Gu) iniversiTar Future-Proof Software-Systems [Part 3A]

Future-Proof Software-Systems (FPSS)

Part 3A: Architecting for Changeability

Lecture WS 2017 /18: Prof. Dr. Frank J. Furrer

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 1

G niversivaT Future-Proof Software-Systems [Part 3A]

DRESDEN

Our journey:
«Softwar (Systems & Soft Three devils

everywhere» J L Engineering Systems Engineeri
g
Managed Evolygti Technial Deb (Future-Pro 3
Strategy Architecture Eros tSoftware—Syste a
: Architecting for (: : :
{ Architecture { Changeability } t Special Topics J ¢

The Future-Proof Software- Architecting for
Systems Engineer Dependability

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 2

TECHNISCHE
UNIVERSITAT
DRESDEN

Future-Proof Software-Systems [Part 3A]

Changeability: Repetition

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18

G niversivaT Future-Proof Software-Systems [Part 3A]

DRESDEN

Changeability is the capability of an organization to develop

software-systems:
 With high-quality functionality

 With a good cost and time-to-market performance

The most important key factor for changeability is th e@

the the software

/

Architecture!

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 4

G niversivaT Future-Proof Software-Systems [Part 3A]

DRESDEN

Changeability Metric

Devel opnent Cost per Unit of Functionality

N

high UCP
0.8 daysyUCP
[Ti me-t o- Mar ket per Unit of Functionality

10.0 k€/UCP
4.0 days/UCP

3

Company A

Company B

low

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 5

G niversivaT Future-Proof Software-Systems [Part 3A]

DRESDEN

Company A
Proj ect Cost:

‘ 1’ 050 ke
Tinme to Market:
200 days

oo doaysiredipo mmm/ /-dnqg

Company B
. Proj ect Cost:
Project

2’ 500 ke
250UCP-' Tinme to Market:
1’ 000 days

oo Iredno mmm/ /:dpg

Proj ect Cost:

‘ 12’ 500 ke
Tine to Market:
2’ 500 days

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 6

G niversivaT Future-Proof Software-Systems [Part 3A]

DRESDEN

http://www.0lll.com/architecture-exhibitions/?gal=24
[XS pUI/W0d ZIGSISE MMM/ 011y

Fact 1:
Good architecture results in good changeability AQ
(g
Fact 2: ’J

Good architecture is governed by proven architecture principles

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 7

G niversivaT Future-Proof Software-Systems [Part 3A]

DRESDEN

SIoeTpown[iM peodn/ /:sdig

http://4.bp.blogspot.com

Fact 1:
Good architecture results in good dependability AQ
(o
Fact 2: ’v

Good architecture is governed by proven architecture principles

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 8

TECHNISCHE
UNIVERSITAT
DRESDEN

Future-Proof Software-Systems [Part 3A]

[Information Systems]| Architecture Principles

SIAPIOM SOl g0/ /:sdy

TI0J'SS:!

for for for
Changeability Dependability other Attributes
12 architecture principles Resliemee: & prineiplss
[complete set] Examples
[complete set] .
Dependability: Examples

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18

Horizontal Architecture Layers

/

\

Business
Architecture

Application
Architecture

Information
Architecture

Integration
Architecture

Technical
Architecture

Safety

Security

Real-

Time

Hierarchy

SoS
Application Landscape
Application
Component

Sensor/Actuator

Vertical
Architecture
Layers

A
7

TECHNISCHE

G inversioar Future-Proof Software-Systems [Part 3A]

Horizontal Architecture Layers

Business

Architecture
(Business Processes)

Applications
Architecture
(Functionality)

Information (Data)

Architecture
(Information & Data)

Horizontal Architecture Principles
(for Changeability)

Integration

Architecture
(Cooperation
Mechanisms)

Technical

Architecture
(Technical
Infrastructure)

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18

11

G niversivaT Future-Proof Software-Systems [Part 3A]

DRESDEN

: : Security Safety Performance System
Vertlcal ArChltecture Layers Architecture Architecture Architecture Management @
(Defense) (Accidents) (Real-Time) Architecture o

(Control)

Vertical -
Architecture - .o,
Principles for) o .
[L K] 1

Dependability g e 3

N Q)

c pe 3
... and other S ® 3 %
qua}ity < < g
attributes 3

sajdnpulld 31NPIHYIIY [PIIDA
sa|dpulld 24npPaIYRIY [PIYIIA

sa|dpulld 24npPaIYRIY [PIYIIA

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 12

TECHNISCHE

umvensnm Future-Proof Software-Systems [Part 3A]

DRESDEN

Avrchitecture Prﬁwalptes

for

Changeability

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 13

G niversivaT Future-Proof Software-Systems [Part 3A]

DRESDEN

Objective: Provide a set of Architecture Principles which lead to high changeability

Engineering Discipline: Principle-based Architecting

... we need to:
e understand,

e consistently apply,

« and strongly enforce

the architecture principles

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 14

TECHNISCHE
@ UNIVERSITAT
DRESDEN

ent_digital worker.html

:/ /www.telco2.net/blog/2007 /04 /telco_20_ev.

Future-Proof Software-Systems [Part 3A]

You will learn: Proven Architecture Principles
for the Construction of Future-Proof Software-Systems

DEFINITIONS

A

d/

. ’ | Fundamental insights :
Architecture — formulated as enforcable rules
Principles how future-proof software-systems

should be built

v

I

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18

15

TOTSTApa] MMM/ /-d13q

wod*

G niversivaT Future-Proof Software-Systems [Part 3A]

DRESDEN

Horizontal Architecture Layer Principles:

= Al: Architecture Layer Isolation

= A2: Partitioning, Encapsulation and Coupling
= A3: Conceptual Integrity

* A4: Redundancy

= AS: Interoperability

* A6: Common Functions

= A7: Reference Architectures, Frameworks and Patterns

* A8: Reuse and Parametrization

* A9: Industry Standards

* A10: Information Architecture

* Al1l: Formal Modeling

» A12: Complexity and Simplification

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18

Fundamental Principles:

12

for Changeability

(presented in this lecture)

16

wWooJagg 1 s/ /sdnyg

G niversivaT Future-Proof Software-Systems [Part 3A]

DRESDEN

The architecture principles are strongly worded rules, often using «never» or «always»

Are they always - without exceptions - to be followed?

... however:

http:/ /art.fritsahlefeldt.com

0D SSoIdpIoM So[l eIpoedalqiq/ /:sdig

Sometimes compromises are necessary
(more about later)

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 17

G niversivaT Future-Proof Software-Systems [Part 3A]

DRESDEN

Architecture Principle Al:

Architecture Layer Isolation

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 18

G niversivaT Future-Proof Software-Systems [Part 3A]

DRESDEN

Horizontal Architecture Layer Principles:

= Al: Architecture Layer Isolation

= A2: Partitioning, Encapsulation and Coupling
= A3: Conceptual Integrity

* A4: Redundancy

= AS: Interoperability

* A6: Common Functions

= A7: Reference Architectures, Frameworks and Patterns
* A8: Reuse and Parametrization

= A9: Industry Standards

* A10: Information Architecture

* Al1l: Formal Modeling

» A12: Complexity and Simplification

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 19

TECHNISCHE
@ UNIVERSITAT
DRESDEN

Business
Architecture

Application
Architecture

Information
Architecture

Integration
Architecture

Technical
Architecture

Safety <

Future-Proof Software-Systems [Part 3A]

Security N

o

Horizontal
= Architecture
Layers
— O
D;B & e Vertical Architecture Layers
I

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 20

G niversivaT Future-Proof Software-Systems [Part 3A]

DRESDEN

Key Idea: Business Architecture Layer [1] -
(Business Processes)
Always use
Isolation standardized,
Applications Architecture Layer technology-
(Functionality)
: independent,
Isolation
and product-
Information (Data) Architecture Layer :
) independent
(Information & Data)
: mechanisms
Isolation
: : for transfer of
Integration Architecture Layer d d
(Cooperation Mechanisms) ata an
: control
Isolation Dot
: : etween
Technical Architecture Layer
(Technical Infrastructure) layers

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 21

Horizontal Architecture Layers

ﬂ\ A
[2]
Business Cell X
Architecture Never
Application lmpl.emer.lt
Architecture functionality
Information from vertical
Architecture layers in the
horizontal
Integration)
Architecture ayers
Technical
Architecture
% .E’ TIG GE) [N N
ks 5 2 Vertical
n 9 Architecture
n Layers

A
7

TECHNISCHE
UNIVERSITAT
DRESDEN

Future-Proof Software-Systems [Part 3A]

[solation

Business Architecture Layer
(Business Processes)

[solation

Applications Architecture Layer
(Functionality)

Isolation

Information (Data) Architecture Layer
(Information & Data)

Isolation

Integration Architecture Layer
(Cooperation Mechanisms)

Technical Architecture Layer
(Technical Infrastructure)

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18

Breaking Layers

Direct access — bypassing the
standardized, technology-
independent mechanisms

¥

Result:

e« Technology dependence
 Vendor lock-in

 No standards-compliance

23

wod 0joydspoolsTerpawr/ /:dny

G niversivaT Future-Proof Software-Systems [Part 3A]

DRESDEN

Example: Misuse of SQL (1/2) Breaking Layers
[SQL = Structured Query Language]
Application Software @
o
g
Specific functionality 5
- ? from vendor A g
ISO/IEC 9075-1: [not in ISO 907 3] i
2011 ! /V
Information
E Standard Vendor
Technology | SQL extensions
Database \\ ______________________________________
Languages ey —— T T
SQL DBMS Vendor A w
Data Base Manje\gement System = 5
N~ 4 'g %
DB o
= &
Data Base g
_ !

