Service
Contract

Service
Provider

Component

Service
Contract

Service
Provider

Component

Service
Contract

Service
Provider

Component

Service
Contract

Service
Provider

Component

Service
Contract

Service
Provider

Component

Service
Contract

Service
Provider

Component

Service
Contract

Service
Provider

Component

Service
Contract

Service
Provider

Component

C
o
m

p
o
n

e
n

t
C

o
m

p
o
s
it

io
n

M
o
d
e
l

Component Model
The

functionality of

a system is

generated by

composing

service

contracts



Future-Proof Software-Systems [Part 3A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 135

Service-Oriented Architecture (SOA)

h
tt

p
:/

/
in

te
g
re

ll
a
.c

o
m

/
s
e
rv

ic
e
s
/
s
o
lu

ti
o
n

s
/
a
2
a
-a

n
d
-b

2
b
-i

n
te

g
ra

ti
o
n

/

see other TU-Dresden Lectures



Future-Proof Software-Systems [Part 3A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 136

System
Part
A

System
Part
B

Interoperability is the capability to exchange
and make use of information and control

Technical Interoperability Interaction infrastructure

Syntactic Interoperability Structure of the data

Semantic Interoperability Meaning of the data

Applications Interoperability
Collaborating applications must
share a common conceptual
model

How do we
attain
that?



Future-Proof Software-Systems [Part 3A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 137

How do we attain Technological Interoperability?

… by adapting and enforcing accepted industry standards



Future-Proof Software-Systems [Part 3A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 138

How do we express Syntax? machine-readable!

<?xml version="1.0"?>
<note>
<to>Tove</to>
<from>Jani</from>
<heading>Reminder</heading>
<body>Don't forget me this weekend!</body>
</note>

[http://www.w3schools.com/xml/]

Tags defined
by the author

of this
document

Def: The Extensible Markup Language (XML) is a markup
language defining a set of rules for representing and encoding
„documents“ in machine-readable formats
Note 1: XML is in fact a technology to generate specific markup languages, e.g. domain-languages

Note 2: Today hundreds of specific XML-formats for different purposes exist

Note 3: XML is also human-readable (once you get used to the format)



Future-Proof Software-Systems [Part 3A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 139

Example:
XML Service Syntax

<!--
###################################################################################

Service-Id: DOC_1042
Service-Name: Request Digital Signature
Technical Name: Request Digital Signature for an electronic document or a data structure
History: v0.1 03.06.2005 Draft

v1.0 01.07.2005 Final
###################################################################################
-->
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

xmlns:cs="http://www.cs-standards.org/schema/CS-BASE-1-0"
xmlns:cif="http://www.cs-standards.org/schema/CS-CIF-BASE-1-0"
xmlns:ebi="http://www.cs-standards.org/schema/CS-EBI-BASE-1-0"
xmlns:dss="http://www.cs-standards.org/schema/CS-DSS-BASE-1-0"
elementFormDefault="unqualified" attributeFormDefault="qualified">

<xs:import namespace="http://www.cs-standards.org/schema/CS-BASE-1-0" schemaLocation="CS-BASE-1-0.xsd"/>
<xs:import namespace="http://www.cs-standards.org/schema/CS-CIF-BASE-1-0" schemaLocation="CS-CIF-BASE-1-0.xsd"/>
<xs:import namespace="http://www.cs-standards.org/schema/CS-EBI-BASE-1-0" schemaLocation="CS-EBI-BASE-1-0.xsd"/>
<xs:import namespace="http://www.cs-standards.org/schema/CS-DSS-BASE-1-0" schemaLocation="CS-DSS-BASE-1-0.xsd"/>

<!--
===============================================================================

ELAR Signature Request slot: 16 ELAR signature requests can be grouped into a single message.
===============================================================================
-->
<xs:complexType name="RequestSlotType">

<xs:sequence>
<xs:element name="SlotStatus" type="dss:SlotStatus"/>
<xs:element name="BusinessUnit" type="cs:businessUnitType"/>
<xs:element name="HashtreeUUID" type="cs:uuid20AsCharType"/>
<!--
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



Future-Proof Software-Systems [Part 3A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 140

How do we express Semantics? machine-readable!

Ontology

“Christiano Wolfio: Ontologia“, 1730

Information Technology:

Def: An ontology is a formal representation
of the knowledge in a domain

in the form of the concepts of the domain
and their relationships,

and the properties of the concepts and
relationships,

as well as the axioms and principles which
are valid in the domain.



