
Future-Proof Software-Systems [Part 3B]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 1
Version 1.0

Future-Proof Software-Systems (FPSS)

h
ttp

s
:/

/
s
ta

tic
1
.s

q
u

a
re

s
p
a
c
e
.c

o
m

Part 3B: Architecting for Changeability

Lecture WS 2017/18: Prof. Dr. Frank J. Furrer

Future-Proof Software-Systems [Part 3B]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 2

Our journey:


w

w
w

.1
2
3
rf.c

o
m

–
u

s
e
d

w
ith

p
e
rm

is
s
io

n

«Software
everywhere»

Managed Evolution
Strategy

Future-Proof
Software-Systems

Technial Debt
Architecture Erosion

Architecture

The Future-Proof Software-
Systems Engineer

Systems & Software
Engineering

Three devils of
Systems Engineering

Special Topics
Architecting for
Changeability

Architecting for
Dependability





 

Future-Proof Software-Systems [Part 3B]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 3

 A1: Architecture Layer Isolation

 A2: Partitioning, Encapsulation and Coupling

 A3: Conceptual Integrity

 A4: Redundancy

 A5: Interoperability

 A6: Common Functions

 A7: Reference Architectures, Frameworks and Patterns

 A8: Reuse and Parametrization

 A9: Industry Standards

 A10: Information Architecture

 A11: Formal Modeling

 A12: Complexity and Simplification

Horizontal Architecture Layer Principles:

Part 3B

Part 3A

Future-Proof Software-Systems [Part 3B]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 4

 A1: Architecture Layer Isolation

 A2: Partitioning, Encapsulation and Coupling

 A3: Conceptual Integrity

 A4: Redundancy

 A5: Interoperability

 A6: Common Functions

 A7: Reference Architectures, Frameworks and Patterns

 A8: Reuse and Parametrization

 A9: Industry Standards

 A10: Information Architecture

 A11: Formal Modeling

 A12: Complexity and Simplification

Horizontal Architecture Layer Principles:

Future-Proof Software-Systems [Part 3B]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 5

Architecture Principle A7:

Reference Architectures,
Frameworks and Patterns

A7

Future-Proof Software-Systems [Part 3B]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 6

Formalized Architecture Knowledge: Architecture Principles

Highly valuable software/system architecture knowledge

in proven & easily accessible form

Architecture Framework:

An architecture framework
establishes a common practice
for creating, interpreting,
analyzing and using
architecture descriptions within
a particular application domain

[ISO/IEC/IEEE 42010]

Reference Architecture:

A reference architecture
provides a template solution
for an architecture for a
particular application domain

- such as financial systems,
automotive, aerospace etc.

Architecture Pattern:

An architectural pattern is
a concept that solves and
delineates some essential
cohesive elements of a
software architecture

http://en.wikipedia.org/wiki/
Architectural_pattern

Future-Proof Software-Systems [Part 3B]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 7

Patterns

Architecture Pattern:

An architectural pattern is a concept that solves and delineates some essential
cohesive elements of a software architecture
http://en.wikipedia.org/wiki/Architectural_pattern

Origin of Patterns:
Christopher Alexander, 1977

h
ttp

:/
/
m

ih
p
a
tte

.c
o
m

/
d
e
s
ig

n
-p

a
tte

rn
s
-b

y
-g

a
m

m
a

Application to Software Architecture:
Erich Gamma, Richard Helm, Ralph Johnson,
John Vlissides, 1995 („Gang of Four“)

Structure!

Future-Proof Software-Systems [Part 3B]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 8

Example: Security Pattern „RBAC“ [Role-Based Access Control]
(Fernandez: Security Patterns in Practice, 2013, ISBN 978-1-119-99894-5)

ROLE-BASED ACCESS CONTROL PATTERN:

The User and Role classes describe registered users and their predefined roles. Users are assigned to

roles, roles are given rights according to their functions. The association class Right defines the

access types that a user within a role is authorized to apply to the ProtectionObject.

accessData
User

id
name

ProtectionObject

id
name

Role

id
name

**

memberOf

Right

accessType

checkRights

* *

isAuthorizedFor

Future-Proof Software-Systems [Part 3B]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 9

Example: Broker Pattern
(Buschmann et. al.: A System of Patterns, 1996, ISBN 0-471-95869-7)

Server
(Service Provider)

User

call_server
start_task
use_Broker_API

Server

run_service
use_Broker_API

?
c
a
l
l
s

Client-side
Proxy

send_request

*

*

Server-side
Proxy

call_service
send_response

c
a
l
l
s*

*

Broker

register_service
find_server
find_client
forward_request
forward_response

transfer
message

* *

transfer
message

* *

Bridge

pack/unpack data
forward_message
transmit_message

u
s
e
s

*

*

u
s
e
s
A
P
I

u
s
e
s
A
P
I

BROKER PATTERN:

This pattern is used to structure distributed systems with decoupled components that interact by
remote service invocations.

www.123rf.comThere is a rich literature about patterns. The future-proof

software-system engineer needs to continuously familiarize

himself with this trove of architecture knowledge!

Future-Proof Software-Systems [Part 3B]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 10

Patterns

Patterns are not final, directly applicable solutions! Patterns are intellectual
building blocks which must be intelligently integrated into your work

Patterns are excellent documentation and communications
instruments. They are formal, clear and focussed

Patterns are recorded architecture and design wisdom in „canonical“ form.
Patterns help you build on the collective experience of skilled architects and
software engineers (Buschmann et. al. ISBN 0-471-95869-7)

Future-Proof Software-Systems [Part 3B]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 11

Architecture Frameworks

Architecture Framework:

An architecture framework establishes a common practice for creating, interpreting,
analyzing and using architecture descriptions within a particular application domain
[ISO/IEC/IEEE 42010]

Meta-
Model

Templates
Templates

Templates
Principles

Modeling
Notation

Reference
Architectures

Architecture Organization Blueprint

Architecture Methodology/Process Information Architecture

Technical Architecture

Integration Architecture

Applications Architecture

Business Architecture

R
e
a
l-T

im
e

A
rc

h
ite

c
tu

re

S
e
c
u

rity
A

rc
h

ite
c
tu

re

S
a
fe

ty
A

rc
h

ite
c
tu

re

e
tc

.

Future-Proof Software-Systems [Part 3B]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 12

Example: TOGAF (1/2)
[The Open Group Architecture Framework] http://www.togaf.org/

Process,
Methodology

Architecture
Organization

Repository
etc.

Principles

Reference
Models

Deliverables,
Artefacts

Future-Proof Software-Systems [Part 3B]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 13

Example: TOGAF (2/2)
[The Open Group Architecture Framework] http://www.togaf.org/

h
tt

p
:/

/
p
u

b
s
.o

p
e
n

g
ro

u
p
.o

rg
/
a
rc

h
it

e
c
tu

re
/
to

g
a
f8

-d
o
c
/
a
rc

h
/
c
h

a
p
2
2
.h

tm
l

TOGAF
III-RM
Reference
Architecture
(High level)

Future-Proof Software-Systems [Part 3B]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 14

Reference Architecture:

A reference architecture provides a template solution for a generic architecture for a
particular application domain

- such as financial systems, automotive, aerospace etc.

Reference Architecture

A reference architecture may recommend: Fundamental
Structure

Service
StandardizationTechnology

Choices

Component
Model

Safety
Mechanisms

Component Contract
Model

etc.

Future-Proof Software-Systems [Part 3B]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 15

Example: AUTOSAR (1/2)
[AUTomotive Open System ARchitecture] http://www.autosar.org

h
tt

p
:/

/
w

w
w

.a
u

to
s
a
r.

o
rg

/
d
o
w

n
lo

a
d
/
p
a
p
e
rs

a
n

d
p
re

s
e
n

ta
ti

o
n

s
/
A

U
T
O

S
A

R
_
B

ro
c
h

u
re

_
E

N
.p

d
f

AUTOSAR provides a set of

specifications that describes

basic software modules, defines

application interfaces and builds

a common development

methodology based on

standardized exchange format

[Currently: 1’200 pages]

Future-Proof Software-Systems [Part 3B]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 16

Example: AUTOSAR (2/2)
http://www.autosar.org

AUTOSAR is well documented in a number of
interesting documents (some only for members)

AUTOSAR:

„Cooperate on

Standards

–

Compete on

Implementations“

Future-Proof Software-Systems [Part 3B]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 17

Example: BIAN
Banking Industry Architecture Network: http://www.bian.org

BIAN standardizes the full functional
landscape of a financial institution

refinement

Future-Proof Software-Systems [Part 3B]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 18

Example: 3rd party SW
http://www.bian.org

Financial Markets

Investment
Management

Investment Portfolio
Planning

Investment Portfolio
Analysis

Investment Portfolio
Management

eTrading

B
u

sin
e

ss
P

ro
ce

ss

IT Service

IT Service

IT Service

IT Service

Investment
Portfolio
Analysis

B
u

sin
e

ss
P

ro
ce

ss

Financial
Markets

Investment
Management

Investment Portfolio
Planning

eTrading

Investment Portfolio
Management

Internal IT System
Outsourced or
3rd party SW

Industry-wide,
exchangeable,
standardized
services

The BIAN reference

architecture allows

“plug & play” with

own and with 3rd

party components

Future-Proof Software-Systems [Part 3B]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 19

Reference Architectures

Architecture Frameworks

Architecture Patterns

Future-Proof Software-
Systems Engineer

Apply & enforce

h
tt

p
:/

/
b
is

c
ic

o
l.
b
lo

g
s
p
o
t.

c
h

/
2
0
1
1
/
0
6
/
b
is

c
ic

o
l-

c
o
re

-s
o
ft

w
a
re

-a
rc

h
it

e
c
tu

re
.h

tm
l

Operationalization

Future-Proof Software-Systems [Part 3A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 20

Textbook Textbook

Oliver Scheid:
AUTOSAR Compendium, Part 1 – Application
& RTE
CreateSpace Independent Publishing Platform,
2015. ISBN 978-1-5027-5152-2

The Open Group:
TOGAF® Version 9.1
Van Haren Publishing, 2011. ISBN 978-9-0875-
3679-4

Future-Proof Software-Systems [Part 3A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 21

Textbook Textbook

Martin Fowler:
Patterns of Enterprise Application
Architecture
Addison Wesley, Inc., USA, 2002. ISBN 978-0-
321-12742-6

Frank Buschmann, Regine Meunier, Hans
Rohnert, Peter Sommerlad, Michael Stal:
Pattern-Oriented Software Architecture, Vol. 1
– A System of Patterns
John Wiley & Sons., Inc., USA, 1996. ISBN 978-0
471 95869 7

Future-Proof Software-Systems [Part 3B]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 22

 A1: Architecture Layer Isolation

 A2: Partitioning, Encapsulation and Coupling

 A3: Conceptual Integrity

 A4: Redundancy

 A5: Interoperability

 A6: Common Functions

 A7: Reference Architectures, Frameworks and Patterns

 A8: Reuse and Parametrization

 A9: Industry Standards

 A10: Information Architecture

 A11: Formal Modeling

 A12: Complexity and Simplification

Horizontal Architecture Layer Principles:

Future-Proof Software-Systems [Part 3B]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 23

Architecture Principle A8:

Reuse and Parametrization

A8

Future-Proof Software-Systems [Part 3B]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 24

h
ttp

:/
/
w

w
w

.ly
b
e
c
k
e
r.c

o
m

Reuse in Software-Systems Engineering

Reuse:

Utilization of Software-Artefacts in another Context or Application

CAUTION:

Reuse can be a danger for the consistency and integrity of an
architecture

h
ttp

:/
/
w

w
w

.s
a
fe

ty
s
ig

n
.c

o
m

h
tt

p
s
:/

/
s
ta

ti
c
.p

e
x
e
ls

.c
o
m

«Good» reuse can have a strong reward

(in quality, time and money)