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 24

G niversivaT Future-Proof Software-Systems [Part 3A]

DRESDEN

Example: Misuse of SQL (2/2) iy beta.jootix.com
[SQL = Structured Query Language]
Application Software @
o]
©
Q
2,
n Q.
] <
ISO/IEC 9075-1: l/
2011 V
Information > Standard Vendor A
Technology SQL extensions
Database S
Languages ||| T v
SQL B DBMS Vendor B T o
Data Base Management System . *5
= DBMS Product . LR
Change: ™ A & g
— Vendor B DB o
Data Base a be
_ —_— l —

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 25

G niversivaT Future-Proof Software-Systems [Part 3A]

DRESDEN

Business Architecture Layer NOT Breaking Layers
(Business Processes)
: Industry-standard,

Isolation technology-independent
Applications Architecture Layer mechanism
(Functionality)

Isolation ‘
Information (Data) Architecture La = r i]
(Information & Data) Technology independence

 Vendor indepence
I[solation e Full standards-compliance

Integration Architecture Layer
(Cooperation Mechanisms)
Isolation
Technical Architecture Layer
(Technical Infrastructure) Sy
/’l/ !\t\
© Prof. Dr. Frank J. Furrer: FPSS - WS 17/1§& o

G niversivaT Future-Proof Software-Systems [Part 3A]

DRESDEN

Example: CORBA-services to Web-services migration (1/2) NOT Breaking Layers
[CORBA = Common Object Request Broker Architecture]

Applications Inte.rface
Architecture Des'1gn.
A Industry Guidelines
Standard
< COREWC dicware > Interface Specification:
v : IDL (CORBA Interface
Integration Definition Language
Architecture
Technical -
Architecture Interface Repository:

Managed, reviewed repository
of the interfaces

(Technical Infrastructure)

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 27

G niversivaT Future-Proof Software-Systems [Part 3A]

DRESDEN

Example: CORBA-services to Web-services migration (2/2)

==
CORBA World Migration > Web-Services World
WSDL = Web Service Description Language
IDL In]t)eé*i?;:rel WSDL Interface
SN .
Guidelines Des‘,1gn.

Guidelines

Interface Specification: I frce Soecificats Highly

IDL (CORBA Interface ntertace Speci 1ca’F10n:

Definition Language WSDL (Web Service S— autorpated,
Definition Language low-risk
I L] o
L migration
‘amc‘oﬂ‘e“ ‘l'

Transformation /

Interface Repository:
Managed, reviewed repository
of the IDL interfaces

Interface Repository:
Managed, reviewed repository
of the WSDL interfaces

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 28

G niversivaT Future-Proof Software-Systems [Part 3A]

DRESDEN

Misplacing Vertical Functionality / /

. Access
Business Cont r ol
Architecture
: : Access
Application Cont r ol
Architecture
Information /
Architecture
Integration / /
Architecture
> > - O
Technical RS Tl | S B e
Architecture 3 5 KB
(D)
© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 0p)] 29

Guy) IniveRsivar Future-Proof Software-Systems [Part 3A]

DRESDEN

Misplacing Vertical Functionality Security
Functionality
«Access Control»
implemented in

Ul D, PW the applications

—

Application

Application

Application

Vs

AcL B
Application

m ‘ Application |

Application Application

e

‘ Customer Information / Financial Transaction Data |

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 30

TECHNISCHE

Gup) Oniversrrir Future-Proof Software-Systems [Part 3A]

Digital

Misplacing Vertical Functionality Certificate

Digital .
Certificate Security
enhancement:

Digital Ul D. PW
Certificate ' Digital
Digital am
Certificate) A Certificates
. |
D -7 uD Pw oD PW
ACL ‘ ACCe . “ 0 Application ACL
Application Application
D \
Acce — Application Application
AcL B
Application ~

Application

m ‘ Application |

e

‘ Customer Information / Financial Transaction Data |

> 5’000 Applications © Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 31

G niversivaT Future-Proof Software-Systems [Part 3A]

DRESDEN

Digital
Misplacing Vertical Functionality Certificate

Digital
Certificate

Digital
Certificate

Digital
Certificate

Access Control

Application

Application Application

Application

Application

Application

Application

Application ‘

‘ Customer Information / Financial Transaction Data

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 32

G niversivaT Future-Proof Software-Systems [Part 3A]

DRESDEN
Business Horizontal
Architecture (Business Processes) Layer
1 Interoperability
Applications
Architecture (Functionality)

g A r Industry
g v ~ Standards
g Information
g Architecture (Information & Data) -
7 1 (Formal i zed)
%) c .
: ; : — 8 Servi ces
e~ 8 Integration B
§ g Architecture (Cooperation Mechanisms) <
£) g
g E

E ;@ 2 = Technology

e é’ g & Product

& é % Independence

Technical
Architecture (Technical Infrastructure)

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 33

G niversivaT Future-Proof Software-Systems [Part 3A]

DRESDEN

Which are the mechanisms for layer-isolation ?

» Interlayer-access standards
e.g. SQL-standard between technical infrastructure and applications

> Middleware

Industry- or company-standard, stable middleware, such as an
Enterprise Service Bus

> ,Clean accesses®
No use of vendor- or product-specific additions or enhancements

» Strict separation of layer functionality
e.g. never implement technical functionality in the applications

» Strict, enforced programming guidelines

e.g. explicitly allow/restrict/forbid certain programming constructs
(Example: restrict stored procedures in DB-accesses)

» Open, long-term planning of the evolution of the infrastructure
Evolution cycles with upward compatibility, well communicated

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 34

TECHNISCHE
@ UNIVERSITAT
DRESDEN

Future-Proof Software-Systems [Part 3A]

https:/ /bigdatalondon.files.wordpress.com

Business Architecture Layer

Applications Architecture Layer

Information Architecture Layer

Integration Architecture Layer

Technical Architecture Layer

Middleware:

provides the
standardized
infrastructure
for the delivery
of services in a
distributed

environment

Additional Middleware Functionality:

» Load balancing (adaptive distribution of processing loads to servers)

» Business continuity (automatic mirroring of data and transactions)

» Monitoring (diagnostic and statistical information gathering, audit trail)

= Security infrastructure (access control to services, transport encryption)

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18

35

G niversivaT Future-Proof Software-Systems [Part 3A]

DRESDEN

Middleware Example: Enterprise Service Bus
(Large Company)

Monitoring
. . . . Interface
Applica- Applica- Applica- Applica- M ¢
tion tion tion tion s
System
Service Service
Exchanges Events Bulk Transfer Portals | Workflow Integration
[synchronous] [asynchronous] [asynchronous] [synchronous & Broker
asynchronous]
i Workflow i
Exchange Messaging . Integration
Infra- Infra- i\d?ssagmgt }’ofrt al " Infra- Broker
structure structure nfrastructure nfrastructure structure Infrastructure

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 36

Gu) iniversiTar Future-Proof Software-Systems [Part 3A]

Architecture Principle Al:
Architecture Layer Isolation

[1] Always use standardized, technology-independent, and product-independent
mechanisms for transfer of data and control between layers

[2] Never implement functionality from vertical layers in the horizontal layers
(especially no technical functionality in the applications)

Justification: Any reliance on specific technologies or product features generates
dependencies which (massively) reduce changeability.

Architecture layers should be able to evolve in their own pace without impacting the
other layers by force.

Vertical functionality should not be implemented in the applications (but accessed via
services), otherwise changes impact the application landscape.

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 37

Future-Proof Software-Systems [Part 3A]

Architecture Principle A2:

Partitioning, Encapsulation and
Coupling

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 38

G niversivaT Future-Proof Software-Systems [Part 3A]

DRESDEN

Horizontal Architecture Layer Principles:

= Al: Architecture Layer Isolation

= A2: Partitioning, Encapsulation and Coupling
= A3: Conceptual Integrity

* A4: Redundancy

= AS: Interoperability

* A6: Common Functions

= A7: Reference Architectures, Frameworks and Patterns
* A8: Reuse and Parametrization

= A9: Industry Standards

* A10: Information Architecture

* Al1l: Formal Modeling

» A12: Complexity and Simplification

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 39

TECHNISCHE

G inversioar Future-Proof Software-Systems [Part 3A]

DRESDEN

«Spaghetti-Architecture»

Control
Flow
Data
Flow
Database
Relations

Why-

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 40

TECHNISCHE
UNIVERSITAT
DRESDEN

The Power of ...

Future-Proof Software-Systems [Part 3A]

.The three devils of systems engineering are:
e Complexity,
e Change,
e Uncertainty”)
nonymous

Therefore, good engineering is:

1. Reduce complexity as much as possible (Simplify)
2. Limit the effects and propagation of changes

3. Contain the risks of uncertainty

The most powerful concepts to do so are:

1. Partitioning of the system (— smaller subsystems)
2. Encapsulation (— hide the inner workings)

3. Coupling (— stable interfaces and loose coupling)

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18

41

TECHNISCHE
@ UNIVERSITAT
DRESDEN

Definitions:

Future-Proof Software-Systems [Part 3A]

g

F%\ F F
F
% F F F
F
F

F
/
F

System \ F'\/@/

Functionality

8 Data
| _—»

/

A

Internal
dependency
(relationship)

B
e

boundary \

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18

»
»

External
dependency
(relationship)

42

TECHNISCHE
@ UNIVERSITAT
DRESDEN

Partitioning: Break up the system

into ,encapsulation units®

Future-Proof Software-Systems [Part 3A]

© Prof. Dr. Frank J. Furre® FPSS - WS 17/18

43

G niversivaT Future-Proof Software-Systems [Part 3A]

DRESDEN

Encapsulation: Hide the inner workings
of the ,encapsulation units®

© Prof. Dr. Frank J. Furr;:yFPSS -WS17/18 44

G niversivaT Future-Proof Software-Systems [Part 3A]

DRESDEN

Coupling: Enable controlled access to
the ,encapsulation units”

© Prof. BFFra . Furrey: FPSS - WS 17/18 45

G niversivaT Future-Proof Software-Systems [Part 3A]

DRESDEN

Partitioning Encapsulation Coupling
Simplest possible structure: Minimal complexity: Minimal rigidity:
 Highest cohesion Hiding « Weakest coupling
 Minimal redundancy Reduction to essentials « Managed dependencies
 Conceptual integrity Formalization Contracts

I
— Changeability

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 46

<
e
+~
—
@
A
)
&
(D}
+
n
>
“
(D)
—
@
B
Gy
o
N
G-
o
o
~
R
(D)
—
=
+~
=
o

UNIVERSITAT

TECHNISCHE
DRESDEN

Partitioning

://img.fotocommunity.com

Functionality

47

Partitions

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18

TECHNISCHE

Gup) Oniversrrir Future-Proof Software-Systems [Part 3A]

DRESDEN

= Decision criteria for good partitioning

Primary Rule:
 Respect cohesion
e Avoid redundancy

RULE

Other (secondary) criteria:

e Critical < non-critical (safety, confidentiality, ...)
 Real-time < non real-time

 Rate of change: high < low

 Governance (Owner, stakeholder, country, ...)