Future-Proof Software-Systems [Part 3A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 141

Example: Car Ontology (1/5)
Aston Martin Virage 1991



Future-Proof Software-Systems [Part 3A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 142

Example: Car Ontology (2/5) Aston Martin Virage Shop Manual

Part

Relationship

The Car Shop
Manual contains
all the parts and

relationship
information

(in graphical form)



Future-Proof Software-Systems [Part 3A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 143

Example: Car Ontology (3/5)

Properties



Future-Proof Software-Systems [Part 3A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 144

Example: Car Ontology (4/5)

{Car}

partOf

partOf

partOf
{Body}

{Chassis}

{Power Train}

Parts

Relationship

partOf

{Steering
Column}

{Engine}

partOf

partOf

partOf

partOf

{Gearbox}

partOf

partOf

partOf

partOf

partOf

partOf

{Door}

partOf
{Screw}

instanceOf

instanceOf

instanceOf

instanceOf

instanceOf

Part # 692087
Screw M8x20

Part # 653-
000-0603
Screw 6x3/8“

Part # 692126
Screw M4x8

Part # 692262
Screw M6x12

Part # 692089
Screw M8x16



Future-Proof Software-Systems [Part 3A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 145

Example: Car Ontology (5/5)

<owl:Class rdf:ID=“Car“/>

<owl:Class rdf:ID=“Body“>

<rdfs:subClassOf rdf:resource=“Car“/>

</owl:Class>

<owl:Class rdf:ID=“Chassis“>

<rdfs:subClassOf rdf:resource=“Car“/>

</owl:Class>

<owl:Class rdf:ID=“PowerTrain“>

<rdfs:subClassOf rdf:resource=“Car“/>

</owl:Class>

OWL (Web Ontology Language) Representation:

{Car}

partOf

partOf

partOf
{Body}

{Chassis}

{Power Train}

Part

Relationship



Future-Proof Software-Systems [Part 3A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 146

5: Communications & Collaboration

Business Partner Applications (BPA) Financial Instruments, Research & Market Data (FIN)Enterprise Content Management (ECM)

Client Communication (CHA) Street Side Interfaces (SSI)

1
:

P
ar

tn
e

rs
&

P
e

rs
o

n
s

2
:

Fi
n

an
ce

,I
n

ve
st

m
e

n
t

&
Sa

le
s

3
:

Tr
ad

in
g

an
d

M
ar

ke
ts

4
:

C
as

h
an

d
A

ss
et

O
p

e
ra

ti
o

n
s

C
u

s
to

m
e
r

&
P
a
rt

n
e
r

(C
U

S
)

Wealth Management &
Advisory

(WMA)

Credits and Syndication

(CRS)

6
:

A
cc

o
u

n
ti

n
g,

C
o

n
tr

o
lli

n
g

an
d

R
e

p
o

rt
in

g

F
in

a
n

c
ia

l
A

c
c
o
u

n
ti

n
g

(F
A

C
)

R
e
g
u

la
to

ry
,

R
is

k
a
n

d
L
iq

u
id

it
y

(R
R

L
)

Accounting Control

(AOC)

Logistics

(LOG)

Basic Facilities

(BAS)

Trading

(TRA)

Product Control

(PRC)

Payments

(PAY)

Settlement and Clearing

(SCL)

Single Accounts

(SAC)

Custody
(CDY)

Corporate Actions

(COA)

7: Enterprise Common Services

How do we express Semantics?

«Mortgage»

«Stock» «Savings
Account»

Domain Model

«Mortgage»

«Stock»

«Savings
Account»

The concepts must be

clearly defined for all

partners: This is done in

the domain model



Future-Proof Software-Systems [Part 3A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 147

Technical Interoperability

Syntactic Interoperability

Semantic Interoperability

Definition of
the concepts
and their
relationships 

Ontology

Collaborating applications

must share a common conceptual model

(= Domain Model)Applications Interoperability Applications Interoperability

What is needed for full semantics?



Future-Proof Software-Systems [Part 3A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 148

Technical Interoperability

Syntactic Interoperability

Semantic Interoperability

Applications Interoperability

Ontology

Applications Interoperability

Collaborating
applications
must share a

common
conceptual model

Savings Account Savings Account

What is needed for full semantics?



Future-Proof Software-Systems [Part 3A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 149

Example: Secure Interoperability

Interoperability Channel

System
A

System
BInteroperability: Syntax & Semantics

Secure Transmission

? ?