Future-Proof Software-Systems [Part 3B]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 25

Successful reuse can be done with:

• Requirements

• Specifications

• Reference architectures

• Patterns

• Code (Functionality)

• Data (Information)

• Algorithms

• Configurations

• Documentation

• Models

• ….

h
ttp

s
:/

/
w

w
w

.a
rte

fa
c
tg

ro
u

p
.c

o
m

 Rules for reuse

Future-Proof Software-Systems [Part 3B]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 26

Successful Reuse requires:

• a company-wide reuse strategy

• a strong reuse organization

• a dedicated, committed management

• Adequate development & evolution processes

h
ttp

:/
/
w

w
w

.c
lip

a
rtb

e
s
t.c

o
m

 Rules for reuse

Future-Proof Software-Systems [Part 3B]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 27

Types of Reuse

Black BoxReuse
Unmodified (1:1) reuse

Grey BoxReuse Limited modified reuse
(Specific changes  25 %)

White BoxReuse
Significantly modified
(Specific changes  25 %)

Important for

functionality

(code) and

information

(data)

Future-Proof Software-Systems [Part 3B]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 28

Levels of Reuse

Encapsulated Functionality & Data:
Components

Level 2: Interfaces

Contracts

Applications:
Business Functions

Level 3: Services

Business Process

Workflow

Level 4:

Business
Rules

Functionality:
Code

Data:
DB-Schema

Level 1: Black
Box

Future-Proof Software-Systems [Part 3B]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 29

Value of Reuse

Functionality:
Code

Data:
DB-Schema

Level 1:

Encapsulated Functionality & Data:
Components

Level 2: Interfaces

Contracts

Applications:
Business Functions

Level 3: Services

Business Process

Workflow

Level 4:

Business
Rules

very high

medium

medium

local reuse

„global“
reuse

Black
Box

Future-Proof Software-Systems [Part 3B]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 30

Functionality:
Code

Data:
DB-Schema

Encapsulated Functionality & Data:
ComponentsInterfaces

Contracts

Applications:
Business Functions

Services

Business Process

Workflow

Business
Rules

Fragments of
code and data
are reused in
programs

Components
are composed
to applications

Services are
called to build
applications or
systems

Business rules
are reused to
implement
business
process steps

Black
Box

Future-Proof Software-Systems [Part 3B]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 31

€

t

Project
Development
Cost

Development
Time

€

t

Project

one-time
use

Reuse
(n-time use)

Value

Value

Development
Cost

Development
Time

Reusable Software

Business Case
of Reuse

Reusable software

requires

considerable

more effort in

planning, design,

development and

implementation

Future-Proof Software-Systems [Part 3B]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 32

€

t

Project

reuse

Value

Development
Cost

Development
Time

Reusable Software

Who is paying?

h
tt

p
:/

/
b
lo

g
s
.l
a
w

y
e
rs

.c
o
m

Reusable software

requires

considerable

more effort in

planning, design,

development and

implementation

 Enforced reuse-

strategy required

Reuse-strategy

Future-Proof Software-Systems [Part 3B]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 33

Same project
creating one-
time software

The project has additional cost
and longer time-to-market

 Reuse penalty

Pn+21

Pn+5

Pn+1

Pn

All projects reusing the software have
lower cost and shorter time-to-market

 Reuse benefit

Project
creating reusable
software artefacts

Reuse-strategy

P
la

n
n

e
d

T
ra

d
e
o
ff h

ttp
s
:/

/
u

p
lo

a
d
.w

ik
im

e
d
ia

.o
rg

Future-Proof Software-Systems [Part 3B]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 34

One-Time Software
Development Process

Spec
Phase

Business
Requirements

Architecture
Requirements

One-Time
Software

Reusable Software
Development Process

Spec
Phase

Business
Requirements

Architecture
Requirements

Reusable
Software

Spec
Phase

Business
Szenarios

Reuse Arch
Requirements

h
tt

p
:/

/
w

w
w

.h
a
m

m
e
rt

a
p
.c

o
m

Reuse-strategy

Future-Proof Software-Systems [Part 3B]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 35

Elements of
successful Reuse

http://artofsoftwarereuse.com/tag/schemas/

Reuse
Strategy

A company-wide
reuse strategy



Good software
architects

h
tt

p
:/

/
w

w
w

.a
m

is
in

s
u

ra
n

c
e
.c

o
m

A dedicated and
committed management


h
tt

p
:/

/
w

w
w

.g
lo

b
a
ln

p
s
o
lu

ti
o
n

s
.c

o
m

A strong
reuse organization


Future-Proof Software-Systems [Part 3B]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 36

Black BoxReuse

Unmodified (1:1) reuse

Grey BoxReuse
Limited modified reuse
(Specific changes  25 %)

White BoxReuse
Significantly modified
(Specific changes  25 %)

Parametrization

Business Rules

True, value-generating Reuse

Not reuse  unmanaged redundancy

Not reuse  unmanaged redundancy

h
ttp

:/
/
s
r.p

h
o
to

s
2
.fo

to
s
e
a
rc

h
.c

o
m

Future-Proof Software-Systems [Part 3B]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 37

Grey Box

Grey Box Modification  Divergence (Unmanaged Redundancy)

Grey Box

Modification A

Grey
Box

M
o
d
ifi-

c
a
tio

n
B

Grey Box

Modifi-
cation C

Grey
Box

Modifi-
cation

D

Change

h
ttp

:/
/
w

w
w

.v
e
g
g
ie

g
a
rd

e
n

in
g
tip

s
.c

o
m

Future-Proof Software-Systems [Part 3B]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 38

Black Box Grey Box White Box

h
tt

p
:/

/
w

w
w

.d
o
rg

e
rs

o
ft

.c
o
m

Owner

Black BoxNew Reqs

Black Box Vx.y + 0.1 Repository

Re-utilization

C
o
m

p
o
n

e
n

t/
S

e
rv

ic
e

R
e
u

s
e
-C

y
c
le

Future-Proof Software-Systems [Part 3B]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 39

Parametrization and Business Rules

Black BoxReuse

Unmodified (1:1) reuse

Parametrization

Parametrization: Selection of a predefined behaviour of the black box by parameters stored
outside of the black box (Not part of the black box functionality or data). The parameters are
loaded at run-time. New versions of the black box interpret the parameters correctly.

Business Rules

Business Rules: Business rules are specified in BR-languages and define processing logic –
instead of having the processing logic implemented in code within the black box (Not part of
the black box functionality or data). The business rules are loaded at run-time. New
versions of the black box interpret the business rules correctly

Future-Proof Software-Systems [Part 3B]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 40

Black Box

Black Box

Black Box

Black Box

Black Box

Parametrization

Business Rules

Parametrization

Business Rules

Parametrization

Business Rules

Change

Distributed/Updated
by Configuration
Management System

Loaded/Initialized
at Run-Time

No error
propagation

Future-Proof Software-Systems [Part 3B]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 41

Parametrization Example: Different Account Number Formats

Payment Order
Account Number Format: Bank Leu

Payment Order
Account Number Format: CREDIT SUISSE

Payment Order
Account Number Format: IBAN

Payment Order
Account Number Format: Future Format

Payment
Application

Accounts DB

Clearing
System

Future-Proof Software-Systems [Part 3B]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 42

Business Rules Example: Rental car servicing

Business Process

Application Software

Business
Logic

Specific
Business

Rules
Interpreter

Formal Expression:

If Car.miles-current-
period > 5000 then

invoke Schedule-
service (Car.id)

End if

Verbal Expression:

“A car with accumulated
mileage greater than 5’000
since its last service must
be scheduled for service”

h
ttp

:/
/
tro

o
p
s
c
o
u

t.c
o
m

Future-Proof Software-Systems [Part 3B]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 43

Measuring the Reuse-Factor:

Functionality:
Code

Data:
DB-Schema

Encapsulated Functionality & Data:
ComponentsInterfaces

Contracts

Applications:
Business Functions

Services

Business Process

Workflow

Business
Rules

of
applications

using the
service

of calls/hour

of
applications

using the
component

of components
implementing
the code/DB

fragment

% of reused
business rules
in a different

context

Black
Box

Strictly
managed in
the
configuration
system

Future-Proof Software-Systems [Part 3B]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 44

http://artofsoftwarereuse.com/tag/schemas/

Why should we work with Reuse?

Because of:

• The benefits (in development cost and time-to-market) are considerable

• The quality of the software is higher (mature components, managed evolution
and maintenance)

• Use of proven 3rd party components and services

• Optimization: reusable components  one-time components

Future-Proof Software-Systems [Part 3B]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 45

http://artofsoftwarereuse.com/tag/schemas/

Which are the risks of reuse?

Risks:

• Quality of reusable software not sufficient

• Reuse-factor too low

• Reuse-strategy not complete or adequate

• Creation of unmanged redundancy (both functional and data)

• Development and maintenance process more complicated

• Management not sufficiently supportive of reuse-strategy

Future-Proof Software-Systems [Part 3B]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 46

Architecture Principle A8:

Reuse and Parametrization

1. Use only the black-box concept to build reusable software

2. Whenever possible, configure the reusable modules via parameters or business rules
(loaded or initiated at run-time)

3. Install and consequently use a configuration management system to control the
distribution of reusable software modules

4. Provide the 4 elements of successful reuse: Committed management, reuse-strategy,
reuse-organization and competent software architects

5. Adapt your software development process to produce reusable software

A8

Justification: If done correctly, reuseable components have a significant positive effect on the
agility of the IT-system.

Future-Proof Software-Systems [Part 3A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 47

Textbook Textbook

Michel Ezran:
Practical Software Reuse
Springer-Verlag, 2013 (reprint of 2002 edition).
ISBN 978-1-852-33502-1

Ronald J. Leach:
Software Reuse – Methods, Models, Costs
Ronald J Leach Publishing, 2nd edition, 2013.)
ISBN 978-1-9391-4235-1

Future-Proof Software-Systems [Part 3B]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 48

 A1: Architecture Layer Isolation

 A2: Partitioning, Encapsulation and Coupling

 A3: Conceptual Integrity

 A4: Redundancy

 A5: Interoperability

 A6: Common Functions

 A7: Reference Architectures, Frameworks and Patterns

 A8: Reuse and Parametrization

 A9: Industry Standards

 A10: Information Architecture

 A11: Formal Modeling

 A12: Complexity and Simplification

Horizontal Architecture Layer Principles:

Future-Proof Software-Systems [Part 3B]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 49

Architecture Principle A9:

Industry Standards

A9

Future-Proof Software-Systems [Part 3B]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 50

Technical
Interoperability

Syntactic
Interoperability

Semantic
Interoperability

Applications
Interoperability

System A

Technical
Interoperability

Syntactic
Interoperability

Semantic
Interoperability

Applications
Interoperability

System B

Agreed
Rules

Interoperability
Requirements

Future-Proof Software-Systems [Part 3B]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 51

www.ietf.org www.omg.orgwww.iso.org

International Standards Organizations

CS
Business
Object
Model
V1.1/2009

Company
Standards

A standard is:

• a formal, established norm for (technical) systems

• a document which establishes uniform (engineering or technical) criteria,
principles, methods, processes and practices

Future-Proof Software-Systems [Part 3B]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 52

h
ttp

s
:/

/
g
rid

.g
o
g
ra

p
h

.c
o
m

Why being constrained and
restricted by industry standards?
• Slow
• Overkilled
• Behind technology
• …

Respected standards are powerful interoperability and productivity concepts

Future-Proof Software-Systems [Part 3B]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 53

Example:
Napoleonic Guns
(1/3)

h
tt

p
:/

/
c
iv

il
w

a
rt

a
lk

.c
o
m

/
th

re
a
d
s
/
la

rg
e
s
t-

re
e
n

a
c
to

r-
c
a
n

o
n

.7
9
4
2
3

In early pre-Napoleonic times the artillery cannons were individually different and
required matched cannon balls  difficult logistics

Manufacturing tolerances greatly reduced the accuracy and firing power of the
artillery cannons  reduced military impact

Future-Proof Software-Systems [Part 3B]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 54

Example: Napoleonic Guns
(2/3)

1776: The de Gribeauval
standard revolutionized
artillery.