» Certified < uncertified

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 48

G niversivaT Future-Proof Software-Systems [Part 3A]

DRESDEN

Respect cohesion

Functional Cohesion: Assign functions to encapsulation units based on their cohesion

(,Dogs to Dogs, Cats to Cats®)

Partitions

Data/Information Cohesion: Assign data and information to encapsulation units based on their
similarity

(-Apples to Apples, Pears to Pears®)

Partitions

mRiotmDimhiamictmmeatEr PiiE DOIGALK J. Furrer: FPSS - W{17/18 2 34

TECHNISCHE

G inversioar Future-Proof Software-Systems [Part 3A]

DRESDEN

Example: Cohesion

Functional and Data/Information Cohesion: Assign functions and data to encapsulation units based on
least dependencies (= weak cohesion)

Y Y

Strong Cohesion: Weak Cohesion: Strong Cohesion:
C Team A , Ball Contact St Team B ,
» Trained Cooperation » Trained Cooperation
* Mutual Understanding * Mutual Understanding

« Common Objective Common Objective

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 50

TECHNISCHE
@ UNIVERSITAT
DRESDEN

Example: Automotive Partitioning (1/2)

Future-Proof Software-Systems [Part 3A]

Audio System

Loud-
speaker
Amplifier /
Tuner CD- MP3 iPod
Player
Dials & Control
Controls Panel

Englne Engine
Block
Motor Fuel
Control Injection
Cylinder
Spark
Plug
Camshaft
Battery Alternator /

|

High cohesion — good partitioning

|

High cohesion — good partitioning

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18

51

TECHNISCHE
@ UNIVERSITAT
DRESDEN

Example: Automotive Partitioning (2/2)

Future-Proof Software-Systems [Part 3A]

System B o System A
attety \
\\ Motor Loud-
. Control speaker
Amplifier - /
7 T MP3
ue
Tuner CD- Injection N Alternator ————__\
Player I ‘
\ F / \ iPod
i Engine
T e |——\
Controls [— Control
Spark /4 Panel
Plug
[/ // Camshaft
Cylinder /

Low cohesion —
bad partitioning

—

J

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18

!

Low cohesion —
bad partitioning

52

G niversivaT Future-Proof Software-Systems [Part 3A]

DRESDEN

Primary Rule:
 Respect cohesion
e Avoid|redundancy :

Functional redundancy

Redundancy:!

Partitions

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 53

<
o)
+
—
@
A
(/)]
&
(D}
+
n
>
0
(D)
—
S
&=
o
n
Gy
o
o
~
R
(D)
—
=
+~
=
o

Y

TECHNISCHE
DRESDEN

L L
(a
- D
O

Redundancy:!

oD
.ww
L oS
5 O3
ARk
o 8,
T v O
= $ 5
s <
POO

Data redundancy

Partitions

54

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18

TECHNISCHE
@ UNIVERSITAT
DRESDEN

System Extension: Partitioning

el e R N 5!

Future-Proof Software-Systems [Part 3A]

Note:

Breaking partitions
often occurs during
requirements phase

Fﬁ/

© Pr&f. Dr. Frank J. Furrer: FPSS - WS 17/18

55

TECHNISCHE
UNIVERSITAT

DRESDEN

Future-Proof Software-Systems [Part 3A]

1.

Partitioning Rules for Extensions

their ,natural® relationships (,Apples to apples, pears to pears®)

Assign the new functionality and data to existing encapsulation units according to their cohesion, i.e. respecting

. Assign the functionality and data to existing encapsulation units according to their cohesion, i.e. minimize the
number of external dependencies — especially tightly coupled dependencies

architecture

Keep functionality with the following properties:

Critical << non-critical (safety, confidentiality, ...)

Create a new encapsulation unit whenever the required functionality or new data does not fit into the existing

Real-time < non real-time

Rate of change: high < low

Governance (Owner, stakeholder, country, ...)
Certified < uncertified

WARNING:

Never implement functionality or data
following the ,least effort” route!

User interface layer < Process layer < Business logic layer
Specific functions & data < Common (X-system) functions

in separate encapsulation units

& data

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 56

Gu) iniversiTar Future-Proof Software-Systems [Part 3A]

Partitioning, Encapsulation and Coupling: Domain Model

System-of-Systems:
* Definition: Mission Engineer
* Concepts: Service Contracts

Domain Model:
* Definition: Business Engineer
* Concepts: Semantic Model

System:
* Definition: Software Architect
* Concepts: Interface Contracts

Component:
* Definition: Software Engineer
* Concepts: Interface Contracts

Module:

* Definition: Programmer

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18

The domain model is a
strong instrument to
correctly assign
functionality and data
and to avoid unmanaged
redundancy

* Concepts: Programming Language Constructs

57

TECHNISCHE

G inversioar Future-Proof Software-Systems [Part 3A]

DRESDEN

Domain model:
Conceptual model defining the entities, their attributes,
roles, relationships, and constraints that form
an application domain

A domain model does not describe solutions to problems

The domain model represents the (business) concepts and their relationships
in the application domain. A domain model shows a structural view of the
domain.

A domain model is used to verify and validate the understanding of the
application domain among various stakeholders (e.g. business < IT) and to
document the evolution of the application domain

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 58

Guy) IniveRsivar Future-Proof Software-Systems [Part 3A]

DRESDEN

Example: Domain Model for a Financial Institution This domain contains
all applications for the
5: Communications & Collaboration communication with

Client Communication (CHA) Street Side Interfaces (SSI) eXChangeS , Clearing

etc.
Business Partner Applications (BPA) Enterprise Content Management (ECM) Financial Instruments, Research & Market Data (FIN) \I

Payments
(17:9¢]

Trading
(TRA)

Single Accounts
(SAC)

Settlement and Clearing

Regulatory, Risk and Liquidity

4: Cash and Asset Operations

2: Finance, Investment & Sales

[=T4]
c
)
£
o
Q.
()]
o
©
c
© ~
[=T4] SCL 13}
& (SCL) £
= g
e Product Control ; 7
'E (PRC) Custody = 8
o (CDY) ce
o 9]
~ ?
[=T4] ja}
o0
g £ Corporate Actions S
c B
s I (COA)
< = 7: Enterprise Common Services
o i3]
g
g Logistics Accounting Control Basic Facilities
= (LOG) (AOC) (BAS)

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 59

TECHNISCHE
@ UNIVERSITAT
DRESDEN

Example: Use of the Financial Institution Domain Model (1/3):

http:/ /www.nzz.ch /aktuell /wirtschaft /wirtschaftsnachrichten

Future-Proof Software-Systems [Part 3A]

March 18, 2010:

The Foreign Account Tax Compliance Act (FATCA)
requires foreign financial institutions to report to
the U.S. Internal Revenue Service (IRS) about their
American clients (to combat offshore tax evasion)

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18

Massive IT-
Problem!

60

Guy) IniveRsivar Future-Proof Software-Systems [Part 3A]

DRESDEN

Example: Use of the Financial Institution Domain Model (2/3):

5: Communications & Collaboration

Client Communication (CHA) Street Side Interfaces
Business Partner Applications (BPA) Enterprise Content Management (ECM) Financial Instriz

Payments
// (PAY)

!

Trading Single Accounts
(TRA) (SAC)

Settlement and Clearing
(SCL)

Product Control
(PRC)

2
°
g
—
e
<
3
R
2
&,
2
[©]
S
5
o
&

(cus)

2: Finance, Investment & :

4: Cash and Asset Operation

Customer & Partner

Corporate Actions
(COA)

7: Enterprise Common Services

6: Accounting, Controlling and Reporting

Logistics Accounting Control Basic Facilities
(LOG) (AOC) (BAS)

Financial Accounting

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 61

TECHNISCHE
@ UNIVERSITAT
DRESDEN

Example: Use of the Financial Institution Domain Model (3/3):

Future-Proof Software-Systems [Part 3A]

5: Communications & Collaboration

Client Communication (CHA)
Business Partner Applications (BPA)

Enterprise Content Management (ECM)

oo
§=
=)
|
o
Q.

6: Accounting, Controlling an

o0
g
£

[=}

=]

o

(8]

(8]
<
3

8]

[=}

o]
£
[

2: Finghce, Ipvgstment & K

Payments
// (PAY)
%)

Trading

Product Control
(PRC)

Street Side Interfacey

Financial Instriu-e

Single Accounts
(SAC)

7: Enterprise Common Services

Logistics
(LOG)

Accounting Control
(AOC)

Basic Facilities
(BAS)

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18

Customer & Partner

(cus)

62

TECHNISCHE

Gup) Oniversrrir Future-Proof Software-Systems [Part 3A]

DRESDEN

Example: Avionics Domain Model (1/3)

VHF Navigation Receiver
(VNR)

Global Positioning System
(GPS)

VHF Navigation Receiver
(VNR)

Inertial Navigation System
(INS)

Air Data Computer
(ADC)

Engine Data
(ED)

Flight Management

(FMS)

Autopilot Pitch Channel
(APC)

Autopilot Roll Channel
(APR)

Auto-Throttle
(AT)

Flight Data Storage
(FDS)

Flight Control Display
(FCD)

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18

63

G niversivaT Future-Proof Software-Systems [Part 3A]

DRESDEN

Example: Avionics Domain Model (2/3)

atellit/

http://www.hyperraum.tv/tag/galileo-s

Change Request:
U.S. Global Positioning System (GPS)

— European Positioning System (Galileo)

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 64

TECHNISCHE
UNIVERSITAT Future-Proof Software-Systems

DRESDEN

http:/ /www.hyperraum.tv/tag/galileo-satellit/

Example: Avionics Domain Model (3/3)

VHF Navigation Receiver

(VNR)

European Positioning System

Global Positioning System (Galileo)

(GPS)

Autopilot Pitch Channel

VHF Navigation Receiver (APC)
(VNR)
Flight Management Autopilot Roll Channel
Inertial Navigation System (FMS) (APR)
INS
(INS) Auto-Throttle
Air Data Computer (AT)
(ADC)
Engine Data Flight Data Storage Flight Control Display
(ED) (FDS) (FCD)

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 65

G niversivaT Future-Proof Software-Systems [Part 3A]

DRESDEN

Encapsulation

PRIVATE PROPERTY
TRESPASSING

I g UoSIoUdS / /7Ny

SOLICITING
LOITERING

Sp 8ioquionu

The inner workings of the encapsulation unit are hidden from the outside

All accesses are only allowed through well-specified (formally defined) interfaces

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 66

Gu) iniversiTar Future-Proof Software-Systems [Part 3A]

System Extension: Encapsulation

4 Refactoring
(New implementation or new technology)

Refactoring must not modify interfaces

Extension
(New functionality or new data)

N
7

Extensions should leave interfaces

unchanged, upwards-compatible or
introduce new interfaces -

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 67

G niversivaT Future-Proof Software-Systems [Part 3A]

DRESDEN

System Extension: Encapsulation

Interfaces are strong instruments to maintain and improve changeability.
Interfaces are at the heart of loose coupling and reuse capability

System System
Element < > Element
A B

Semantic Interoperability <— defines the meaning of the information

ﬁ

Syntactic Interoperability <— defines the structure of the data

ﬁ

Technical Interoperability <— communications infrastructure

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 68

G niversivaT Future-Proof Software-Systems [Part 3A]

DRESDEN

System Extension: Encapsulation Rules for Extensions

1. Keep the interfaces coherent, i.e. group only functionality and data into one interface which belong together
(from a business point of view)

2. Maintain an adequate granularity of interfaces (in the number of functions offered)

3. Refactoring must not change the interfaces. Extensions should offer upwards-compatible or new interfaces —
for both the provider and the consumer (beware of functional redundancy!)

