Gu) iniversiTar Future-Proof Software-Systems [Part 3B]

Future-Proof Software-Systems (FPSS)

Part 3B: Architecting for Changeability

Lecture WS 2017 /18: Prof. Dr. Frank J. Furrer

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 1

G niversivaT Future-Proof Software-Systems [Part 3B]

DRESDEN

Our journey:
«Softwar (Systems & Soft Three devils

everywhere» J L Engineering Systems Engineeri
g
Managed Evolygti Technial Deb (Future-Pro 3
Strategy Architecture Eros tSoftware—Syste a
: Architecting for (: : :
{ Architecture { Changeability } t Special Topics J ¢

The Future-Proof Software- Architecting for
Systems Engineer Dependability

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 2

G niversivaT Future-Proof Software-Systems [Part 3B]

DRESDEN

Horizontal Architecture Layer Principles:

= Al: Architecture Layer Isolation
= A2: Partitioning, Encapsulation and Coupling

= A3: Conceptual Integrity
* A4: Redundancy
= AS: Interoperability

| Part 3A

= A6: Common Functions

J 1\

= A7: Reference Architectures, Frameworks and Patterns
= A8: Reuse and Parametrization

= A9: Industry Standards

* A10: Information Architecture

= Al11l: Formal Modeling

» A12: Complexity and Simplification

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 3

— | Part 3B

G niversivaT Future-Proof Software-Systems [Part 3B]

DRESDEN

Horizontal Architecture Layer Principles:

= Al: Architecture Layer Isolation

= A2: Partitioning, Encapsulation and Coupling
= A3: Conceptual Integrity

* A4: Redundancy

= AS: Interoperability

* A6: Common Functions

= A7: Reference Architectures, Frameworks and Patterns
* A8: Reuse and Parametrization

= A9: Industry Standards

* A10: Information Architecture

* Al1l: Formal Modeling

» A12: Complexity and Simplification

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 4

Future-Proof Software-Systems [Part 3B]

Architecture Principle A7:

Reference Architectures,
Frameworks and Patterns

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 5

Gu) iniversiTar Future-Proof Software-Systems [Part 3B]

Formalized Architecture Knowledge: Architecture Principles

1 Architectur?

Highly valuable software/system architecture knowledge Knowledg?

in proven & easily accessible form

Reference Architecture: Architecture Framework: Architecture Pattern:
A reference architecture An architecture framework An architectural pattern is
provides a template solution establishes a common practice a concept that solves and
for an architecture for a for creating, interpreting, delineates some essential
particular application domain analyzing and using cohesive elements of a
_ such as financial systems, architecture descriptions within software architecture
automotive, aerospace etc. a particular application domain http:/ /en.wikipedia.org/wiki/
1SO/IEC/IEEE 42010] Architectural pattern

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 6

Gu) iniversiTar Future-Proof Software-Systems [Part 3B]

!
Structure! Patterns DEFINITIONS

Architecture Pattern: L]
An architectural pattern is a concept that solves and delineates some essential

cohesive elements of a[software architecture]

http:/ /en.wikipedia.org/wiki/Architectural pattern

Origin of Patterns: zgpp Ecgtion to ISQ(?f;lwa;eI_IA IiChi?C; u}1;e; "
Christopher Alexander, 1977 Ficit admma, RICnara Heim, Japit JORnson,
John Vlissides, 1995 (,Gang of Four)

© Prof. Dr. Frank J. Furrer: FPSS - W

G niversivaT Future-Proof Software-Systems [Part 3B]

DRESDEN

Example: Security Pattern ,,RBAC“ [Role-Based Access Control]
(Fernandez: Security Patterns in Practice, 2013, ISBN 978-1-119-99894-5)

menber O I SAut hori zedFor
User Rol e Pr ot ect i onObj ect
i d * x| id * | * | id
nane name : name
:
|
Ri ght
accessType

checkRi ghts

ROLE-BASED ACCESS CONTROL PATTERN:

The User and Rol e classes describe registered users and their predefined roles. Users are assigned to
roles, roles are given rights according to their functions. The association class Ri ght defines the
access types that a user within a role is authorized to apply to the Pr ot ecti onCbj ect .