1715-1789

de Gribeauval Standard:

• reduced and standardized the calibers

 complexity reduction

• introduced normalized parts for the cannons

 component technology

• set manufacturing processes & tolerances

 reuse

h
ttp

s
:/

/
o
p
e
n

c
lip

a
rt.o

rg

Future-Proof Software-Systems [Part 3B]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 55

Example: Napoleonic Guns
(3/3)

h
tt

p
:/

/
w

w
w

.s
a
n

d
ro

c
a
s
te

ll
i.
c
o
m

/
w

o
rk

s
_p

a
g
in

a
s
/
n

a
p
o
le

o
n

s
e
m

p
ir

e
.h

tm

Napoleonic
Empire

(ca. 1810)

Future-Proof Software-Systems [Part 3B]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 56

… standards for interoperability

… standards for programming languages

… standards for processes

Future-Proof Software-Systems [Part 3B]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 57

 What is the impact of standards ?

 Why are standards important ?

Impact:

• Forcing uniform, interoperable solutions in the industry

• Providing proven, widely accepted and mature solutions

• Enabling exchangeable products (mostly)

• Facilitates reuse

• Foundation for validation & certification

Importance:

• Provides long term stability with managed change

• Forces vendors to comply to interoperable solutions

• Advances industries as a whole

• Provides confidence in technical solutions (e.g. safety or security)

Negative: Standards-setting process is quite slow (Wide consensus required)

Future-Proof Software-Systems [Part 3B]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 58

Example:
Web
Standards
(1/3)

Web
Standards

Domain-specific
Standards

Technical
Infrastructure
Standards

Technical Infrastructure

Addressing: URI Unicode
S

e
c
u

ri
ty

:
C

ry
p
to

g
ra

p
h

y

Trust: PKI

Reasoning & Proofs

Business
Rules:

RIF

Underlying Logic: DL

Semantics
(Ontology):

OWL
DB Query:
SPARQL

Vocabulary: RDF-S

Data Model: RDF

Syntax: XML

Business Applications

SOA-Infrastructure: Web-Services

How can we
establish trust on
the WWW?

Future-Proof Software-Systems [Part 3B]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 59

Example:
Web
Standards
(2/3)

h
tt

p
s
:/

/
e
n

c
y
c
lo

p
e
d
ia

d
ra

m
a
ti

c
a
.s

e
/
O

n
_t

h
e
_I

n
te

rn
e
t,

_n
o
b
o
d
y
_k

n
o
w

s
_
y
o
u

'r
e
_
a
_
d
o
g

On the Internet, nobody knows you're a dog

Example: Authentication:

How can we establish trust in the
identity of an electronic partner ?

Trust: PKI

Answer:

We use a
Public Key Infrastructure (PKI)

Answer:

Use a Public Key Infrastructure
(PKI)

PKI assigns Digital Certificates
to entities (Persons, organizations)

Answer:

Use a Public Key Infrastructure
(PKI)

PKI assigns Digital Certificates
to entities (Persons, organizations)

A digital certificate is an
unforgeable electronic proof of
identity

Answer:

Use a Public Key Infrastructure
(PKI)

PKI assigns Digital Certificates
to entities (Persons, organizations)

A digital certificate is an
unforgeable electronic proof of
identity

Digital certificates are
standardized in X.509 and are
globally accepted and used

 Global
interoperability

Future-Proof Software-Systems [Part 3B]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 60

Example: Web Standards
(3/3)

Client
Server

CA
Certification Agency

[Trusted Entity]

X.509
Certificate

_issuer
_validity
_subject
_publicKey

_CA-Signature

X.509

presents

X.509

Trustworthy
electronic
authentication
procedure

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 61

Certification:
• Safety
• Security
• Interfaces
• …

Technical Impact:
• Interoperability
• Communications
• Technology
• …

Knowledge:
• Processes
• Domain-Knowledge
• Cooperation
• …

Industry-Standard

Future-Proof Software-Systems [Part 3B]

Future-Proof Software-Systems [Part 3B]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 62

Architecture Principle A9:

Industry Standards

1. Strictly adhere to proven, accepted industry-standards in all 5 architecture layers and for
all phases of the system lifecycle

2. Never allow any use of vendor-specific standards «extensions» (even if they look tempting
and useful)

3. Keep the number of standards in use to a minimum

4. Introduce new standards only based on very good reasons

5. If for a certain field of your activity there is no industry standard, formulate and
instantiate a company standard

6. Enforce strict adherence to (pure) standards via regular reviews

A9

Justification: A heterogenous industry (such as software-production) requires clearly stated
foundations for technologies, products and processes – otherwise no interoperability, certification,
reuse and vendor-independence is possible

Future-Proof Software-Systems [Part 3B]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 63

 A1: Architecture Layer Isolation

 A2: Partitioning, Encapsulation and Coupling

 A3: Conceptual Integrity

 A4: Redundancy

 A5: Interoperability

 A6: Common Functions

 A7: Reference Architectures, Frameworks and Patterns

 A8: Reuse and Parametrization

 A9: Industry Standards

 A10: Information Architecture

 A11: Formal Modeling

 A12: Complexity and Simplification

Horizontal Architecture Layer Principles:

Future-Proof Software-Systems [Part 3B]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 64

Architecture Principle A10:

Information Architecture

A10

Future-Proof Software-Systems [Part 3B]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 65

h
ttp

:/
/
w

w
w

.a
n

tlr-in
te

ra
c
tiv

e
.c

o
m

„Data models are perhaps the most important

part of developing software, because they

have such a profound effect: Not only on how

the software is written, but also on how we

think about the problem that we are solving”

Martin Kleppmann, 2017

Information Architecture Humans, machines,
robots, artificial
intelligence, …

Static, dynamic, stable,
unstable, uncertain, …

Business, people, autonomic,
safety-critical, …

Big data, real-time,
confidential, fuzzy,

experimental, long-lived, …

Future-Proof Software-Systems [Part 3B]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 66

IT-System

Data,
Information

Functionality
Documentation,

Models etc.

Technical Infrastructure

Software
(Components,
Applications)

Structures,
Relationships

Repository

Data/Information
Architecture

Future-Proof Software-Systems [Part 3B]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 67

h
ttp

:/
/
w

w
w

.d
m

u
.a

c
.u

k

Information = Data that is

1. accurate and timely,

2. specific and organized for a purpose,

3. presented within a context that gives it meaning and relevance,

4. leads to an increase in understanding and decrease in uncertainty
http://www.businessdictionary.com

Future-Proof Software-Systems [Part 3B]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 68

Information (Data)
Architecture
(Information & Data)

Technical
Architecture
(Technical
Infrastructure)

Integration
Architecture
(Cooperation
Mechanisms)

Applications
Architecture
(Functionality)

Business
Architecture
(Business Processes)

S
tr

u
c
tu

ra
l
A

rc
h

it
e
c
tu

re
L
a
y
e
rs

H
o
ri

zo
n

ta
l
A

rc
h

it
e
c
tu

re
s

Information (Data)
Architecture
(Information & Data)

http://www.rockley.com

Information Architecture

Future-Proof Software-Systems [Part 3B]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 69

Data/Information Architecture

Definition (1/2):

Information Architecture is a engineering discipline and a

(resulting) structure that is focused on making information:

• dependable

• understandable

• findable

• correct (content- & time-wise)
• complete
• consistent & integer
• protected
• accountable

• semantics
• structured

• organized
• available
• unique (no unmanaged redundancy)

Future-Proof Software-Systems [Part 3B]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 70

Data/Information Architecture

Definition (2/2):

The Data/Information Architecture defines principles for:

• The classification of data/information

• The structure of data/information

• The modeling of data/information

• The quality assurance of data/information

• The protection of data/information

• The deployment of data/information

• The disaster recovery of data/information

• [The process for building and maintaining the architecture]

h
tt

p
:/

/
w

w
w

.u
b
.t

u
m

.d
e

Future-Proof Software-Systems [Part 3B]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 71

… a little bit of history:

h
ttp

:/
/
w

w
w

.ze
lle

r.d
e

Year: 1472

Future-Proof Software-Systems [Part 3B]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 72

Information Architecture Artefacts

Structure SemanticsMetadata
Information

Strategy

Future-Proof Software-Systems [Part 3B]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 73

Structure
The logical organization of the
information universe of a company

Metadata
Metadata is data providing
information about aspects of the
data (source, purpose, content, …)

Semantics
Definition and representation of
meaning of the information

Information
Strategy

Objectives, principles and
processes for the information
architecture

Future-Proof Software-Systems [Part 3B]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 74

<author>W. H. Jaco</author>
<title>PL minimal surfaces in 3-manifolds</title>
<ISSN>0022-040X</ISSN>
<URL>J. Differential Goem.</URL>
<article text>The body of the article included here</article text>

… more

Full template:
http://www.ams.org/publications/journals/sample-data-file

Example: Metadata for Publishing

h
tt

p
:/

/
w

w
w

.g
h

tc
.u

s
p
.b

r/
s
o
u

rc
e
s
/
c
a
ta

lo
g
u

e
.h

tm

Semantics:
Keywords

[ACM Dictionary]

Complete

Machine-
readable (XML)

Standardized
[ACM]

Metadata =
Data about Data

Future-Proof Software-Systems [Part 3B]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 75

h
tt

p
:/

/
b
lo

g
s
.t

e
ra

d
a
ta

.c
o
m

Data
• Characterization
• Tags
• Keywords
• Description
• Relations

• Storage
• Access
• Rights (IPR)
• Delivery
• Rendering

• Data structure
• Hierarchies
• Composition
• Ordering
• Coherence

Future-Proof Software-Systems [Part 3B]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 76

http://ancienthistory.about.com/od/pyramids/
tp/91012-The-Main-Pyramids-Of-Egypt.htm

The Pyramid of Knowledge

Chaos

Sy
n

ta
x

Data

Information

Knowledge

Wisdom

D
o

m
ai

n
M

o
d

e
l

Se
m

an
ti

cs

R
e

as
o

n
in

g

Context

Data/Information
Architecture

Future-Proof Software-Systems [Part 3B]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 77

Classification of data/information

Structure of data/information

Semantics (Meaning) of information

Modeling of information

Quality assurance of data/information

Protection of data/information

Modeling of data (structure)

Deployment of data/information

Disaster recovery of data/information

Data &
Information
Architecture

Information
Architecture

Data
Architecture

Future-Proof Software-Systems [Part 3B]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 78

Data/Information Architecture

The principles for building applications are the same in all application domains
[sometimes with some tradeoffs]

Q: Is this also true for information/data architecture ?

h
ttp

:/
/
w

w
w

.o
rm

u
tu

a
l.c

o
m

Enterprise data/information
architecture

h
tt

p
:/

/
w

w
w

.o
v
e
.u

k
.c

o
m

Vehicle data/information
Architecture

[Embedded Systems]

… unfortunately NO!



Future-Proof Software-Systems [Part 3B]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 79

What is different in embedded systems data & information?

h
tt

p
:/

/
th

o
rn

to
n

c
e
n

te
r.

n
e
t

Time !

Data items have

timing relationships

between them

… sometimes very
demanding and
stringent!