4. Define the interfaces as precisely as possible, both syntactically and semantically (preferably by formal
modeling and interface contracts)

5. Keep the interfaces technology-independent

6. Explicitly specify the context of interface use (preconditions, postconditions)

7. Carefully maintain an interface repository

8. Avoid duplication or overlap of interface-functionality between different interfaces (redundancy!)
WARNING:

Carefully control and review the introduction of new interfaces into your system !

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 69

G niversivaT Future-Proof Software-Systems [Part 3A]

DRESDEN

Example: Syntactically and semantically upward-compatible interface

Precise meaning
(Ontology, taxonomy)

<xs: conpl exType nanme="Request S| ot Type" >

<xs: sequence> \ ?é
<xs: el ement nane="Sl ot St at us" type="dss: Sl ot Stat us"/ > I
<xs: el ement nane="Busi nessUnit" t ype="cs: busi nessUni t Type"/ > (-
<xs: el ement nane="HashtreeUUl D' t ype="cs: uui d20AsChar Type"/ > 5)5
<! 1
<xs: el ement nane="HashtreeRoot Val ueLeft" type="xs: base64Bi nary"/ > =
<xs: el ement nane="HashtreeRoot Val ueRi ght" type="xs: base64Bi nary"/ > * 2
<xs: el ement nane="HashtreeCheckLeft Val ueLeft" type="xs: base64Bi nary"/ > >
<xs: el ement nane="HashtreeCheckLeft Val ueRi ght" type="xs:base64Bi nary"/> (D)
<xs: el ement nanme="HashtreeCheckRi ght Val ueLeft" |type="xs:base64Bi nary"/> ﬂ
<xs: el ement naneg"HashtreeCheckRi ght Val ueRi ght" |t ype="xs: base64Bi nary"/ > O

</ xs: sequence 8

</ xs: conpl exType> Q,

Upward-compatible interface extension:

Any consumer which does not require the 2 new values ignores
them and does not have to be changed!

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 70

G niversivaT Future-Proof Software-Systems [Part 3A]

DRESDEN

System Extension: Coupling

System A

Coupling causes dependencies:
- Functional dependencies
 Temporal dependencies

» Technical dependencies
 Semantic dependencies

» Operational dependencies

T

Dependencies exist both during
development time and during
run-time

System B

Coupling:

Transfer of information or control

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18

71

/30100 PUI-UI00E MMM [/7SA1T

G niversivaT Future-Proof Software-Systems [Part 3A]

DRESDEN

Coupling:

Each dependency reduces changeability

Why?
* Any change in a system may impact the dependent systems and also force changes
* For any change in your system you may be constrained by the dependent systems

How to minimize dependencies:

* Functional dependencies: Implementation-independent contracts with explicit context

» Temporal dependencies: Coupling as loosely as possible

» Technical dependencies: Isolate architecture layers (Architecture Principle)

» Semantic dependencies: Precisely align semantics (Conceptual Integrity, Ontology-matching)

» Operational dependencies: Explicitly identify and manage

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18

72

[qdeisdep /wod puliey Mam / /-dpg

wod swmy'sqd //:sdnyg

G niversivaT Future-Proof Software-Systems [Part 3A]

DRESDEN
Example: mechaniom | dependency | dependency | dependency | dependency | dependency
COupling Data sharing:
mechanisms Memory high medium high low medium
DB high medium high low medium
Synchronous:
CORBA n.a. high high low high
DCE/RPC n.a. high high low high
COM/DCOM high high high low high
Java/RMI high high high low high
Asynchronous:
Message n.a. low low low medium
passing (MQ)
Web services low low low low medium
Time-slotted:
TTA n.a. high medium low medium
FlexRay n.a. high medium low medium
Transaction Monitor:
Java (Oracle) high high high medium high
Java (Arjuna) high high high medium high
IMS (IBM) high high high medium high

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 73

TECHNISCHE

G inversioar Future-Proof Software-Systems [Part 3A]

DRESDEN

System Extension: Coupling Rules for Extensions

1. Minimize and standardize the number of coupling mechanisms which can be used by the
developpers

2. Rely on standards, do not use product-specific features for coupling mechanisms

3. Couple as loosely as the application allows (preferably asynchronous, by message queuing)

4. Separate semantic issues as much as possible from the coupling mechanism

WARNING:
Beware of unnecessary tight coupling!

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 74

G niversivaT Future-Proof Software-Systems [Part 3A]

DRESDEN

System Extension: Coupling via Contracts

Coupling:
Transfer of information or control

http:/ /www.yellowjacketdisposal.com

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 75

Future-Proof Software-Systems [Part 3A]

TECHNISCHE
@ UNIVERSITAT
DRESDEN

Are there other partitioning rules?

Hierarchical Partitioning
(Dominant Quality Property)

http:/ /www.brickbybrickinvesting.comm

Level 1 Very High Safety
Performance
A\
HPC Standard . Non safetv-
LCVCI 2 (High Performance (Standard Performance SafetY‘Crltlca]- cge 1y
Computing) Computing) critica
Reduced Full Full Full
Architecture Architecture Architecture Architecture
Principles Principles Principles Principles

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18

76

TECHNISCHE

G inversioar Future-Proof Software-Systems [Part 3A]

Architecture Principle A2:

Partitioning, Encapsulation & Coupling

1. Partition the functionality and data into encapsulation units according to their cohesion
(thus minimizing dependencies)

2. Isolate the encapsulation units by strictly hiding any internal details. Allow access to
functionality and data only through stable, well specified interfaces governed by contracts

3. Minimize the impact of dependencies between the encapsulation units by using adequate
coupling mechanisms

Justification: These 3 rules minimize the number and the impact of dependencies. The
resulting system therefore offers the least resistance to change, because any change affects

the smallest possible number of system elements. A low resistance to change corresponds to
high changeability.

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 77

G niversivaT Future-Proof Software-Systems [Part 3A]

DRESDEN

Textbook — Textbook —
Luke Hohmann: Doug Kaye:
Beyond Software Architecture - Creating Loosely Coupled - The Missing Pieces of Web
and Sustaining Winning Solutions Services
Addison-Wesley Professional, USA, 2003. RDS Press, California, USA, 2003. ISBN 978-1-
ISBN 978-0-201-77594-5 881378-24-2

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 78

TECHNISCHE

Y
DRESDEN

Future-Proof Software-Systems [Part 3A]

Architecture Principle A3:

Conceptual Integrity

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18

79

G niversivaT Future-Proof Software-Systems [Part 3A]

DRESDEN

Horizontal Architecture Layer Principles:

= Al: Architecture Layer Isolation

= A2: Partitioning, Encapsulation and Coupling
= A3: Conceptual Integrity

* A4: Redundancy

= AS: Interoperability

* A6: Common Functions

= A7: Reference Architectures, Frameworks and Patterns
* A8: Reuse and Parametrization

= A9: Industry Standards

* A10: Information Architecture

* Al1l: Formal Modeling

» A12: Complexity and Simplification

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 80

G niversivaT Future-Proof Software-Systems [Part 3A]

DRESDEN

Wheel rotation sensor gystems developpers How do we assure that all Velocity
stakeholders have a common
and correct understanding?

Rotation rate

Book
Stock price L
Software-System Gravitation constant
_ o~ mm,
F, = G—r2
Stopping distance
Car S{‘pﬂﬁv\g Aistance R

~

I thinking l brakin

distance d‘S{-ﬁﬂCe_

Legal system

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 81

G niversivaT Future-Proof Software-Systems [Part 3A]

DRESDEN

All systems are based on concepts

All systems use a terminology

All systems have models (implicit or explicit)

https://thumb9.shutterstock.com

Divergence between

stakeholders
Definition "system" 769’000°000
Definition «car" 321’000°000
Definition «velocity" 129°000°000
Definition «gravitational constant” 296’000 11.11.2017

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 82

TECHNISCHE

G inversioar Future-Proof Software-Systems [Part 3A]

DRESDEN

C@,

Conceptual integrity is the quality of an organization and its IT—systemsy

where all the concepts, the terminology and the models, including their
relationships with each other are unambiguously defined,
applied and enforced in a consistent way

http:/ /architecture.typepad.com/architecture blog/2011/10/the-importance-of-conceptual-integrity.html

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 83

ONVERSITAT Future-Proof Software-Systems [Part 3A]

Conceptual integrity is the quality of an organization and its IT-systems,
where all the con erminology and the models, including their
relationships with each other are unambiguously defined,

applied and enforced in a consistent way

http:/ /architecture.typepad.com/architecture_blog/2011/10/the-importance-of-conceptual-integrity.html

DEFINITIONS

L1

Concept are the fundamental building blocks of our thoughts and beliefs.
They play an important role in all aspects of cognition, communications and

systems engineering.
https:/ /en.wikipedia.org/wiki/Concept

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 84

o AI030€joS Wi MMM / /7SATIY

TECHNISCHE

UNIVERSITAT Future-Proof Software-Systems [Part 3A]

DRESDEN

In cyber-physical systems:
* Risk

 Accidents

Lack of conceptual integrity leads to:
 Misunderstandings of stakeholders
e Diverging implementations
 Unsatisfied users

 Unnecessary development and maintenance effort

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18

85

G niversivaT Future-Proof Software-Systems [Part 3A]

DRESDEN

FI0omuao-oaqnl mmm / /:dIg

Creating, maintaining, and enforcing conceptual integrity is mandatory in IT systems

How can we ensure conceptual integrity?