Authentication

Authorization

What happened to the

quality properties?

• Security?

• Safety?

• Integrity?

• …

We have now understood:

• Technical interoperability

• Syntactical interoperability

• Semantic interoperability

• Applications interoperability

 Additional concerns



Future-Proof Software-Systems [Part 3A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 150

Orthogonality

Security
Functionality:

Confidentiality,
Authentication,
Authorization,

Integrity,
…

Information & Control Exchange Functionality:
Technical interoperability
Syntactic interoperability
Semantic interoperability

Applications interoperability

Security functionality and exchange
functionality are orthogonal:

Never mix the two types of
functionality!

• not in models
• not in architecture
• not in design
• not in implementation



Future-Proof Software-Systems [Part 3A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 151

Architecture Principle A5:

Interoperability

1. Precisely (formally) specify syntax and semantics in all interoperations

2. Whenever possible use formal contracts for the definition of interfaces

3. Whenever possible adopt and enforce accepted interoperability industry
standards

A5

Justification: Successful, unambigous interoperability is a key factor in today‘s

distributed systems. Interoperabilty failures have severe consequences and are difficult

to pinpoint. Formal contracts isolate the parts of the system.



Future-Proof Software-Systems [Part 3A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 152

Textbook Textbook

Tomas Erl et. al:
Web Service Contract Design and Versioning
for SOA
Prentice Hall, Inc., USA, 2008. ISBN 978-0-136-
13517-3

Richard Gartner
Metadata – Shaping Knowledge from
Antiquity to the Semantic Web
Springer-Verlag, Germany, 2016. ISBN 978-3-
319-40891-0



Future-Proof Software-Systems [Part 3A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 153

Architecture Principle A6:

Common Functions
(X-functions and X-data)

A6



Future-Proof Software-Systems [Part 3A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 154

 A1: Architecture Layer Isolation

 A2: Partitioning, Encapsulation and Coupling

 A3: Conceptual Integrity

 A4: Redundancy

 A5: Interoperability

 A6: Common Functions

 A7: Reference Architectures, Frameworks and Patterns

 A8: Reuse and Parametrization

 A9: Industry Standards

 A10: Information Architecture

 A11: Formal Modeling

 A12: Complexity and Simplification

Horizontal Architecture Layer Principles:



Future-Proof Software-Systems [Part 3A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 155

A disturbing dilemma:

A2 A4
Partitioning Redundancy

What do we do if we need

the same functionality or data

in several partitions?

h
ttp

:/
/
w

w
w

.tx
c
s
c
o
p
e
re

v
ie

w
.c

o
m

• Assign functionality & data to the single correct partition
• No unmanaged redundancy



Future-Proof Software-Systems [Part 3A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 156

FF

F

F

F

F

F

FF

F

F

F
F

F
F

F

F

F

F

F
F

FF

F
F

F

F
F

F
FF

F F

F

F
F

F
F

F

F

F

F

F
F

F

F

F

F

F

FF

F

F

F

F

F

F

F

F

F = Common Functionality

D

D
D

D

D

D

D

D

D

D

D = Common Data



Future-Proof Software-Systems [Part 3A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 157

F = Common Functionality D = Common Data

Danger:

• Break the partitioning rule (each function and data  exactly one partition)

• Generate unmanaged redundancy  divergence, inconsistency

• Risk performance problems  slow down, single points of failure

CAUTION: Common functions can

infiltrate your system unnoticed!

… and they will

h
tt

p
:/

/
g
a
ll
e
ry

.y
o
p
ri

c
e
v
il
le

.c
o
m

Common Functionality & Common Data/Information:

Functions or Data which are used in many parts of the system (and in different encapsulation units)



Future-Proof Software-Systems [Part 3A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 158

Example:

Programmer

Action

Implementation
A

Program Module A

h
tt

p
:/

/
c
re

a
tt

ic
a
.c

o
m

Implementation
B

Program Module B

h
tt

p
:/

/
w

w
w

.d
re

a
m

s
ti

m
e
.c

o
m

Specification
A

Specification
B

Nearly identical
specifications



Future-Proof Software-Systems [Part 3A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 159

Account:
• dd.mm.yyyy: deposit 1‘200 €

• dd.mm.yyyy: withdrawal 700 €
• dd.mm.yyyy: charge 385 €

• dd.mm.yyyy: deposit 1‘720 €
• …

Functionality:

Interest Calculation

Event:
 End of year
 Close account
 …

Interest Rate
Table:

o xx – yy: 1.75%
o xx –yy: 1.95%
o xx-yy: 1.80%

Bank Holiday
Table:

CH
o January 1
o January 2
o April 18

o …

Tax Withholding
Table:

• CH: 35%

• DE: 26%
• …

Interest Statement
1.1.2013 – 31.12.2013

€ 178.45

Common
Data

Common
Functionality

Example:

Interest

Calculation



Future-Proof Software-Systems [Part 3A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 160

How can we deal with common functionality and data?