Future-Proof Software-Systems [Part 3B]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 80

What is different in embedded systems data & information?

Inconsistency !

Data items may have

inconsistencies

between them

… due to mechanical,
communications or
electronic glitches

Future-Proof Software-Systems [Part 3B]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 81

a) Enterprise Data/Information Architecture

h
ttp

:/
/
w

w
w

.o
rm

u
tu

a
l.c

o
m

Future-Proof Software-Systems [Part 3B]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 82

IT-System

Software Structures,
Relationships

Repository

Data,
Information

Functionality
Documentation,

Models etc.

h
tt

p
:/

/
x
n

--
8
0
a
q
a
fc

rt
q
.c

c
/
d
e

Functionality:
• mostly good

• well organized

h
ttp

:/
/
w

w
w

.th
e
g
u

a
rd

ia
n

.c
o
m

Data/Information:
• often disorganized

• inconsistent(redundant)

It is easy to change functionality – but very hard to change data/information

Future-Proof Software-Systems [Part 3B]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 83

Business Model
… how to generate revenue

Databases/Tables
… persistent storage of business

entities & transactions

Business Processes
… how to execute the business

operations

Applications/Components
& Data/Information

… implementation of business
operations

Enterprise Model

Business Logic Model

Domain Model
Business Object Model

Database/Table
Models

Information Architecture

Data/information architecture = A set of consistent, complete models

Data/Information Architecture Stack

Future-Proof Software-Systems [Part 3B]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 84

Data Criticality
Update/Access

Rate
Mirroring-

Interval
Save-

Intervall
Remarks

Transaction
Data

High 40 .. 400 Million
Transactions/day

Transaction
Level

24 h Mainframe

Control
Table Data
& Reference
Data

Very high 14’000
accesses/sec

After each
update

24 h Mainframe

Application
control data

Very high 2 … 5’000
accesses/sec

After each
update

24 h Mainframe

Accounting
data

Very high 50 … 100 Million
Transactions/day

24 h 24 h After EOD
(= End of
Day)
processing

Archive Very high High write, very
low read rate

8 hrs daily

Application
Data

High 0 … 10 Million
updates/day

After each
change

daily After EOD
(= End of
Day)
processing

Example: Typical enterprise volumes (large bank)

h
ttp

s
:/

/
i1

.w
p
.c

o
m

/
w

w
w

.w
e
e
k
ly

p
iq

u
e
.c

o
m

Future-Proof Software-Systems [Part 3B]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 85

Example: CERN storage volume 2015

h
tt

p
:/

/
p
u

b
li
c
-a

rc
h

iv
e
.w

e
b
.c

e
rn

.c
h

Disk based storage volume at
CERN in 2015 is on the

Exabyte scale with hundreds
of millions of files

1 Exabyte EB =
1’000’000’000’000’000’000

(1018 Bytes)

CERN: Future ICT Challenges in Scientific Research:
Available from:

http://openlab.cern/sites/openlab.web.cern.ch/files/technical
_documents/Whitepaper_brochure_ONLINE_0.pdf

[last accessed: 23.11.2017]

Future-Proof Software-Systems [Part 3B]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 86

Enterprise Data/Information

Structure
[DB-Schemas]

Performance
Requirements

Data/Information Architecture Implementation

Metadata
[„Data about

data“]

Naming
Standards

Disaster
Recovery

&
Business

Continuity
Strategy

Disaster
Recovery

&
Business

Continuity
Strategy

Disaster
Recovery

&
Business

Continuity
Strategy

Distributed Deployment

Disaster
Recovery

&
Business

Continuity
Strategy

Security
Strategy

Future-Proof Software-Systems [Part 3B]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 87

Enterprise Data/Information Strategy
h

tt
p
:/

/
w

w
w

.t
ru

p
p
h

r.
c
o
m

No enterprise data strategy

= Chaos
• bad data quality
• redundant data (inconsistent)
• inability to integrate
• low agility for changes
• bad performance
• …

Enterprise Data
& Information Strategy

 Legal & Compliance Requirements

 Enterprise Context

 Unstructured Data

 Business Continuity & Disaster Recovery

 Security & Privacy

 Performance & Measurement

 Metadata

 Organizational roles & responsibilities

 Data/Information Modelling

 Data Integration

 Data Quality Standards

APPROVED
by CIO & CEO

Future-Proof Software-Systems [Part 3B]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 88

Data/information architecture = A set of consistent, complete models

Modeling Data/Information:

 2 «competing» notations

Future-Proof Software-Systems [Part 3B]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 89
http://indalog.ual.es/mdd/udbi/DB_ClassDiagram.png

Example: UML Data/Information Model

Future-Proof Software-Systems [Part 3B]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 90

http://i.stack.imgur.com/GiAos.png

Example: Entity Relationsship Diagram (ERD)

Future-Proof Software-Systems [Part 3B]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 91

h
ttp

:/
/
w

w
w

.re
p
lic

a
m

u
s
e
u

m
.c

o
m

Multiple Views:
h

tt
p
:/

/
in

d
a
lo

g
.u

a
l.
e
s
/
m

d
d
/
u

d
b
i/

D
B

_
C

la
s
s
D

ia
g
ra

m
.p

n
g

UML Data/Information Model

Entity Relationsship Diagram (ERD)

h
tt

p
:/

/
i.
s
ta

c
k
.i
m

g
u

r.
c
o
m

/
G

iA
o
s
.p

n
g

Show only
relevant elements

Consistency!

Future-Proof Software-Systems [Part 3B]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 92

Architecture Principle A10 (a):

Enterprise Data/Information Architecture

1. Define and adhere to an enterprise wide data/information strategy (approved by CIO and
CEO)

2. Model top-down with consistent, redundancy-free, complete models

[ Metadata & Semantics]

3. Assign roles and responsibilities for all data/information items

4. Define and strictly enforce data quality standards

5. Never allow unmanaged redundancy („single version of truth“)

6. Specify and enforce data naming and abbreviation standards

7. Define and implement suitable mechanisms for data validation (correctness, timeliness –
possibly using acquisition redundancy)

A10 – Part 1

Justification: A good data/information architecture (and implementation!) is a highly valuable
backbone for the enterprise. On the contrary, an unsuitable, inconsistent or badly implemented
data/information architecture is a constant source of problems

Future-Proof Software-Systems [Part 3A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 93

Textbook Textbook

Andrew Hinton:
Understanding Context – Environment,
Language, and Information Architecture
O'Reilly and Associates, USA, 2015. ISBN 978-
1-449-32317-2

Martin Kleppmann:
Designing Data-Intensive Applications – The
Big Ideas Behind Reliable, Scalable, and
Maintainable Systems
O'Reilly UK Ltd., revised edition, 2017. ISBN
978-1-449-37332-0

Future-Proof Software-Systems [Part 3B]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 94

b) Embedded Systems Data/Information Architecture

h
tt

p
:/

/
w

w
w

.o
v
e
.u

k
.c

o
m

Example: Vehicle data/information Architecture
[Embedded Systems]

Future-Proof Software-Systems [Part 3B]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 95

Time & timing relationships are an integral part of
an embedded data/information architecture

h
tt

p
:/

/
th

o
rn

to
n

c
e
n

te
r.

n
e
t

Time !

Data items have

timing relationships

between them

… sometimes very
demanding and
stringent!

Future-Proof Software-Systems [Part 3B]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 96

Example: Wheel rotation information in a brake-by-wire car
h

tt
p
:/

/
w

w
w

.t
o
m

o
rr

o
w

s
te

c
h

n
ic

ia
n

.c
o
m

Electronic Stability Program
(ESP))

B
ra

k
e

C
o
n

tr
o
l

Time [ms]
Acquisition

Interval

S
e
n
s
o
r

F
R

S
e
n
s
o
r

F
L

S
e
n
s
o
r

B
R

S
e
n
s
o
r

B
L

B
ra

k
e

C
o
n

tr
o
l

Impact
Interval

Computing
Intervall

< 10 msec
100 x/sec

Future-Proof Software-Systems [Part 3B]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 97

Inconsistency !

Data items may have

inconsistencies

between them

… due to mechanical,
communications or
electronic glitches

Inconsistencies are an important part of an
embedded data/information architecture

Future-Proof Software-Systems [Part 3B]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 98

Time
[ms]Acquisition

Interval

S
e
n
s
o
r

F
R

S
e
n
s
o
r

F
L

S
e
n
s
o
r

B
R

S
e
n
s
o
r

B
L

B
ra

k
e

C
o
n

tr
o
l

Impact
Interval

Computing
Intervall

h
tt

p
:/

/
w

w
w

.c
d
x
e
te

x
tb

o
o
k
.c

o
m

/
b
ra

k
e
s

Wheel rotation speed sensor

Example: Inconsistent wheel rotation rate information

10 rev/min

10,7 rev/min

19,3 rev/min

9.9 rev/min

?

Future-Proof Software-Systems [Part 3B]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 99

How do we deal with data inconsistency?

1. Planned redundancy in acquisition (multiple sensors)

2. Algorithmic „cleaning“ of data (Validation)
S
e
n
s
o
r

F
R

A

S
e
n
s
o
r

F
L

A
S
e
n
s
o
r

B
R

A

S
e
n
s
o
r

B
L

A

B
ra

k
e

C
o
n

tr
o
l

Acquisition Interval

Time
[ms]

Impact
Interval

Computing
Intervall

S
e
n
s
o
r

F
R

B

S
e
n
s
o
r

F
L

B
S
e
n
s
o
r

B
R

B

S
e
n
s
o
r

B
L

B

S
e
n
s
o
r

F
R

c

S
e
n
s
o
r

F
L

C
S
e
n
s
o
r

B
R

c

S
e
n
s
o
r

B
L

c

V
a
li
d
a
ti

o
n

/
C

o
rr

e
c
ti

o
nRedundancy

Future-Proof Software-Systems [Part 3B]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 100

Redundancy & Fault Tolerance

h
tt

p
:/

/
w

w
w

.d
e
s
ig

n
w

o
rl

d
o
n

li
n

e
.c

o
m

Sensor data is captured
by 3 independent
sensors and transmitted
to the computing unit

Example: Triple wheel rotation sensor

Data is acquired multiple times  managed redundancy
S
e
n
s
o
r

F
R

A

S
e
n
s
o
r

F
L

A
S
e
n
s
o
r

B
R

A

S
e
n
s
o
r

B
L

A

S
e
n
s
o
r

F
R

B

S
e
n
s
o
r

F
L

B
S
e
n
s
o
r

B
R

B

S
e
n
s
o
r

B
L

B

S
e
n
s
o
r

F
R

c

S
e
n
s
o
r

F
L

C
S
e
n
s
o
r

B
R

c

S
e
n
s
o
r

B
L

c

Sensor
redundancy

• Time redundancy
• Spatial redundancy
• …

Future-Proof Software-Systems [Part 3B]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 101

Validation

V
a
li
d
a
ti

o
n

/
C

o
rr

e
c
ti

o
n

h
tt

p
:/

/
w

w
w

.e
le

v
a
ti

o
n

1
8
0
.c

o
m

Multiple
acquisition

of data

h
ttp

:/
/
w

w
w

.b
fe

-in
f.o

rg

Consistent, correct data

Deterministic or statistical algorithms

Future-Proof Software-Systems [Part 3B]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 102

Architecture Principle A10 (b):

Embedded Data/Information Architecture

1. Define and adhere to a product data/information strategy

2. Model top-down with consistent, redundancy-free, complete models
[ Metadata & Semantics]

3. Never allow unmanaged redundancy („single version of truth“)

4. Stronly validate data/information after acquisition and before use (correctness,
timeliness – possibly using acquisition redundancy)

Justification: A good data/information architecture (and implementation!) is necessary for all
products based on embedded software.