... with a solid model foundation « Taxonony
« Ont ol ogy

 Donmai n nodel
 Busi ness obj ect nodel

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 86

G niversivaT Future-Proof Software-Systems [Part 3A]

DRESDEN

Business Business Business Cooperation Cooperation
Unit A Unit B Unit Z Partner 1 | ™ | Partner N || Horizontal
*| Conceptual
t | Integrity
System-of-Systems:
Cooperating systems
Concepts,
Terminology.
Models

System:
Application Landscape

Component

Naming conventions,

. Module
Vertical A Programming guidelines,
+| Conceptual
© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 7

Integrity 87

v
v
0

£
v
=

(- o]

Implementation Architecture

TECHNISCHE
UNIVERSITAT
DRESDEN

Future-Proof Software-Systems [Part 3A]

Conceptual Integrity Definition

e Terminology

« Domain Model Expertise

* Business Object Model Expertise

Conceptual Integrity Formalization
e Taxonomy/Ontology
« Domain Model

 Business Object Model

Conceptual Integrity Implementation
 Code
 Documentation

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18

Review

<

JUQUWIQDIOJUA]
AJ11393u] ren3dadouo)

<

DRESDEN

G niversivaT Future-Proof Software-Systems [Part 3A]

Conceptual Integrity Definition

e Terminology

« Domain Model Expertise

* Business Object Model Expertise

Business

oo upoI erpawt/ /sdny

Interviews
Workshops
I : : Busi ness
Ter m nol ogy Domai ns bj ect s

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 89

TECHNISCHE
@ UNIVERSITAT
DRESDEN

Future-Proof Software-Systems [Part 3A]

Architecture

Conceptual Integrity Formalization

A

 Taxonomy/Ontology
« Domain Model
 Business Object Model

Terminology
Definition

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18

90

WO SWolsAsxIeds / /g

Gu) iniversiTar Future-Proof Software-Systems [Part 3A]

Architecture

\| Container for all
Domain Trading (TRA) Trading Y\‘ functionality and data used

(TRA) in the trading operations of
the bank

All domains = Full compartimentalization of the total bank functionality and data

Domain model:
Conceptual model defining the entities, their attributes,
roles, relationships, and constraints that form
an application domain

A domain model does not describe solutions to problems

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 91

Guy) IniveRsivar Future-Proof Software-Systems [Part 3A]

DRESDEN

Example: Domain Model for a Financial Institution This domain contains
all applications for the
5: Communications & Collaboration communication with

Client Communication (CHA)

Street Side Interfaces (SSI) exchanges, clearing
\I etc.
Enterprise Content Management (ECM) Financial Instruments, Research & Market Data (FIN)

This domain contains
\‘ payments

Business Partner Applications (BPA)

all applications for the

Trading
(TRA)

Single Accounts
(SAC)

Settlement and Clearing
(SCL)

Product Control
(PRC)

Regulatory, Risk and Liquidity

Custody
(CDY)

4: Cash and Asset Operations

(cuUs)

2: Finance, Investment & Sales

Customer & Partner

Corporate Actions
(COA)

This domain contains
all applications and
information used in

Logistics Accounting Control Basic Facilities many other domains

—
LOG] AOC BAS 1
(LOG) (a0C) (BAS) \| (Common functions)

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 92

7: Enterprise Common Services

6: Accounting, Controlling and Reporting

fol)
g
£
[=}
3
o
Q
O
<
I
O
[=}
]
g
[

G niversivaT Future-Proof Software-Systems [Part 3A]

DRESDEN

(]
| .
=
™
)
(]
L —
- Business Domain Objects
| .
< . /\ Customer
Wheel rotation sensor

Wheel Rot ati onSensor Cust oner
Properties —+|Rot ati onRate Name

, Adr ess

ReadRot at i onRat e
Methods | Nat i onal ity

Cal i brateZero

Add/ Del et e/ Ar chi ve Cust oner
Read Properties
Updat e Properties

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 93

G niversivaT Future-Proof Software-Systems [Part 3A]

DRESDEN
= OrganizationEntity = Agreement | obligates/enites (g Party
eBO obligates/entitles eBO eBO Refinement
7 7 =
=] [9]
g. manages aggregates g:- z g é § %
c L] I} Q 3. @
i} g5 4 = |& 8
I _ =9 a] =] Q s
a == AgreementPortfolio 23 e > & s 3
E eBO g. ;
= = Request
Example: _
o
. . c
Financial ofers P =
o
.) — - 3
Business = Product | conans = TermCondition | |2 g
Stanaart [)
. eBO eBO © @
Object Model \
%]
=4
(]' /2) 2 provides 2,
% rules for g
p=1
1’4 .
5 = Operation = EconomicResource
2 g eBO Transfers/
@ @ eBO
a e transforms
3
3.
<
& produces embodies
= Financiallnstrument
eBO
= Document/Report
eBO

© Prof. DUT. TTUOITN . TUTTCT . TT JJ v 517/18 94

TECHNISCHE
@ UNIVERSITAT
DRESDEN

Example:
Financial

Business
Object Model

(2/2)

Future-Proof Software-Systems [Part 3A]

Refinement

refinement

%PartnerDossierContext
dBO

AN

= Agreement

___ [

refinement

Partner

Dossier

= PartnerAgreement

dBO

dBO

_ =
Enterprise 80
Level
Domain (= PartnerPartnerContext
Level a0
= Segmentation
dBO \
= PartnerGroup %
dBO
= Instruction
dBO
= Address

= Adressinglnstruction

= Servicing

= Contact

78NN

Compliance

VariousData

dBO

dBO

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18

95

G niversivaT Future-Proof Software-Systems [Part 3A]

DRESDEN

Architecture Principle A3:
Conceptual Integrity

1. Define all the concepts, the full terminology and models (including their relationships and
relevant properties) precisely (whenever possible formally)

2. Draw the boundary of the system in which the definitions apply
3. Consistently and consequently use the definitions in all areas of the system
4. Strictly enforce the correct use of the definitions

S. When cooperating with systems outside the boundary, match the concepts and the
terminology between all systems and interfaces

all phases of systems engineering

Justification: Misunderstandings between stakeholders lead to unsatisfactory IT-systems

with divergence in many areas. Misunderstandings of all sorts must therefore be eliminated in

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 96

G niversivaT Future-Proof Software-Systems [Part 3A]

DRESDEN

Textbook — Textbook —
Frederick P. Brooks:
The Mythical Man-Month - Essays on Antoni Olivé:
Software Engineering Conceptual Modeling of Information Systems
Addison-Wesley Longman (1975), New Edition, Springer-Verlag, Germany, 2007. ISBN 978-3-
1995. ISBN 978-0-201-83595-3 540-39389-4

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 97

G niversivaT Future-Proof Software-Systems [Part 3A]

DRESDEN

Petra Drewer, Klaus-Dirk Schmitz:
Methoden - Werkzeuge

978-3-6625-3314-7

Textbook —

Terminologiemanagement - Grundlagen -

Springer Vieweg Verlag, Germany, 2017. ISBN

Textbook —

Peter Herzum, Oliver Sims:

Business Component Factory — A
Comprehensive Overview of Component-
Based Development for the Enterprise

John Wiley & Sons Inc., USA, 2000. ISBN 978-
0-471-32760-8

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 98

G niversivaT Future-Proof Software-Systems [Part 3A]

DRESDEN

Architecture Principle A4:

Redundancy

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 99

G niversivaT Future-Proof Software-Systems [Part 3A]

DRESDEN

Horizontal Architecture Layer Principles:

= Al: Architecture Layer Isolation

= A2: Partitioning, Encapsulation and Coupling
= A3: Conceptual Integrity

* A4: Redundancy

= AS: Interoperability

* A6: Common Functions

= A7: Reference Architectures, Frameworks and Patterns
* A8: Reuse and Parametrization

= A9: Industry Standards

* A10: Information Architecture

* Al1l: Formal Modeling

» A12: Complexity and Simplification

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 100

G niversivaT Future-Proof Software-Systems [Part 3A]

DRESDEN

Redundancy in an IT-system is — in most cases —
poison for the structure and for many quality

properties of an IT-system

” \Ey
Definition:

Redundancy: The duplication of functionality or data as

a whole or in parts

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 101

G niversivaT Future-Proof Software-Systems [Part 3A]

DRESDEN

Redundancy Classification:

Requirements redundancy: The same or similar requirements are
stipulated in different documents

Specification redundancy: Functional or data overlap in the
specifications

Functional redundancy: The same or similar function is implemented
several times in the IT-system

Data redundancy: Same elements of data are stored in different ! \
places and have different, unsynchronized sources o

Interface redundancy: Interface functionality is implemented in more
than one interface or overlaps interfaces

Code redundancy: The same or similar code-sequence is used in

several programs

Implementation redundancy

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 102

G niversivaT Future-Proof Software-Systems [Part 3A]

DRESDEN

Example: Different applications work with inconsistent data (data redundancy)

Information -
(Content) 8) Multiple, uncoordinated
& N\ . o —— acquisition of the same
Infé)grlll?ctéon Infggrlillitéon = information
o . @
mat eri al 1 nconsi st ency g .
O
c
Data Data _ Redundant, often
o — ’
Source Source c | inconsistent data
= Snap-
- shot
A 1° - . I \V J/ o
. |) E—— | Avolicati Applications or users
! Application Application ppUlcatlon — work with different,
User User f‘er inconsistent data
Bal ance: Bal ance:
2’910 € 3090 €

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 103

Guy) IniveRsivar Future-Proof Software-Systems [Part 3A]

DRESDEN

- N\
Information Information
Source Source

Synchronization/Consistency

A4

Master Data
Source

The data is generated,
— synchronized,

and propagated in a

consistent way

e |
P L Application | | Application Applications or users

1 Application))
ppUser User User work with consistent data

A 1°

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 104

TECHNISCHE

G inversioar Future-Proof Software-Systems [Part 3A]

DRESDEN

... on the other hand:
In some cases we need redundancy !

- disaster recovery (backup)

* high availability (faults & failures)

 load-balancing (multiple applications on multiple servers)

« performance requirements (parallel processing, DB accesses)
e geographical distribution (worldwide operations)

e electronic archiving

« 3rd party software (sometimes difficult)

 safety (3-way voting)

* etc.

Wanted redundancy = Managed redundancy

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 105

TECHNISCHE

G inversioar Future-Proof Software-Systems [Part 3A]

DRESDEN

Example: Transaction Data Base Mirroring

Z
N

Main Computing System

E&aetion Dam

Interactive
User

35 km

= Managed Redundancy

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18

v

BackupComputing System

Backup
Transaction Data Base

Real-time copy
«Mirroring»

106

G niversivaT Future-Proof Software-Systems [Part 3A]

DRESDEN

... what is the solution?

Manage redundancy ! > Managed redundancy

Managed Unmanaged

redundancy redundancy
Known and Yes NO!
wanted (if valid reason)

Unknown or ? NO! /\
unwanted Qmmmus

Managed redundancy definition: A 4

« There is only exactly one source for the functionality and for the data (both during
development time and during run-time)

 All redundant copies must be materially and time-wise synchronized (also partial
copies)

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 107

TECHNISCHE

G inversioar Future-Proof Software-Systems [Part 3A]

DRESDEN

Is the management of redundancy difficult?

Yes!