Identify, control and manage it!

Managed Distribution
(At Build Time)

DataFunctionality
single
source!

Repository
(Configuration
Management)

Controlled
Distribution

FF

F
F

F

F
F

F
FF

F F

F

F

F

F
F

D

D
D

D

F

It is exactly known at
all times which

common functionality is
located where in the

system



Future-Proof Software-Systems [Part 3A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 161

FF

F

F

F

F

F

FF

F

F

F
F

F
F

F

F

F

F

F
F F

F

F

F

F

F

D

D

D

D

F

F
F

F
F

F

F

F

F

F
F

F

FF

F

D

D

Managed Synchronization
(At Run Time)

How can we deal with common functionality and data?

Real-time synchronization
• Content

• Update rate

All data is
correctly and
timely
synchronized
(= Managed
redundancy)



Future-Proof Software-Systems [Part 3A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 162

FF

F

F

F

F

F

FF

F

F

F
F

F
F

F

F

F

F

F
F F

F

F

F

F

F

D

D

D

D

F

F
F

F
F

F

F

F

F

F
F

F

FF

F

D

D

Service Provision
(At Run Time)

How can we deal with common functionality and data?

Provide Access Services

Common
functionality and
data are provided
via services



Future-Proof Software-Systems [Part 3A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 163

Accounting Control

(AOC)

Logistics

(LOG)

Basic Facilities

(BAS)

7: Enterprise Common Services

Enterprise-wide common software infrastructure

Common
TablesCommon

Tables

Common
Data

Common
FunctionsCommon
FunctionsCommon
Functions

Application
Application

Application
Application

Application
Application

managed
copy

managed
copy

access
(Service)

access
(Service)

Service Provision
(At Run Time)

Common
functionality and
data are provided
via a enterprise-
wide software
infrastructure



Future-Proof Software-Systems [Part 3A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 164

Example: Worldwide Bank Holidays

Common Data: Provide a list of bank
holidays for any country and any
year, such as 2017 for Cayman
Islands

Provision: This function requires the
maintenance of a (static) table
containing all the bank holidays
received from the respective local
authorities

Bank Holiday 2012 Date

New Year’s Day Monday, January 2

National Heroes Day Monday, January 23

Ash Wednesday Wednesday, February 22

Good Friday Friday, April 6

Easter Monday Monday, April 9

Discovery Day Monday, May 21

Queen’s Diamond Jubilee Monday, June 4

Queen’s Anniversary Monday, June 18

Constitution Day Monday, July 2

Public Holiday Wednesday, July 18

Remembrance Day Monday, November 12

Christmas Day Tuesday, December 25

Boxing Day/Family Day Wednesday, December 31

List of Cayman bank holidays 2012
http://www.bank-holidays.com

Accounting Control

(AOC)

Logistics

(LOG)

Basic Facilities

(BAS)

7: Enterprise Common Services

Application

managed copyAccess (Service)



Future-Proof Software-Systems [Part 3A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 165

Architecture Principle A6:

Common Functions

1. Identify all common functions and common data (= cross-cutting
concerns in an IT-architecture)

2. Provide managed solutions to all cross-cutting concerns, avoiding
unmanaged redundacy

3. Whenever possible provide and enforce a company-wide software-
infrastructure

A6

Justification: Cross-cutting concerns (Common functions and data) have a high

inherent risk to diverge and thus cause unmanged reduncancy or inconsistent

implementations – which can be an unknown and serious danger to an IT-system

(especially a large or very large IT-system)



Future-Proof Software-Systems [Part 2]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 166

h
ttp

:/
/
w

w
w

.g
e
tty

im
a
g
e
s
.c

h

Our objective is:

To build, evolve, and maintain

long-lived, mission-critical IT-systems

with a strong dependability,

an easy changeability,

and a high business value.

Remember

A12

A1 …



Future-Proof Software-Systems [Part 3A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 167

Part 3A: A1 – A6