A10 – Part 2

Future-Proof Software-Systems [Part 3A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 103

Textbook Textbook

Miroslaw Staron:
Automotive Software Architectures – An
Introduction
Springer-Verlag, Germany, 2017. ISBN 978-3-
319-58609-0

Peter Marwedel:
Embedded System Design – Embedded
Systems Foundations of Cyber-Physical
Systems, and the Internet of Things
Springer-Verlag, Germany, 3rd edition, 2018.
ISBN 978-3-319-56043-4

Future-Proof Software-Systems [Part 3B]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 104

 A1: Architecture Layer Isolation

 A2: Partitioning, Encapsulation and Coupling

 A3: Conceptual Integrity

 A4: Redundancy

 A5: Interoperability

 A6: Common Functions

 A7: Reference Architectures, Frameworks and Patterns

 A8: Reuse and Parametrization

 A9: Industry Standards

 A10: Information Architecture

 A11: Formal Modeling

 A12: Complexity and Simplification

Horizontal Architecture Layer Principles:

Future-Proof Software-Systems [Part 3B]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 105

Architecture Principle A11:

Formal Modeling

A11

Future-Proof Software-Systems [Part 3B]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 106

h
ttp

s
:/

/
ifta

c
h

k
o
zik

.w
o
rd

p
re

s
s
.c

o
m

On August 10th, 1628 the warship Vasa set sail in Stockholm harbor on its maiden voyage as

the newest ship in the Royal Swedish Navy.

The country was at war with Poland and the ship Vasa was urgently needed for the war effort

1628:
Swedish Warship Vasa
• 2 gun decks
• 32 x 24-pound guns

Example: Vasa (1/3)

Future-Proof Software-Systems [Part 3B]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 107

After sailing about 1’300 meters, a light gust of wind caused the Vasa to heel over on its side.

Water poured in through the gun portals and the ship sank

h
tt

p
:/

/
w

w
w

.h
o
c
h

s
c
h

u
le

-r
h

e
in

-w
a
a
l.
d
e

Example: Vasa (2/3)

Future-Proof Software-Systems [Part 3B]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 108

Example: Vasa (3/3)

h
ttp

:/
/
w

w
w

.h
o
c
h

s
c
h

u
le

-rh
e
in

-w
a
a
l.d

e

h
ttp

s
:/

/
d
e
.w

ik
ip

e
d
ia

.o
rg

/
w

ik
i/

V
a
s
a
_(S

c
h

iff)

Center of Gravity

Waterline

What happened?

A simple model
would have
shown that the
ship was not
seaworthy!

Future-Proof Software-Systems [Part 3B]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 109

1. Motivation

2. Definitions

3. State of the Art

4. Engineering Solutions

Modeling of IT-Systems

Hope

h
tt

p
:/

/
w

w
w

.d
o
m

e
s
ti

c
a
ti

n
g
it

.c
o
m

Confusion

h
tt

p
:/

/
w

w
w

.m
o
to

ra
u

th
o
ri

ty
.c

o
m

Engineering
Solutions

Lecture:

Future-Proof Software-Systems [Part 3B]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 110

Motivation

Future-Proof Software-Systems [Part 3B]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 111

“All models are wrong – but some are useful“

h
tt

p
:/

/
m

u
s
e
u

m
v
ic

to
ri

a
.c

o
m

.a
u

/
tr

e
a
s
u

re
s

 Models simplify the real world

 Models abstract the real world

 Models focus the real world

Why wrong?

Why useful?

Future-Proof Software-Systems [Part 3B]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 112

h
tt

p
:/

/
m

u
s
e
u

m
v
ic

to
ri

a
.c

o
m

.a
u

/
tr

e
a
s
u

re
s

Why wrong?

• Oversimplified

• Distances very wrong

• Planet sizes completely wrong

• Movement circular (not elliptical)

Why useful?

• Basic movements understandable

• Important details shown

• Synchronized operation (rotation)

• Projections possible (e.g. distances)

Future-Proof Software-Systems [Part 3B]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 113

Why models?

Adequate Models provide:

h
tt

p
:/

/
w

w
w

.p
o
rt

la
n

d
a
rt

.n
e
t

 Clarity

 Committment

 Communication

 Control

The 4 C‘s of models

Future-Proof Software-Systems [Part 3B]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 114

The 4 C‘s of models

Committment
All stakeholders have

accepted the model, its
representation and the
consequences (agreement)

Communication
The model truly and sufficiently

represents the key properties
of the real world to be mapped
into the IT-solution

Control
The model is used for the

assessment of
specifications, design,
implementation, reviews
and evolution

Clarity
The concepts, relationships, and

their attributes are
unambigously defined and
understood by all stakeholders

Future-Proof Software-Systems [Part 3B]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 115

Purpose of the Model

Which is the objective of the model? Which solutions shall the model facilitate? For what
shall the model be used? How fine-granular shall the model be? Which is the modeling
boundary?

Who is the owner of the model? Which process shall be used to evolve and maintain the
model?

The 4 C‘s of models

Audience of the Model
Who benefits from the model (stakeholders)? Who needs to agree to the model? Who

needs to influence or accept the model? Who finances the modeling activity and what
is the model‘s business case?

Before starting any modeling activity, clearly define:

Future-Proof Software-Systems [Part 3B]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 116

Definitions

Future-Proof Software-Systems [Part 3B]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 117

Model: ?

Semi-formal
Modeling 

Formal
Modeling 

Syntax: Intuitive
Semantics: Intuitive

Syntax: Formalized
Semantics: Semi-formal

Syntax: Formalized
Semantics: Formalized

Informal discussions

Semi-formal discussions
Model-exchange, Profiles
Limited Model Checking

Formal discussions
Extensive Model Checking
Reasoning

Informal Modeling 

P
o
w

e
r

o
f
m

o
d
e
l

low

high

Future-Proof Software-Systems [Part 3B]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 118

Conceptual Model(s)C8

C7

C6

C5

C4

C3

C2

C1

Technology Model(s)

Models the technology elements
(servers, networks, busses,
system software, backup and
disaster recovery configurations
etc.)

Models the concepts, their
relationships and their
behaviour of a specific domain

Database Model(s) Models the elements and the
structure of databases

Model Typology

Future-Proof Software-Systems [Part 3B]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 119

Technical Infrastructure Architecture Layer

Infrastructure Services

Deployment Architecture Layer

Business Architecture Layer

architecting

Application (Software) Architecture Layer

Business area:
Financial institution

Example: „Customer“

Database
Schema

Attributes:
Name: …
Address: …
Date of birth: …
etc.

Concept: Account
1…*1…*

association

Database Design

Business
Continuity
& Disaster
Recovery
Plan

Business
Continuity
& Disaster
Recovery
Plan

Business
Continuity
& Disaster
Recovery
Plan

Service
design

A
c
c
e
s
s

c
o
n

tr
o
l

DR

A DCB

Archive

Disk

Enterprise Bus
Disk

Disk
Disk

Ta-
peTa-

pe
Main-
frameMain-

frameMain-
frame

Server
Server

Server

Concept: Customer

„A person or organization
buying goods or services
from our organization“

Concept:
Customer

Future-Proof Software-Systems [Part 3B]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 120

Definition

Formal Model:

Abstraction of a specific domain using:

• a precise syntax,

• rich semantics,

• based on a formal logical foundation,

enabling model checking, validation and reasoning

[at least to a certain degree]

Future-Proof Software-Systems [Part 3B]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 121

Type
discrete

continuous

Time

dynamic

static

Expressivity

very high

high

medium

low

h
tt

p
:/

/w
w

w
.n

am
e

-l
is

t.
n

et
/i

m
g/

im
ag

e
s.

p
h

p
/G

o
d

e
l_

5.
jp

g

Kurt Gödel

h
tt

p
:/

/r
o

.m
at

h
.w

ik
ia

.c
o

m
/w

ik
i/

G
eo

rg
e_

B
o

o
le

0,1
,,

George Boole

u
n

d
e
c
id

a
b
le

d
e
c
id

a
b
le

DL

DL = Description Logic

Model Expressivity

Engineering use:

Decidable logic

in finite time

Future-Proof Software-Systems [Part 3B]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 122

Example: Boolean Logic

G
e
o
rg

e
B

o
o
le

Variables: x  [0,1]

h
tt

p
:/

/
e
n

.w
ik

ip
e
d
ia

.o
rg

/
w

ik
i/

B
o
o
le

a
n

_
a
lg

e
b
ra

Operators: and, or, not

h
tt

p
:/

/
d
rs

ti
e
n

e
c
k
e
r.

c
o
m

/
te

c
h

-3
3
2

Boolean logic allows the
precise modeling of
arbitrarily large digital
computers

Future-Proof Software-Systems [Part 3B]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 123

Example: Car Ontology (1/2)

{Car}

partOf

partOf

partOf
{Body}

{Chassis}

{Power Train}

Parts

Relationship

partOf

{Steering
Column}

{Engine}

partOf

partOf

partOf

partOf

{Gearbox}

partOf

partOf

partOf

partOf

partOf

partOf

{Door}

partOf
{Screw}

instanceOf

instanceOf

instanceOf

instanceOf

instanceOf

Part # 692087
Screw M8x20

Part # 653-
000-0603
Screw 6x3/8“

Part # 692126
Screw M4x8

Part # 692262
Screw M6x12

Part # 692089
Screw M8x16

An ontology
formalizes the
complete
structural
knowledge of a
specific domain

Future-Proof Software-Systems [Part 3B]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 124

Example: Car Ontology (2/2)

<owl:Class rdf:ID=“Car“/>

<owl:Class rdf:ID=“Body“>

<rdfs:subClassOf rdf:resource=“Car“/>

</owl:Class>

<owl:Class rdf:ID=“Chassis“>

<rdfs:subClassOf rdf:resource=“Car“/>

</owl:Class>

<owl:Class rdf:ID=“PowerTrain“>

<rdfs:subClassOf rdf:resource=“Car“/>

</owl:Class>

OWL-DL (Web Ontology Language) Representation:

{Car}

partOf

partOf

partOf
{Body}

{Chassis}

{Power Train}

Part

Relationship

Kurt Gödel

Formal, machine-
processable,
decidable
representation of
the domain
structure
knowledge

Future-Proof Software-Systems [Part 3B]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 125

 Clarity

 Committment

 Communication

 Control

… during the whole life-cycle of an IT-system

The 4 C‘s
of models

Modeling is a powerful instrument.

It provides:

h
tt

p
:/

/
w

w
w

.e
s
a
.i
n

t

Future-Proof Software-Systems [Part 3B]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 126

However:
h

tt
p
:/

/
w

ik
i.
e
c
li
p
s
e
.o

rg

Models can become very large and complex!

How can we handle model size & complexity?

Future-Proof Software-Systems [Part 3B]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 127

How can we handle model size & complexity?