(X X J very

You need specific policies, processes and
tools to successfully manage redundancy

http: / /www.shopclues.com /rubiks-cube-en-2.html

= and a strong awareness!

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 108

G niversivaT Future-Proof Software-Systems [Part 3A]

DRESDEN

Redundancy is very difficult to identify
and to eliminate — especially in large,
complex IT systems

S0tIdoA AIoes/ /:dnyg

i

The redundancy-ghost
e You don’t hear it
* You don’t see it

Unmanaged redundancy infiltrates the system via:
 Requirements

» Specifications

« Architecting + Design Decisions

e Implementation (Evolution)

« Maintenance (adaptive and corrective)

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 109

TECHNISCHE

G inversioar Future-Proof Software-Systems [Part 3A]

DRESDEN

ville.c

The redundancy-ghost
... but you see its impact !

http:/ /gallery.yoprice

During:

« Operations: inconsistent data & diverging functionality
 Refactoring/Rearchitecting: Hidden redundancy

« Evolution (Extensions): Changes in multiple parts

« Maintenance (Corrective): «<search & hide»

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 110

G niversivaT Future-Proof Software-Systems [Part 3A]

DRESDEN

Example: Code-Redundancy (1/2)

Unwanted,
unmanaged

Program B redundancy

Program A

Copy & Paste
Code Sequence | mm———————————————) Clutle Soguenes
XyZ
Xyz
Copy & Paste

—

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 111

G niversivaT Future-Proof Software-Systems [Part 3A]

DRESDEN

Example: Code-Redundancy (1/2)

Unwanted,
unmanaged

Program B redundancy

Program A

| ong forgotten

Xyz i

[

I Code Sequence
Code Sequence | T) q

[

Bug
remains
in the
system

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 112

TECHNISCHE
@ UNIVERSITAT
DRESDEN

Future-Proof Software-Systems [Part 3A]

Can we avoid the generation of unmanaged redundancy?

Tool 1: Domain-Model

Functional
Group B

New

Requirements

Data Group S

Functional
Group D
Data Group T
T | o
e s

Functional
Group C

The domain
model
unambiguously
assigns data
and
functionality to
one and only

one part

Domain-Model
Functional
Group A
‘ Data Group R
4_

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18

113

TECHNISCHE

Gup) Oniversrrir Future-Proof Software-Systems [Part 3A]

Can we avoid the generation of unmanaged redundancy?

Tool 2: Configuration Management

4)

The
configuration
management
data base
records and
manages all
wanted
redundancy
— Managed
redundancy

Config Data

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 114

G niversivaT Future-Proof Software-Systems [Part 3A]

DRESDEN

Can we avoid the generation of unmanaged redundancy?

Tool 3: Reviews

IdoA AIa[es/ /:dny

Redundancy ghost
New
Requiremen Development Process
(Specificatio

Check redundancy generation
(Reviews, Model-, Code-Checkers, ...)

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 115

0
5 4
w.ms o
2c¢
< O g
S8 g
o0
g 0 <
O g
Y~

http://www.duden.de

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18

<
o)
L)
—
@
A
)
&
(D}
-
n
>
0
(D)
—
g
&=
©)
n
Gy
©)
©)
~
R
o
|
=
+~
=
o

Existing unmanaged redundancy must be identified and eliminated

Y

TECHNISCHE
DRESDEN

Tool 4: Rearchitecting/Refactoring

Gu) iniversiTar Future-Proof Software-Systems [Part 3A]

- Architecture Principle A4:

Redundancy

1. There is only exactly one source for the functionality and for the data (both during
development time and during run-time)

2. All redundant copies must be content-wise and time-wise synchronized (thus
avoiding divergence)

3. The creation of unmanaged redundancy is not allowed under any circumstances.
Existing unmanaged redundancy must be identified and eliminated in due course

4. Managed redundancy is allowed if there is a good (documented) reason

Justification: Any unmanaged redundancy may cause divergence and thus severely

impact quality properties of the system’s output. Any unmanaged redundancy will
negatively impact the maintenance and evolution of the system

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 117

G niversivaT Future-Proof Software-Systems [Part 3A]

DRESDEN

Architecture Principle A5:

Interoperability

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 118

G niversivaT Future-Proof Software-Systems [Part 3A]

DRESDEN

Horizontal Architecture Layer Principles:

= Al: Architecture Layer Isolation

= A2: Partitioning, Encapsulation and Coupling
= A3: Conceptual Integrity

* A4: Redundancy

= AS: Interoperability

* A6: Common Functions

= A7: Reference Architectures, Frameworks and Patterns
* A8: Reuse and Parametrization

= A9: Industry Standards

* A10: Information Architecture

* Al1l: Formal Modeling

» A12: Complexity and Simplification

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 119

G niversivaT Future-Proof Software-Systems [Part 3A]

DRESDEN

One of the most essential capabilities
System | of collaborating systems is interoperability System
Part Part

N

A4

DEFINITIONS

(1]

Definition: Interoperability is the capability to
exchange and make use of information and control

Interoperability must be assured on 4 levels: Applications Interoperability

1T

Semantic Interoperability
ﬁ __| Interoperability
Levels

Syntactic Interoperability

i

Technical Interoperability

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 120

G niversivaT Future-Proof Software-Systems [Part 3A]

DRESDEN

Interoperability is the capability to exchange
System and make use of information and control System
Part < > Part
A B
Instruments:
Collaborating applications must « Conceptual Models
Applications Interoperability | share a common conceptual < « Domain Models
model)
ﬁ * Ontologies
Instruments:
Semantic Interoperability Meaning of the data » Controlled Vocabularies
ﬁ *Taxonomies
Instruments:
Syntactic Interoperability Structure of the data * Syntax specification
ﬁ languages
Instruments:
Technical Interoperability Interaction infrastructure * Network standards
* Internet standards

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 121

G niversivaT Future-Proof Software-Systems [Part 3A]

DRESDEN

Technical Interoperability

Example: Technical Error
(TSL Vulnerability)

In the SSL (Secure Socket
Layer) and TLS (Transport Level
Security)-protocol a serious
security vulnerability was

detected (November 2009)

RFC5746: SSL and TLS renegotiation
are vulnerable to an attack in which the
attacker forms a TLS connection with
the target server, injects content of his
choice, and then splices in a new TLS

connection from a client.
http://tools.ietf.org/html/rfc5746

Because this security vulnerability is in
the original ietf-specification, all
SSL/TSL-implementations can be
attacked via this vulnerability. All
implementations and deployments must
be patched — worldwide!

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 122

G niversivaT Future-Proof Software-Systems [Part 3A]

DRESDEN

Syntactic Interoperability

http://www.jzepcevski.com/mundane-explosions/

Example: Syntax Error
(Ariane 5 Explosion)

On 4t June 1996 the
Ariane rocket exploded

during its first commercial
flight

The value for the horizontal velocity was stored as a 16-bit integer value in the inertial guidance
system, a heritage from the Ariane 4. The measured value, however, was stored in a 64-bit floating
format. Because the Ariane 5 was considerably faster than the Ariane 4, the conversion of the 64-bit
floating value into the 16-bit integer value exceeded 32,767 and caused an operand error — resulting
in the loss of guidance and the self-destruction of the rocket. This syntactic error caused losses of

1.7 billions of US$

(http:/ /esamultimedia.esa.int/docs/esa-x-1819eng.pdf).
© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 123

G niversivaT Future-Proof Software-Systems [Part 3A]

DRESDEN

Semantic Interoperability

Example: Semantic Mismatch
(Mars Climate Orbiter Crash)

The Mars Climate Orbiter (MCO) mission objective was to
orbit Mars as the first interplanetary weather satellite.
The MCO was launched on December 11, 1998, and was
lost sometime following the spacecraft's entry into Mars
occultation during the Mars Orbit Insertion (MOI)
maneuver.

The root cause for the loss of the MCO spacecraft was a semantic mismatch. The spacecraft
software was correctly programmed to use metric units (Newtonseconds). The ground software was
programmed to use English units (pound-seconds). The same measurement values therefore had a
different meaning — differing by a factor of 4.45 — in the spacecraft and in the ground software
resulting in an erroneous trajectory and in the crash of the spacecraft. This semantic mismatch
caused a loss of 193.1 million US$.

(ftp:/ /ftp.hg.nasa.gov/pub/pao/reports/ 1999 /MCO_report.pdf).
© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 124

http://www.vuw.ac.nz/staff/stephen _marshall/SE/Failures/media/MCO_Orbit.jpg

G niversivaT Future-Proof Software-Systems [Part 3A]

DRESDEN

1996, 1998: Failed syntactic and semantic interoperability

Could that still happen in 2016?

itung.ch

http://www.aargauerze

19. October 2016:
The Mars Lander «Schiaparelli» crashes to the ground

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 125

G niversivaT Future-Proof Software-Systems [Part 3A]

DRESDEN

First Analysis (November 2016)

.wikipedia.org

E——

https://de

Radar-Altimeter

Navigation Computer

Software Interoperability problem between
Radar-Altimeter and Navigation Computer in the Lander

"A software error is ultimately good news for the ExoMars mission”
Andrea Accomazzo (ESA)

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 126

G niversivaT Future-Proof Software-Systems [Part 3A]

DRESDEN

The Pyramid of Knowledge

http://ancienthistory.about.com/od/pyramids/

£
g /\\
: c.
Y4 |
E 3 |
| &’;Knowledge/
Context e
Information | 4]
————————————————————————— .;
c
£
Data g

Syntax>

Chaos

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 127

G niversivaT Future-Proof Software-Systems [Part 3A]

DRESDEN

The context of the specific information determines to a significant degree its full
understanding and correct interpretation. Thus, for interoperability, the context of the
semantic layer must be clearly defined

DEFINITIONS

L[]

Definition: Context is the circumstances that form the setting for an event, statement, or idea
and in terms of which it can be fully understood and assessed ([Oxford98]). ’

Example: Context Mismatch Without knowing the
The American and the Russian
president agree on a running
competition over 5 km. The American
president clearly wins the race. The
reporting in the Russian press reads: distorted — people

“The Russian president ran to an implicitly assume that the
excellent second place, whereas race had 50 ... 100

the American president only
finished second last in the race’.

context that only 2
competitors ran the race,
the meaning of the
information is completely

runners.

7HEAM-UOUIBIeW-USpUaNgnels/gz90800¢/SMau/ya J8-ull MMm//-033y

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 128

G niversivaT Future-Proof Software-Systems [Part 3A]

DRESDEN

How can we assure interoperability?