Views ToolsHierarchical
refinement

Domains

Future-Proof Software-Systems [Part 3B]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 128

Model Refinement «Domains»

5: Communications & Collaboration

Business Partner Applications (BPA) Financial Instruments, Research & Market Data (FIN)Enterprise Content Management (ECM)

Client Communication (CHA) Street Side Interfaces (SSI)

1
:

P
ar

tn
e

rs
&

P
e

rs
o

n
s

2
:

Fi
n

an
ce

,I
n

ve
st

m
e

n
t

&
Sa

le
s

3
:

Tr
ad

in
g

an
d

M
ar

ke
ts

4
:

C
as

h
an

d
A

ss
et

O
p

e
ra

ti
o

n
s

C
u

s
to

m
e
r

&
P
a
rt

n
e
r

(C
U

S
)

Wealth Management &
Advisory

(WMA)

Credits and Syndication

(CRS)

6
:

A
cc

o
u

n
ti

n
g,

C
o

n
tr

o
lli

n
g

an
d

R
e

p
o

rt
in

g

F
in

a
n

c
ia

l
A

c
c
o
u

n
ti

n
g

(F
A

C
)

R
e
g
u

la
to

ry
,

R
is

k
a
n

d
L
iq

u
id

it
y

(R
R

L
)

Accounting Control

(AOC)

Logistics

(LOG)

Basic Facilities

(BAS)

Trading

(TRA)

Product Control

(PRC)

Payments

(PAY)

Settlement and Clearing

(SCL)

Single Accounts

(SAC)

Custody
(CDY)

Corporate Actions

(COA)

7: Enterprise Common Services

Partitioning the
system into

«domains» and
modeling each

domain individually
 massive

complexity reduction

Future-Proof Software-Systems [Part 3B]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 129

Model Refinement (Model hierarchy):

Top Level
Model

Detail 1 Level
Model

Detail 1 Level
Model

Detail 1 Level
Model

1st refinement

Detail 2 Level
Model

Detail 2 Level
Model

Detail 2 Level
Model

2nd refinement

In
c
re

a
s
in

g
le

v
e
l
o
f
d
e
ta

il

P
a
ra

d
ig

m
:
In

h
e
rita

n
c
e

Future-Proof Software-Systems [Part 3B]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 130

Example: Domain & Hierarchy Model for a Financial Institution

Domain

A
p
p
li
c
a
ti

o
n

s
(C

o
d
e

+
D

a
ta

)

Subdomain Subdomain Subdomain Subdomain

Additional
Partitioning

Top Level
Model for

Partitioning

Detail 1
Level Model

for
Partitioning

Detail 2
Level Model

for
Partitioning

Future-Proof Software-Systems [Part 3B]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 131

Top Level
Model

Model Views:

Structure

Security

etc.

The complete model is
segmented into
specific, consistent
views

Future-Proof Software-Systems [Part 3B]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 132

Modeling Tools:

• Language Editor
• Syntax Check
• Composition
• Libraries
• Administration
• Exchange
• Graphics
• Profiles/Extensions
• Views

Tools
supporting the
full modeling
cycle

Future-Proof Software-Systems [Part 3B]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 133

Business Stakeholders
… need to model:

• Business processes
• Data/Information content & structure

• Future business scenarios
• External relationships

w
w

w
.1

2
3
rf

.c
o
m

h
tt

p
:/

/
c
re

a
tt

ic
a
.c

o
m

IT Stakeholders
… need to model:

• IT system structure
• IT system behaviour

• IT system interaction with the environment
• IT system evolution
• IS system operation

Modeling of IT-Systems
C

o
n

c
e
p
tu

a
l
In

te
g
rity

C
o
n

s
is

te
n

c
y

Future-Proof Software-Systems [Part 3B]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 134

State of the Art

Future-Proof Software-Systems [Part 3B]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 135

World

System-of-Systems (SoS)
Application

Domain

System

Structure Behaviour
Interaction

with the
environment

Structure Behaviour
Interaction

with the
environment

Metamodel

[ Modeling
elements &
Notation]

Conceptual
Model

[ Concepts &
relationships in
the real
application
domain world]

Architecture
Model

[ Structure, i.e.
parts and their
connections]

Implementation
Model

[ Planned
deployment of
the parts +
connections]

Modeling Hierarchy

M
o
d
e
lin

g
L
e
v
e
l

F

FF

F

F

F

F

F

F

FF

F

F

F
F

F

F

F

F

F
F F

F F

F
F

F

F

F

F

F
F

FF

F F

F

F
F

F
FF

F F

IT-System

Hierarchy

Level

Modeling
Universe

Future-Proof Software-Systems [Part 3B]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 136

State of the Art
Modeling
Level World

System-of-Systems (SoS)
Application

Domain

System

Structure Behaviour
Interaction

with the
environment

Structure Behaviour
Interaction

with the
environment

Metamodel Boundary
Definition

SoS
Metamodel

SoS
Interaction
Model

SoS
Interaction
Model

Domain
Metamodel

OMG Meta-
model &
Profiles,
Graphs

Component
Model

Interface
theories,
Contract
Models

Conceptual
Model

Upper
(World)
Ontology

UML,
SysML

System
Black Box
Model,
Gover-
nance
Model

SoS-Model,
UML, SysML,
Contracts
(Technical &
Legal)

Domain
Ontology,
Business
Object Model,
Application
Domain Model
(DSL), Business
Process Models

UML,
SysML

Hybrid
Compo-
nents,
Business
Process
Orchestra-
tion

SoS-Model,
UML, SysML,
Contracts

Architecture
Model

- UML,
SysML,
Petri-Nets
Frame-
works,

Contracts,

Web-Stds
(e.g.
WSDL)

Contracts,

Web-Stds
(e.g. WSDL)

Reference
architecture,
Architecture
Framework

UML,
SysML,
Petri-Nets
Frame-
works,
Contracts

State-
machines,
timed
automata,
Simulink,
Contracts,
Web-Stds
(e.g.
WSDL)

Contracts,
Web-Stds (e.g.
WSDL)

Implementa-
tion Model

- Annotated,
directed
Hyper-
graphs

- Annotated,
directed
Hypergraphs

- Annotated,
directed
Hypergrap
hs

- Annotated,
directed
Hypergraphs

Run-Time
Model

- model@run
-time

- model@run-
time

- model@run
-time

- model@run-
time

Modeling
Instruments:
Overview

Future-Proof Software-Systems [Part 3B]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 137

Modeling of IT-Systems: State of the Art

h
tt

p
:/

/
w

w
w

.u
b
iz

o
o
.d

e

Business
Object
Model

Domain Model

Simulink
Models

Frameworks

model@runtime

Timed Automata

Contracts

Directed Hypergraph

Taxonomy

State Machines

Petri Net

Ontology OWL

SysML

UML

ERD

Modeling
Zoo

Future-Proof Software-Systems [Part 3B]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 138

Modeling of IT-Systems: State of the Art

Why the confusion?

Modeling is an evolving science (Many papers/books published every year)

 Modeling instruments depend heavily on purpose/audience

 The standardization bodies (OMG, W3C, ietf, ISO, …) are slow

 Strong – and conflicting – interest of major industry players (Divergence)

Future-Proof Software-Systems [Part 3B]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 139

h
tt

p
:/

/
w

w
w

.u
b
iz

o
o
.d

e

Which are today‘s engineering
modeling solutions?

Mature and in wide use:

 Domain Models

 Business Object Models

 Web-Standards (WSDL, …)

 OCL

 Ontologies (OWL-DL)

 UML, SysML + Profiles

 State machines

 Timed automata

 Simulink Models

 ERD for Databases

Emerging and in selected use:

 Domain Specific Languages

 Contracts (CSLs)

 (Coloured) Petri Nets

 Annotated, directed hypergraphs

 Graph rewriting

Future-Proof Software-Systems [Part 3B]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 140

Model Checking & Verification

h
tt

p
:/

/
w

w
w

.c
p
ro

v
e
r.

o
rg

/
w

m
m

/ A formalized model based on
a formal logical foundation
allows automatic verification
of:

• Syntactical correctness

• Semantic correctness

• Behavioural correctness

Model
Quality

Future-Proof Software-Systems [Part 3B]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 141

A formalized model based on a formal
logical foundation allows reasoning:

- extracting implicit knowledge (reasoning)

- deciding statements (true/false)

Reasoning

h
tt

p
:/

/
e
rm

e
n

to
r.

c
o
m

Future-Proof Software-Systems [Part 3B]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 142

Example: Reasoning in an Ontology

Reasoning: From the explicitly formulated knowledge in an
Ontology (= model) implicit knowledge is extracted via defined rules

Nontrivial example (http://owl.man.ac.uk/2003/why/latest):

Content of the ontology:

• „Cat owners have cats as pets“  Statement in the ontology

• „has pet“  Subproperty of „loves pet“ (Statement in the ontology)

Reasoning Conclusion:

• „Cat owners love their cats“

 deduction
 checking

Future-Proof Software-Systems [Part 3B]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 143

A view into the future:

h
tt

p
:/

/
w

w
w

.j
-c

o
n

s
o
rt

iu
m

.c
o
m

Code:
• executable
• checked
•  framework

h
tt

p
:/

/
m

o
d
e
l-

b
a
s
e
d
-s

y
s
te

m
s
-e

n
g
in

e
e
ri

n
g
.c

o
m

Model:
• Structure
• Behaviour
• Constraints

Automatic Code Generation

M
o

d
e

l-b
a

se
d

S
y

ste
m

En
g

in
e

e
rin

g

Future-Proof Software-Systems [Part 3B]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 144

Engineering Solutions

Future-Proof Software-Systems [Part 3B]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 145

Modeling of IT-Systems: Engineering Solutions

h
tt

p
:/

/
w

w
w

.c
h

o
ic

e
b
o
n

d
.c

o
m

Which instruments can we use in today‘s SW-engineering work?

Future-Proof Software-Systems [Part 3B]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 146

h
tt

p
:/

/
w

w
w

.u
b
iz

o
o
.d

e
Which are today‘s engineering
modeling solutions?

Mature and in wide use:

 Domain Models

 Business Object Models

 Web-Standards (WSDL, …)

 OCL

 Ontologies (OWL-DL)

 UML, SysML + Profiles

 State machines

 Timed automata

 Simulink Models

 ERD for Databases

Emerging and in selected use:

 Domain Specific Languages

 Contracts (CSLs)

 (Coloured) Petri Nets

 Annotated, directed hypergraphs

 Graph rewriting

 Role-based modeling (RoSI)

Waiting in the trenches:

 «Z»-Language

 «Event-B» Language

 Certified Code generators

 Correctness provers

Future-Proof Software-Systems [Part 3B]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 147

Modeling of IT-Systems: Engineering Solutions

w
w

w
.1

2
3
rf

.c
o
m

Stakeholders:
Business People, …

h
tt

p
:/

/
c
re

a
tt

ic
a
.c

o
m

Implementation:
SW-People

Architecting &
Engineering

Business Object
ModelDomain Model

BO

BOBO

BO

Structural Model Behaviour Model

Database Model Deployment Model

Future-Proof Software-Systems [Part 3B]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 148

Modeling of IT-Systems: Engineering Solutions

Domain-Model,
Business Object Model
Domain Ontology
UML + Profile Model

Application Taxonomy
UML + Profile(s) Model
[Interface Contract Model]

Data Dictionary
ERD-Model
Graphs/Petri Nets

Business Object
ModelDomain Model

BO

BOBO

BO

Structural Model Behaviour Model

Database Model Deployment Model

Future-Proof Software-Systems [Part 3B]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 149

5: Communications & Collaboration

Business Partner Applications (BPA) Financial Instruments, Research & Market Data (FIN)Enterprise Content Management (ECM)

Client Communication (CHA) Street Side Interfaces (SSI)

1
:

P
ar

tn
e

rs
&

P
e

rs
o

n
s

2
:

Fi
n

an
ce

,I
n

ve
st

m
e

n
t

&
Sa

le
s

3
:

Tr
ad

in
g

an
d

M
ar

ke
ts

4
:

C
as

h
an

d
A

ss
et

O
p

e
ra

ti
o

n
s

C
u

s
to

m
e
r

&
P
a
rt

n
e
r

(C
U

S
)

Wealth Management &
Advisory

(WMA)

Credits and Syndication

(CRS)

6
:

A
cc

o
u

n
ti

n
g,

C
o

n
tr

o
lli

n
g

an
d

R
e

p
o

rt
in

g

F
in

a
n

c
ia

l
A

c
c
o
u

n
ti

n
g

(F
A

C
)

R
e
g
u

la
to

ry
,

R
is

k
a
n

d
L
iq

u
id

it
y

(R
R

L
)

Accounting Control

(AOC)

Logistics

(LOG)

Basic Facilities

(BAS)

Trading

(TRA)

Product Control

(PRC)

Payments

(PAY)

Settlement and Clearing

(SCL)

Single Accounts

(SAC)

Custody
(CDY)

Corporate Actions

(COA)

7: Enterprise Common Services

Example: Domain Model for a Financial Institution

Future-Proof Software-Systems [Part 3B]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 150

Modeling of IT-Systems: Engineering Solutions

Domain Ontology

Single Accounts

(SAC)

Account
Attributes:
• Owner
• Currency
• min/max balance
• etc.

Checking Account
Attributes:
• max overdraft
• repay conditions
• etc.

Savings Account
Attributes:
• max credit/debit/month
• etc.

XXX Account
Attributes:
• xx
• xx
• etc.

partOf

partOf

partOf

Future-Proof Software-Systems [Part 3B]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 151

AgreementPortfolio
eBO

OrganizationEntity
eBO

Request
eBO

Operation
eBO

Product
eBO

obligates/entitles

obligates/entitlesAgreement
eBO

Party
eBO

aggregatesmanages

co
n
ta

in
s

(in
d
iv

id
u
a
l)

is
c
o
n
tra

ctu
a
l

b
a
s
e

fo
r

is
su

e
s
/a

cts
o
n

iss
u
e
s
/a

cts
o
n

provides
rules for

produces

offers specifies

contains
(standard)

su
p
p
o
rts/in

clu
d

e
s

n
e
e
d
s/re

c
e
iv

e
s

n
e
e
d
s/re

c
e
iv

e
s

in
itia

te
s/re

s
u
lts

fro
m

o
w

n
s
/c

o
n

tro
ls

FinancialInstrument
eBO

is
c
o
m

m
itte

d
to

embodies

in
c
lu

d
e
s
/s

p
e
cifie

s

Transfers/
transforms

EconomicResource
eBO

Document/Report
eBO

TermCondition
eBO

RefinementTop
Level

Business
Object
Model

(Enterprise
Level)

Future-Proof Software-Systems [Part 3B]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 152

Partner
dBO

Contact
dBO

Servicing
dBO

AdressingInstruction
dBO

Address
dBO

VariousData
dBO

Compliance
dBO

Instruction
dBO

Segmentation
dBO

PartnerPartnerContext
dBO

PartnerDossierContext
dBO

Party
eBO

Agreement
eBOEnterprise

Level

Domain
Level

Dossier
dBO

PartnerAgreement
dBO

refinement refinement

PartnerGroup
dBO

Example: Business Object Model
Refinement for a Financial Institution

Refinement

Future-Proof Software-Systems [Part 3B]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 153

Mature and in wide use:

Domain Models

Business Object Models

Web-Standards (WSDL, …)

OCL

Ontologies (OWL-DL)

UML, SysML + Profiles

State machines

Timed automata

Simulink Models

ERD for Databases

Modeling of IT-Systems: Engineering Solutions




 The Object Management Group (OMG) is an

international computer industry standards
consortium

Founded in 1989, OMG standards are driven
by vendors, end-users, academic institutions
and government agencies

OMG’s modeling standards, including the
Unified Modeling Language (UML) and Model
Driven Architecture (MDA), enable powerful
visual design, execution and maintenance of
software and other processes

http://www.omg.org

Future-Proof Software-Systems [Part 3B]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 154

Modeling of IT-Systems: Modeling Instruments

Diagram

Structure
Diagram

Behaviour
Diagram

Class
Diagram

Object
Diagram

Component
Diagram

Composite
Structure
Diagram

Profile
Diagram

Deployment
Diagram

Package
Diagram

State
Machine
Diagram

Interaction
Diagram

Activity
Diagram

Use Case
Diagram

Sequence
Diagram

Communi-
cation

Diagram

Timing
Diagram

Interaction
Overview
Diagram

Future-Proof Software-Systems [Part 3B]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 155

Function [F]

utilizes

1..*
Function Owner

[FO]

1..* 1

manages

Capability [C]

1..*

builds

1..*

1..*

1..*

System-of-Systems
[SoS]

Mission [M]
1 1

is defined by Mission Owner
[MO]

1 1

implements

1..*

Coordinator
[CE] 1

governs

Cooperation
Standards

[CS]

1..*
1 enforces

Environment 1 1..*

interacts

Users

1 1..*

benefit

State of the Art Example:
SoS Conceptual Model:
Structure (High Level)

1

Constituent
System Domain

[CSD]

Cooperation
Domain

[CD]

1..* 1..*

1..*

interconnects

1..*

1..*1..*

1

Cooperation
Mechanism [CE]

Cooperation
Contract [CC]

Constituent
System

[CS]

Process
[Proc]

1..*1..*

1

Global
(synchronized)

Time

delivers

1

Future-Proof Software-Systems [Part 3B]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 156

Modeling of IT-Systems: Modeling Instruments

UML and Semantics

System-of-Systems
[SoS]

Mission [M]
1 1

is defined by Mission Owner
[MO]

1 1

implements

Constituent
System Domain

[CSD]

Cooperation
Domain

[CD]
1..*

interconnects

1..*

Environment 1 1..*

interacts

Users

1 1..*

benefit

Class
(Entity)

„meaningless“
container

Meaning
assigned

by modeler

Association
(Relationship)

Meaning
assigned

by modeler

Meaning
defined
in UML

Aggregation
(Composition)

1

1..* 1..*

Future-Proof Software-Systems [Part 3B]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 157

Modeling of IT-Systems: Modeling Instruments

UML and Semantics

How can we define semantics (meaning) in UML diagrams?

a) By building an ontology based on a domain-
model which formally defines the meaning of all
concepts (classes), relationships (associations) and
their attributes

h
tt

p
:/

/
w

w
w

.t
e
c
h

n
o
lo

g
y
u

k
.n

e
t

b) By defining an UML-profile,
extending UML with a domain-
specific vocabulary (including
relationships)

Future-Proof Software-Systems [Part 3B]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 158

Modeling of IT-Systems: Engineering Solutions

Definition:

An UML-profile allows UML to model systems intended for use in a particular domain
(for example medicine, financial services or specialized engineering fields, such as
safety-critical embedded systems or systems-of-systems).

A profile extends the UML to allow user-defined stereotypes, meta-attributes, and
constraints. The vocabulary of the UML is thus extended with a domain-specific
vocabulary that allows more meaningful names to be assigned to model elements.

UML-profiles allow the formalized exchange of domain-knowledge between different
users and enforce a standardization of UML models.

UML and Semantics

Future-Proof Software-Systems [Part 3B]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 159

Modeling of IT-Systems: Engineering Solutions

Example: Important UML-profiles (Standardized by the OMG)

MARTE (Modeling and Analysis of Real-Time and Embedded Systems): MARTE is
an UML profile intended for model-based development of real-time and embedded
systems

UDMP (Unified Profile for DoDAF and MODAF Profile): Profile for enterprise and
system of systems (SoS) architecture modeling

UML and Semantics

h
tt

p
:/

/
c
re

a
tt

ic
a
.c

o
m

UML
Notation

Modeling
Language

UML
Profile

Domain/Application-specific
concepts & semantics

Future-Proof Software-Systems [Part 3B]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 160

Quality of Models

The quality of a model can be expressed as follows:

Syntactic Quality: The model does not violate any syntactic rules of the modeling language

Semantic Quality: All the elements in the model have a unambigously specified and agreed
meaning

Pragmatic Quality: The interpretation by the human stakeholders is correct with respect to
what is meant to be expressed by the model. The interpretation by the tool(s) is correct
with respect to the intended functionality

Social Quality: The model has sufficient agreement by all stakeholders

Completeness Quality: The model contains sufficient information to fullfill its role „clarity,
committment, communication, control“ for the intended goal

Future-Proof Software-Systems [Part 3B]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 161

The System Modeler

A good system modeller needs:

 A strong theoretical background of the choosen modeling instrument

An excellent fluency in the modelling language and the modeling tools

 Good skills to extract the knowledge from the stakeholders in the domain

 Mediation skills to reach agreement for the model between the stakeholders

 A „touch of art“ – to make simple and beautiful, rich models

 A good and reliable memory to have the full model present at all times

YOU !

Future-Proof Software-Systems [Part 3B]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 162

The Future: Contract-Based Systems Engineering

h
tt

p
:/

/
w

w
w

.y
e
ll
o
w

ja
c
k
e
td

is
p
o
s
a
l.
c
o
m

Definition:

Contracts are formal, binding agreements between a service provider and a service
consumer.

They cover the functional interface specifications (functionality and data), the non-
functional properties (timing, security etc.) and in some cases also the commercial

conditions (terms of use, guarantees, liability etc.)

Future-Proof Software-Systems [Part 3B]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 163

The Future: Contract-Based Systems Engineering

Component,
Application

Interface

Service
Contract

Component,
Application

Interface

Service
Contract

Component,
Application

Interface

Service
Contract

Component,
Application

Interface

Service
Contract C

o
m

p
o

si
ti

o
n

Future-Proof Software-Systems [Part 3B]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 164

The Future: Contract-Based Systems Engineering

h
ttp

s
:/

/
w

w
w

.d
a
n

s
e
-ip

.e
u

/
h

o
m

e
/
im

a
g
e
s
/
d
e
liv

e
ra

b
le

s
/
D

A
N

S
E

_
D

6
.3

.2
_G

C
S

L
.p

d
f

www.publicdomainpictures.net

Example: Emergency Services

“All FireStation host at least one Fire Fighting Car”

SoS.itsFireStations->forAll(fstation | fstation.hostedFireFightingCars->size() >= 1)

“Any district cannot have more than 1 fire station, except if all districts have at least 1”

SoS.itsDistricts->exists(district | district.containedFireStations->size() > 1) implies
SoS.itsDistricts->forAll(containedFireStations->size() >= 1)

“The fire fighting cars hosted by a fire station shall be used all simultaneously at least once in 6 months”

SoS.itsFireStations->forAll(fireStation |
Whenever [fireStation.hostedFireFightingCars->exists(isAtFireStation)] occurs,

[fireStation.hostedFireFightingCars->forall(isAtFireStation = false)]
occurs within [6 months])

red = identifiers from the model / blue = OCL constraints / bold black = temporal operators

Future-Proof Software-Systems [Part 3B]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 165

Granularity (Size) of Services

SOA-Service
coarse-grained

Microservice
fine-grained

Business Process

Services

Application A

Orchestration

Module
X Module

Y

Micro-
Service

Service

IT-System

Application
C

Application
B

Application
A

Future-Proof Software-Systems [Part 3B]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 166

Micro-Services

„The microservice architectural style is an
approach to developing a single application as a
suite of small services, each running in its own process and communicating
with lightweight mechanisms, often an HTTP resource API.“
Martin Fowler:
http://martinfowler.com/articles/microservices.html

Microservices have emerged from:

• Domain-driven design

• Continuous delivery

• On-demand virtualization

• Infrastructure automation

• Small autonomous teams

• Systems at scale Sam Newman: Building Microservices, 2015

Future-Proof Software-Systems [Part 3B]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 167

«The glamour lies
in software»
«The glamour lies
in software»

h
tt

p
s
:/

/
c
d
n

1
.l
o
c
k
e
rd

o
m

e
.c

o
m

«The future lies
in modeling»

«The future lies
in modeling»

h
ttp

:/
/
w

w
w

.m
o
rtg

a
g
e
o
rb

.c
o
m

Future-Proof Software-Systems [Part 3B]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 168

Architecture Principle A11:

Formal Modeling

1. Model as many parts of your IT-system as possible (organization & skills
contraints?)

2. Use the highest possible degree of formalization

3. Use industry-standard modeling instruments & tools

4. Treat models as a long-term, highly valuable assets in your company and
maintain them in a repository

5. Keep models complete& up-to date

A11

Justification: The 4 C‘s – Clarity, Committment, Communication and Control

Future-Proof Software-Systems [Part 3A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 169

Textbook Textbook

Gerard O'Regan:
Concise Guide to Formal Methods – Theory,
Fundamentals and Industry Applications
Springer-Verlag, Germany, 2017. ISBN 978-3-
319-64020-4

Berthold Daum, Udo Merten:
System Architecture with XML
Dpunkt Verlag, Germany, 2002. ISBN 978-3-
8986-4196-8

Future-Proof Software-Systems [Part 3B]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 170

 A1: Architecture Layer Isolation

 A2: Partitioning, Encapsulation and Coupling

 A3: Conceptual Integrity

 A4: Redundancy

 A5: Interoperability

 A6: Common Functions

 A7: Reference Architectures, Frameworks and Patterns

 A8: Reuse and Parametrization

 A9: Industry Standards

 A10: Information Architecture

 A11: Formal Modeling

 A12: Complexity and Simplification

Horizontal Architecture Layer Principles:

Future-Proof Software-Systems [Part 3B]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 171

Architecture Principle A12:

Complexity and Simplification

A12

Future-Proof Software-Systems [Part 3B]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 172

h
tt

p
:/

/
b
lo

g
.d

ig
it

a
l.
te

le
fo

n
ic

a
.c

o
m

Complexity
• Biology
• Sociology
• Astronomy
• Physics
• …
• Information Technology (IT)

“Complexity is that property of an IT-system which makes it

difficult to formulate its overall behaviour, even when given

complete information about its parts and their relationships“

Complexity = (IT-) Risk

Future-Proof Software-Systems [Part 3B]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 173

Example: U.S. FAA Air Traffic Control System

“FAA did not recognize the technical complexity of the effort, realistically
estimate the resources required, adequately oversee its contractors'
activities, or effectively control system requirements"

1995: The FAA (US Federal
Aviation Agency) admits the
colossal modernization failure
of the Advanced Automation
System (AAS). That effort
took 16 years of effort and
cost taxpayers $23 billion

h
tt

p
:/

/
w

w
w

.i
n

fo
rm

a
ti

o
n

w
e
e
k
.c

o
m

/
6
6
4
/
6
4
iu

fa
a
.h

tm
h

ttp
:/

/
c
la

rio
n

c
o
n

te
n

tm
e
d
ia

.c
o
m

Future-Proof Software-Systems [Part 3B]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 174

Complexity = (IT-) Risk

good bad

Complexity must be managed !

• Identify it
• Understand it
• Avoid and reduce it as much as possible

• Complexity makes large,
useful systems possible

• It forces us to develop science
for dealing with complexity

• it is a highly interesting and
fruitful area of research

• It is the single most important
reason for disasters in IT

• It makes understanding,
explaining and evolving IT-systems
very hard

• It may lead to unpredictable
(= emergent) behaviour

Future-Proof Software-Systems [Part 3B]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 175

Essential complexity Accidental Complexity

… is the inherent complexity
of the system to be built.

Essential complexity for a
given problem cannot be
reduced.

It can only be lessened by
simplifying the requirements
for the system extension.

… is introduced in addition
to the essential complexity
by our development activities
or by constraints from our
environment.

This is unnecessary and
threatening complexity!

 However, essential
complexity can be managed
and its negative effects can
be minimized by good
architecture

 However, essential
complexity can be managed
and its negative effects can
be minimized by good
architecture

 Avoiding and eliminating
accidental complexity is a
continuous task in the
development process – from
requirements to deployment!

 Avoiding and eliminating
accidental complexity is a
continuous task in the
development process – from
requirements to deployment!

Necessary or desired complexity:
Essential complexity

h
ttp

:/
/
g
re

g
m

a
c
ia

g
.ty

p
e
p
a
d
.c

o
m

Future-Proof Software-Systems [Part 3B]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 176

Classification of Complexity

Unnecessary or undesired
complexity: Accidental Complexity

… is caused by the problem to be
solved. Nothing can remove it.
Represents the inherent difficulty

… is caused by solutions that we create
on our own or by impacts from our
environment

Future-Proof Software-Systems [Part 3B]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 177

h
tt

p
s
:/

/
m

e
d
ia

.l
ic

d
n

.c
o
m

Avoidance of
accidental
complexity

Minimization of
essential

complexity

Future-Proof Software-Systems [Part 3B]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 178

Example:
Database Extension

Application
Application
Application
Application
Application

New
Application

Ext

Problem:
New database standard
= ORACLE

Migration

Ext

Essential complexity: minimized
Accidental complexity: none Essential complexity: high

Accidental complexity: high

Old
Applications

New
Applications

Bridging

Future-Proof Software-Systems [Part 3B]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 179

Complexity
Known (identified)
Complexity

Unknown (hidden)
Complexity

Necessary (desired)
Complexity
[Essential Complexity]

Unnecessary
(undesired)
Complexity
[Accidental Complexity]

manage it use it carefully

avoid it
eliminate it

attack it

Managing Complexity
• OS

• DBMS
• TCP/IP Stack

• etc.

• Technical debt
• Architecture

erosion

Future-Proof Software-Systems [Part 3B]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 180

Complexity Metric System Boundary (Governance !)

Number
of Parts
(Encapsulation
Units)



Number
of internal
dependencies



Number
of external
dependencies



Functional
complexity of
internal
interfaces 

Functional
complexity of
external
interfaces 

Future-Proof Software-Systems [Part 3B]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 181

Complexity Contributors:

Contributor Metric

 Number of Parts (Structural complexity) Integer number (NP)

 Number internal dependencies (Structural complexity) Integer number (NiD)

 Number external dependencies (Structural complexity) Integer number (NeD)

 Functional complexity of internal interfaces # of FP, UCP (FiIj)

 Functional complexity of external interfaces # of FP, UCP (FeIk)

A number of complexity metrics exist in the literature.

However, none of them is satisfactory for engineering system complexity

 Interesting open research question (PhD-Level) !

Complexity Metric:

SysCompl = f[NP,NiD,NeD,FiIj,FeIk]

No distinction between
essential complexity and
accidental complexity

Future-Proof Software-Systems [Part 3B]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 182

Sources accidental IT-complexity:

If you don‘t properly manage complexity, it may kill your system

(… most probably: it will)

If you don‘t properly manage complexity, it may kill your system

(… most probably: it will)

 Specifications: overlaps, duplication

 Redundancy: functional, data & interface redundancy

 Neglected legacy systems: old technology, out-of-use components

 Lack of conceptual integrity: diverging concepts, misunderstandings

 Disregard of (industry) standards: technology explosion

 3rd party software: forced, incompatible concepts, redundancy

 Inconsistent housekeeping: „dead“ code & data

 Diversity in vertical architectures: proliferation of solutions

Future-Proof Software-Systems [Part 3B]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 183

The nasty ways of complexity:

 Complexity creeps up, incrementally growing over long time

 Containing complexity growth requires continuous and substantial architectural
intervention and strong management committment

 Complexity occurs locally in many different specifications, programs and
interfaces, but its impact is global

 Complexity may grow to such a state, that the IT-ystem becomes unmanageable
or commercially unviable

How can we manage complexity ?

a) Implement a process step „simplification“ in your development process

b) Periodically carry out re-architecture programs „complexity reduction“

http://blogs.proquest.com

Future-Proof Software-Systems [Part 3B]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 184

Implement a process step „simplification“ in your development process

Periodically carry out re-architecture programs „complexity reduction“

Reqs Specs Arch Design Build TestSimplify

Check-
list

Application Landscape

Technology Portfolio

Re-Architecture Program 2014
 Eliminate …
 Refactor …
 Replace …
 Redesign …
 etc.

Effort:
1‘100 MM

Cost:
27 M€

Future-Proof Software-Systems [Part 3B]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 185

Complexity Reduction  Simplification Process  Architecture Exploration

New
Requirements

(Functional & Quality)

Business




A
rc

h
ite

c
tu

re
Im

p
le

m
e
n
ta

tio
n

new
changed


A

rc
h
ite

c
tu

re
D

e
v
e
lo

p
m

e
n
t

A
rc

h
ite

c
tu

re
E

v
a
lu

a
tio

n

• Functional Reqs
• Quality Properties

• Fit into Legacy
• Refactoring

• …

The architecture
options are
evaluated, assessed
and the best one is
selected

Future-Proof Software-Systems [Part 3B]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 186

Architecture Principle A12:

Complexity and Simplification

1. Actively manage the complexity in your system:
• Identify it
• Understand it
• Avoid and reduce it as much as possible (especially the accidental

complexity)

2. Install a formal, controlled process step „simplification“ in your design and evolution
procedures

3. For any (substantial) set of requirements develop several possible architectures and use an
architecture assessment method to select the most suitable

4. Periodically execute re-architeture programs with the objective to reduce the complexity of
your IT-system

A12

Justification: Complexity is the largest single risk in IT-systems. By managing complexity, the
unwanted or unnecessary complexity can be reduced – thus making the IT-system more changeable,
manageable and dependable.

Future-Proof Software-Systems [Part 3B]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 187

h
tt

p
s
:/

/
w

w
w

.p
in

te
re

s
t.

c
o
m

Diomidis Spinellis, Georgios Gousios:
Beautiful Architecture – Leading Thinkers
Reveal the Hidden Beauty in Software Design
O'Reilly and Associates, USA, 2009. ISBN 978-0-
596-51798-4

Future-Proof Software-Systems [Part 3A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 188

Textbook Textbook

Roger Sessions:
Simple Architectures for Complex
Enterprises
Microsoft Press, USA, 2008. ISBN 978-0-735-
62578-5

Edward de Bono:
Simplicity
Penguin Life, 2015. ISBN 978-0-241-25748-7

Future-Proof Software-Systems [Part 3B]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 189

Architecture Quality

Future-Proof Software-Systems [Part 3B]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 190

Architecture Quality

Business
Architecture

Application
Architecture

Information
Architecture

Integration
Architecture

Technical
Architecture

A12

A10

A11

A8

A7

A6

A3

A5

A4
A2

A1

A9

Architecture Principles

Architecture quality =
Degree of conformance

to architecture
principles

Future-Proof Software-Systems [Part 3B]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 191

Application Landscape

Architecture Quality

A12

A10

A11

A8

A7

A6

A3

A5

A4
A2

A1

A9

Architecture Principles

Application Landscape

Architecture Quality

Table

Future-Proof Software-Systems [Part 3B]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 192

Functionality (Business Value)

Architecture Properties:
• Changeability
• Dependability
• Performance
• …

Requirements
• Req A
• Req B
•…
• Req Y

h
tt

p
:/

/
d
e
.1

2
3
rf

.c
o
m

Beautiful
Architecture F

u
tu

re
-P

ro
o
f

S
o
ftw

a
re

-
S

y
s
te

m
E

n
g
in

e
e
r

A12

A10

A11

A8

A7

A6

A3

A5

A4
A2

A1

A9

Architecture Principles

Architecture-Greatness:
• Simplicity
• Elegance

Future-Proof Software-Systems [Part 3A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 193

Textbook Textbook

Paul Clements, Rick Kazman, Mark Klein:
Evaluating Software Architectures – Methods
and Case Studies
SEI Series in Software Engineering, Addison-
Wesley, USA, 2001. ISBN 978-0-201-70482-2

Jens Knodel, Matthias Naab:
Pragmatic Evaluation of Software
Architectures
Springer-Verlag, Germany, 2016. ISBN 978-3-
319-34176-7

Future-Proof Software-Systems [Part 1]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 194

Part 3BPart 3B