=] ()

System ‘% s | System
Part = le |- i
A o ... by specifying interfaces ; B

(D —

... and formally describe
their behaviour, properties,
attributes etc. in contracts

----------- * Technology alignment f-=======e=--
e Syntax alignment

 Semantic alignment
Interface Contract « Model alignment Interface Contract

Service Contract Service Contract

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 129

TECHNISCHE
@ UNIVERSITAT
DRESDEN

Interface & Service Contracts:

Service
Contract

Interface
Contract

Service
Requester

Future-Proof Software-Systems [Part 3A]

Commercial 4
Agreement

Commercial
Specification

Service Provider

Commercial Parameters:

* Access rights

* Cost/call [€]

* Guarantees
* etc.

Operational
Agreement N

C)

Inte

rface Contract:

Operational
Specification

Service Provider

Operational Parameters:

* Response time [ms]
* Throughput [calls/s]
* Availability [%]

. Behaviour * etc.
. Constraints
) Q
3}
&
-
O — .
¥ 5 Service
g .S 4
-t % Provider
g <
O . .
L /| (Functionality & Data)
13}
=
5
3

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18

130

G niversivaT Future-Proof Software-Systems [Part 3A]

DRESDEN

Example: <%@ WebService language = "C#" class = "FirstService" %>
Simple Web-Service Formalization

using System;

using System.Web.Services;

using System.Xml.Serialization;

[WebService(Namespace="http://localhost/MyWebServices/")]

Web service which works as a public class FirstService : WebService{
service provider and exposes Mzl ietie]
P P public int Add(int a, int b) {
two methods (add and SayHello) return a + b;
. }
as the web services to be used
[WebMethod]

by applications

public String SayHello() {
return "Hello World";

}
}

https://www.tutorialspoint.com /webservices /web_services_examples.htm

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 131

G niversivaT Future-Proof Software-Systems [Part 3A]

DRESDEN

Interface Contracts:

n
=
O
=
T
o @
O] Qi
- 18 0 — :
A 21188 Service
Service § = Provider
Requester g < g g
7 e/ (Functionality & Data)
— ~+
O O
o, 3
=
@)
=
172

(@ D
Interface Contract:
e Preconditions
* Functionality/Data
Postconditions

d

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 132

TECHNISCHE
@ UNIVERSITAT
DRESDEN

Example:

Future-Proof Software-Systems [Part 3A]

Add new customer (ID and name)

Precondi ti on:
1. I D not already active

addCust oner| D

Post condi ti ons:
1. I D now active
2. #of Custoners + 1

Precondi ti on:
1. I D active

addCust oner Nane

Post condi ti on:
1. Nane registered

Cust oner _Manager

#of Cust oner s

cust oner Count

activel D

addCust oner | D

addCust oner Nane
etc.

0.%

Cust oner

custonerl| D
cust omrer Nane
etc.

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18

133

TECHNISCHE
@ UNIVERSITAT
DRESDEN

Contract-Based
Software Engineering:

Future-Proof Software-Systems [Part 3A]

Business Process

L

Service
Contract
g
Service
Component Model .
/ Provider —
f > Component
Service Service
Contract Contract
a (<
Service Service
Provider Provider
Component Component
\ N Z‘ ‘:
Service Service Service Service Service
Contract Contract Contract Contract Contract
a g g E g
Service Service Service Service Service
Provider Provider Provider Provider Provider
Component Component Component Component Component

)

Component Conlposition Model

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18

The
functionality of
a system is
generated by
composing
service
contracts

134

G niversivaT Future-Proof Software-Systems [Part 3A]

DRESDEN

Service-Oriented Architecture (SOA)

see other TU-Dresden Lectures

http://integrella.com /services/solutions /a2a-and-b2b-integration /

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 135

G niversivaT Future-Proof Software-Systems [Part 3A]

DRESDEN

Interoperability is the capability to exchange
System and make use of information and control System
Part > Part
A B
Collaborating applications must
Applications Interoperability | share a common conceptual
model
i ili Meaning of the data
Semantic Interoperability How do we
il — | attain
. . that?
Syntactic Interoperability Structure of the data
Technical Interoperability Interaction infrastructure

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 136

G niversivaT Future-Proof Software-Systems [Part 3A]

DRESDEN

How do we attain Technological Interoperability?

... by adapting and enforcing accepted industry standards

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 137

G niversivaT Future-Proof Software-Systems [Part 3A]

DRESDEN

How do we express Syntax? < machi ne- r eadabl e!

Def: The Extensible Markup Language (XML) is a markup
language defining a set of rules for representing and encoding
,documents“ in machine-readable formats

Note 1: XML is in fact a technology to generate specific markup languages, e.g. domain-languages

Note 2: Today hundreds of specific XML-formats for different purposes exist

Note 3: XML is also human-readable (once you get used to the format)

<?xm version="1.0"7?>

<not €
Tags defined <t o>Tove</ t 0>

by the auth(?r <fronpJani </ fronw
of this <headi ng>Reni nder </ headi ng>
document <body>Don't forget me this weekend! </ body>

</ not e>

[http:/ /www.w3schools.com /xml/]

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 138

G niversivaT Future-Proof Software-Systems [Part 3A]

DRESDEN

<l--
HHHHHHH
Service-ld: DOC_1042
Service-Name: Request Digital Signature
Technical Name: Request Digital Signature for an electronic document or a data structure
History: v0.1 03.06.2005 Draft
v1.0 01.07.2005 Final
HHHHHHH
>
<xs:schema xmins:xs="http://www.w3.0rg/2001/XMLSchema"
xmlns:cs="http://www.cs-standards.org/schema/CS-BASE-1-0"
xmlns:cif="http://www.cs-standards.org/schema/CS-CIF-BASE-1-0"
xmlns:ebi="http://www.cs-standards.org/schema/CS-EBI-BASE-1-0"
xmlns:dss="http://www.cs-standards.org/schema/CS-DSS-BASE-1-0"
elementFormDefault="unqualified" attributeFormDefault="qualified">

m [)

Exa ple ° <xs:import namespace="http://www.cs-standards.org/schema/CS-BASE-1-0" schemalocation="CS-BASE-1-0.xsd"/>

XM L V1 ntax <xs:import namespace="http://www.cs-standards.org/schema/CS-CIF-BASE-1-0" schemaLocation="CS-CIF-BASE-1-0.xsd"/>
Se CE Sy t <xs:import namespace="http://www.cs-standards.org/schema/CS-EBI-BASE-1-0" schemalocation="CS-EBI-BASE-1-0.xsd"/>

<xs:import namespace="http://www.cs-standards.org/schema/CS-DSS-BASE-1-0" schemalocation="CS-DSS-BASE-1-0.xsd" />

<l--

ELAR Signature Request slot: 16 ELAR signature requests can be grouped into a single message.

-->
<xs:complexType name="RequestSlotType">
<xs:sequence>
<xs:element name="SlotStatus" type="dss:SlotStatus"/>
<xs:element name="BusinessUnit" type="cs:businessUnitType"/>
<xs:element name="HashtreeUUID" type="cs:uuid20AsCharType"/>
<l--

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 139

G niversivaT Future-Proof Software-Systems [Part 3A]

DRESDEN

How do we express Semantics? < machi ne-r eadabl e!

!

> Ontology

!

Information Technology:

Def: An ontology is a formal representation
of the knowledge in a domain

in the form of the concepts of the domain
and their relationships,

and the properties of the concepts and
relationships,

DEFINITIONS

LL]

as well as the axioms and principles which
are valid in the domain.

“Christiano Wolfio: Ontologia“, 1730 © Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 140

G niversivaT Future-Proof Software-Systems [Part 3A]

DRESDEN

Example: Car Ontology (1/95)
Aston Martin Virage 1991

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 141

G niversivaT Future-Proof Software-Systems [Part 3A]

DRESDEN

Example: Car Ontology (2/95)

o
23
>

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18

Aston Martin Virage Shop Manual

The Car Shop
Manual contains
all the parts and

relationship
information
(in graphical form) —

=

Part

Relationship

142

G niversivaT Future-Proof Software-Systems [Part 3A]

DRESDEN

Example: Car Ontology (3/9)

N ZLZiaos 4.3A Suspension and Steering
N ST Steering Column

Iltem | Pt Number Description Qty Remarks
1 25-20371 Steering column 1
2 | 25-55229 Steering column lower assembly 1
3 |25-51824 Gaiter, steering column 1
4 |25-51828 Bush, steering gaiter 2
5 |[25-51831 Spring, steering gaiter 2
6 |[25-52117 Mounting bracket, lower column 1
7 | 25-20191 Bearing, lower steering column. 1.D.25.45/25.50mm 1 Properties
- 25-21125 Bearing, lower steering column. 1.D.25.50/25.53mm 1 Code: Red Alternatives
- 25-21126 Bearing, lower steering column. 1.D.25.55/25.58mm 1 Code: Green L wE /
= 25-21127 Bearing, lower steering column. 1.D.25.60/25.63mm 1 Code: Blue R
8 |25-52122 Angle bracket, RH 1
9 |25-52123 Angle bracket, LH 1
| 10 [692088 Screw, M6 x 16 4 Angle brkts & lwr shroud to mtg brkd| |
11 | 692046 Washer, spring, M6 4 b 5 s 2 4
11A| 692056 Washer, plain, M6 4 . g oy A
12 | 25-54458 Washer, special. (RHD manual gearbox cars only) 3 L oo W3l ek
13 | 692089 Screw, M8 x 16 4 Angle bracket to crossmember

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 143

G niversivaT Future-Proof Software-Systems [Part 3A]

DRESDEN

Example: Car Ontology (4/95) oty

part Of {BOdY} part Of {DOOF}

part Of

Parts / part Of

part Of Part'¥ 692089
i nst anceC Scre 8x16
. Steerin
{Car} — {Chassis} ————— { S {Screw} —- /Part # 692087
part part Of Co|umn} part Of i nst anceOf \.Screw M8x20/
/ — Part # 653-
part of , 000-0603
i nst anceC Screw 6x3/8“

Relationship /

Part # 692126
i nstanceCf Screw M4x8

part O

Part # 692262
i nst anceOf Screw M6x12

part Of

artar {Power Train} — .5 {Engine}

artor {Gearbox}

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 144

G niversivaT Future-Proof Software-Systems [Part 3A]

DRESDEN

Example: Car Ontology (5/95)

OWL (Web Ontology Language) Representation:
<ow :Class rdf:ID="Car“/>
<ow : Cl ass rdf: | D="Body“>

<rdfs:subC assO rdf:resource="Car*“/>
</ow : C ass>
<ow : O ass rdf: | D="Chassis“>

{Car} — A— {Chassis} <rdfs:subCl assO rdf:resource="Car"/>
</ oW : Cl ass>
\ <ow : Cl ass rdf: | D="Power Tr ai n“>
Relationship <rdfs:subCl assOf rdf:resource="Car“/>

</ oW : Cl ass>

arto {Power Train}

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 145

Guy) IniveRsivar Future-Proof Software-Systems [Part 3A]

DRESDEN
How do we express Semantics? < Domain Model
5: Communications & Collaboration
Business Partner Applications (BPA) Financial Instruments, Research & Market Data (FIN)
2 «Mor t gage»
oo S O
£ B © g
5 BB v 2
o [2 ®
£ [5 2
Y ¢ E S «St ock»
q - - { «Savi ngs ;
T E - «St ock» g «aving g «Savi ngs
: B - (PRC) s Account » 58 g
gy ~ = | e) ! Account »
S £ o [g
w [- o .
E % o < Corporate Actions ° The Concepts must be
3 E «Mor t gage» —
g B clearly defined for all
< 3 7: Enterprise Common Services L. .
- partners: This is done in
g Logistics Accounting Control Basic Facilities
& (LoG) (a0c) (BAS) the domain model

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 146

TECHNISCHE
@ UNIVERSITAT
DRESDEN

Future-Proof Software-Systems [Part 3A]

What is needed for full semantics?

Applications Interoperability

Collaborating applications
must share a common conceptual model

(= Domain Model)

—

i1

Definition of

Semantic Interoperability

the concepts
and their
relationships —»

i

Syntactic Interoperability

Ontology

1T

Technical Interoperability

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18

Applications Interoperability

147

G niversivaT Future-Proof Software-Systems [Part 3A]

DRESDEN

What is needed for full semantics?

Collaborating
applications
must share a
common
conceptual model

Savings Account M Savings Account

i

Semantic Interoperability OI'II'OIOQY

11

Syntactic Interoperability

1T

Technical Interoperability

Applications Interoperability Applications Interoperability

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 148

G niversivaT Future-Proof Software-Systems [Part 3A]

DRESDEN

We have now understood:

e Technical interoperability
e Syntactical interoperability
 Semantic interoperability

* Applications interoperability

What happened to the
quality properties?

 Security?
e Safety?
 Integrity?

— Additional concerns

Example: Secure Interoperability

Authentication
P
| [\
Svst System
ysAem () Interoperability: Syntax & Semantics B
| I |

‘M*

Interoperability Channel Authorization

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 149

G niversivaT Future-Proof Software-Systems [Part 3A]

DRESDEN

Orthogonality
Security functionality and exchange
functionality are orthogonal:
Sec.urity. Never mix the two types of
Functionality: functionality!

Confidentiality, / * not in models

e not in architecture

Authentication, . .
L * not in design
Authorization, .. :
. e not in implementation
Integrity,

/

Information & Control Exchange Functionality:
Technical interoperability
Syntactic interoperability
Semantic interoperability
Applications interoperability

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 150

G niversivaT Future-Proof Software-Systems [Part 3A]

DRESDEN

1. Precisely (formally) specify syntax and semantics in all interoperations

Architecture Principle AS:
Interoperability

2. Whenever possible use formal contracts for the definition of interfaces

3. Whenever possible adopt and enforce accepted interoperability industry
standards

Justification: Successful, unambigous interoperability is a key factor in today‘s
distributed systems. Interoperabilty failures have severe consequences and are difficult
to pinpoint. Formal contracts isolate the parts of the system.

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 151

TECHNISCHE

G inversioar Future-Proof Software-Systems [Part 3A]

Textbook — Textbook —
Tomas Erl et. al: Richard Gartner
Web Service Contract Design and Versioning Metadata — Shaping Knowledge from
for SOA Antiquity to the Semantic Web
Prentice Hall, InC., USA, 2008 ISBN 978—0—136— Sprlnger_Verlag, GermaHY, 2016. ISBN 978_3_
13517-3 319-40891-0

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 152

Future-Proof Software-Systems [Part 3A]

Architecture Principle A6:

Common Functions
(X-functions and X-data)

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 153

G niversivaT Future-Proof Software-Systems [Part 3A]

DRESDEN

Horizontal Architecture Layer Principles:

= Al: Architecture Layer Isolation

= A2: Partitioning, Encapsulation and Coupling
= A3: Conceptual Integrity

* A4: Redundancy

= AS: Interoperability

= A6: Common Functions

= A7: Reference Architectures, Frameworks and Patterns
* A8: Reuse and Parametrization

= A9: Industry Standards

* A10: Information Architecture

* Al1l: Formal Modeling

» A12: Complexity and Simplification

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 154

G niversivaT Future-Proof Software-Systems [Part 3A]

DRESDEN

A disturbing dilemma:

Partitioning Redundancy

4 4

e Assign functionality & data to the single correct partition
« No unmanaged redundancy

What do we do if we need
the same functionality or data
in several partitions?

5d00SoXy MMM/ /1Ay

"MITAIT

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 155

Guy) IniveRsivar Future-Proof Software-Systems [Part 3A]

DRESDEN

B8] = Common Functionality
a = Common Data

F
F
F = F
F F
F
—LF F
F > F
F F
1 J
F F

© Prof. Dr. Frank J. Ryrrer: FP§S - WS 17/18 156

G niversivaT Future-Proof Software-Systems [Part 3A]

DRESDEN

28 = Common Functionality B = Common Data

DEFINITIONS

LL]

Common Functionality & Common Data/Information:
Functions or Data which are used in many parts of the system (and in different encapsulation units)

Danger:
» Break the partitioning rule (each function and data — exactly one partition)
* Generate unmanaged redundancy — divergence, inconsistency

* Risk performance problems — slow down, single points of failure

CAUTION: Common functions can
infiltrate your system unnoticed!

... and they will

http://gallery.yopriceville.com

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 157

G niversivaT Future-Proof Software-Systems [Part 3A]

DRESDEN
Example:
Programmer Specification Specification | «—— Near.Iy lde.ntlcal
Action A B specifications

Program Module B

Program Module A

» Implementation
B

:/ /creattica.com

» Implementation
A

http:/ /www.dreamstime.com

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 158

TECHNISCHE
@ UNIVERSITAT
DRESDEN

Example:

Interest
Calculation

Account:

e dd. mm yyyy: deposit 1‘200 €
e dd. M yyyy: wi thdrawal 700 €
e dd. M yyyy: charge 385 €
e dd. Mm yyyy: deposit 1'720 €

Future-Proof Software-Systems [Part 3A]

Common
Data

RN

_— v

Event:
* End of year
= Close account

]
cee

Functionality:
Interest Calculation

Common
Functionality

l

Interest Statement
1.1.2013 - 31.12. 2013

€ 178.45

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18

Interest Rate \
Table:
0 XX — vyy: 1.75%
0 XX —yy: 1.95%
0 xx-yy: 1.80%

Bank Holiday
Table:
CH
o0 January 1
o0 January 2
o April 18
o ...

Tax Withholding

Table:
e CH 35%

\ * DE: 26% /

N

159

G niversivaT Future-Proof Software-Systems [Part 3A]

DRESDEN

How can we deal with common functionality and data?

Identify, control and manage it!

Managed Distribution single
(At Build Time) source!
Repository Controlled
(Configuration Distribution
Management)
It is exactly known at
all times which 7
common functionality is
J Y F |/ F)

located where in the

system J 7 F - F ;
[A F

F »

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 160

TECHNISCHE

G inversioar Future-Proof Software-Systems [Part 3A]

How can we deal with common functionality and data?

Managed Synchronization
(At Run Time)

F T & FI{F
F F .
F F 5 %F All data is
- -) = correctly and
T LF Je= = || timely
T N 3 @% synchronized
" ; (= Managed
redundancy)

Real-time synchronization
« Content -
 Update rate

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 161

G niversivaT Future-Proof Software-Systems [Part 3A]

DRESDEN

How can we deal with common functionality and data?

Service Provision

(At Run Time) —
F - F F

F /F

F - F
F Common

1*; = F . - F functionality and
F : - B dgta are.prov1ded

F > via services

) [
F
F F F
Provide Access Services

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 162

TECHNISCHE
@ UNIVERSITAT
DRESDEN

Future-Proof Software-Systems [Part 3A]

Service Provision
(At Run Time)

Application
access managed access managed
(Service copy (Service)

Common
Tabl es

Enterprise-wide common software infrastructure

Conmon
Dat a

Common
functionality and
data are provided
via a enterprise-
wide software
infrastructure

7: Enterprise Common Services I

Logistics
(LOG)

Basic Facilities
(AOC) (BAS)

Accounting Control

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18

163

TECHNISCHE
@ UNIVERSITAT
DRESDEN

Future-Proof Software-Systems [Part 3A]

Bank Holiday 2012 Date

Example: Worldwide Bank Holidays

New Year’s Day Monday, January 2

National Heroes Day Monday, January 23

Common Data: Provide a list of bank
holidays for any country and any

year, such as 2017 for Cayman Good Friday
Islands Easter Monday

Ash Wednesday Wednesday, February 22

Friday, April 6

Monday, April 9

Discovery Day Monday, May 21

Provision: This function requires the
maintenance of a (static) table
containing all the bank holidays
received from the respective local

Queen’s Diamond Jubilee Monday, June 4

Queen’s Anniversary Monday, June 18

Constitution Day Monday, July 2

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18

auth 0 I'1t1 es Public Holiday Wednesday, July 18
Remembrance Day Monday, November 12
Christmas Day Tuesday, December 25
Boxing Day/Family Day Wednesday, December 31
Application List of Cayman bank holidays 2012
http:/ /www.bank-holidays.com
Access (Servi ce) managed copy
7: Enterprise Common Services
Logistics Accounting Control Basic Facilities
(LOG) (AOC) (B AS)

164

Gu) iniversiTar Future-Proof Software-Systems [Part 3A]

- Architecture Principle A6:

Common Functions
1. Identify all common functions and common data (= cross-cutting
concerns in an IT-architecture)

2. Provide managed solutions to all cross-cutting concerns, avoiding
unmanaged redundacy

3. Whenever possible provide and enforce a company-wide software-
infrastructure

Justification: Cross-cutting concerns (Common functions and data) have a high
inherent risk to diverge and thus cause unmanged reduncancy or inconsistent

implementations — which can be an unknown and serious danger to an IT-system
(especially a large or very large IT-system)

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 165

G niversivaT Future-Proof Software-Systems [Part 2]

DRESDEN

Our objective is: oty

To build, evolve, and maintain

long-lived, mission-critical IT-systems

with a strong dependability,

easy Changea@

and a high business value.

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 166

G niversivaT Future-Proof Software-Systems [Part 3A]

DRESDEN

Part 34: Al - A6

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 167