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 8

G niversivaT Future-Proof Software-Systems [Part 3B]

DRESDEN

Example: Broker Pattern
(Buschmann et. al.: A System of Patterns, 1996, ISBN 0-471-95869-7)

: : Br oker :
Cient-side |transter transfer Server -si de
nmessage]] nmessage
Pr oxy register_service |- — Pr oxy
* * .
find_server
send_r equest find client call _service
- f orwar d_r equest send_r esponse
o forward_response *
© * -
o a ©
* % g %; * o
User 5 . ;s Server
cal | _server Bri dge run_service
start_task use_Broker API
use_Broker API pack/ unpack data

forward_nessage
transmt _nessage

BROKER PATTERN:

This pattern is used to structure distributed systems with decoupled components that interact by

remote service invocations.
© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 9

G niversivaT Future-Proof Software-Systems [Part 3B]

DRESDEN

Patterns

Patterns are recorded architecture and design wisdom in ,canonical® form.
Patterns help you build on the collective experience of skilled architects and
software engineers (Buschmann et. al. ISBN 0-471-95869-7)

Patterns are not final, directly applicable solutions! Patterns are intellectual
building blocks which must be intelligently integrated into your work

instruments. They are formal, clear and focussed

Patterns are excellent documentation and communications I

There is a rich literature about patterns. The future-proof w1235 com
software-system engineer needs to continuously familiarize

himself with this trove of architecture knowledge!

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 10

G niversivaT Future-Proof Software-Systems [Part 3B]

DRESDEN

Architecture Frameworks DEFINITIONS
L]

Architecture Framework:

An architecture framework establishes a common practice for creating, interpreting,
analyzing and using architecture descriptions within a particular application domain
[ISO/IEC/IEEE 42010)]

1 1
| |
Meta- Principles
Model — Templates
. ol |lw| |w|llw
l Business Architecture o 3 g., &
— . S5g 5
Applications Architecture 5z &
(¢ 3 >
Architecture Methodology/Process Information Architecture Z % S
0o =
Integration Architecture % g |3
o ||a ||
Technical Architecture £ a3
@
Modeling
Notation | II\II m
Reference Architecture Organization Blueprint

Architectures
© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 11

ﬁﬁwr%'gﬁ'ﬁ% Future-Proof Software-Systemg [Part 2RI

DRESDEN .
Deliverables, Reference

Example: TOGAF (1/2)
[The Open Group Architecture Framework] http:/ /www.togaf.org/ Artefacts Models

Process,
Methodology

™ N

Principles Repository Architecture

etc. Organization
© Prof. Dr. Frank J. Furrer: FPSS - WS 1715 12

G niversivaT Future-Proof Software-Systems [Part 3B]

DRESDEN

Example: TOGAF (2/2)
[The Open Group Architecture Framework] http://www.togaf.org/

Application Platform

TOGAF
I[II-RM
Reference

Architecture
(High level)

Information Provider Applications

http://pubs.opengroup.org/architecture/togaf8-doc/arch/chap22.html

Performance SLAs Management Policy

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 13

TECHNISCHE

G inversioar Future-Proof Software-Systems [Part 3B]

DRESDEN

Reference Architecture DEFINITIONS
Reference Architecture: m]

A reference architecture provides a template solution for a generic architecture for a
particular application domain

- such as financial systems, automotive, aerospace etc.

A reference architecture may recommend: Fundamental

etc.

Structure
Component
Model I I
l\

- | /
N -
Safety \
Mechanisms A
_
Component Contract Service
Technology Model Standardization

Choices © Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 14

Future-Proof Software-Systems [Part 3B]

TECHNISCHE
@ UNIVERSITAT
DRESDEN

Example: AUTOSAR (1/2)

[AUTomotive Open System ARchitecture] http://www.autosar.org

http:/ /www.autosar.org/download /papersandpresentations /AUTOSAR_Brochure EN.pdf

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18

AUTOSAR
Software
Component

Interface

Standard
Software

AUTOSAR provides a set of
specifications that describes
basic software modules, defines
application interfaces and builds
a common development
methodology based on
standardized exchange format

[Currently: 1200 pages]

15

TECHNISCHE
@ UNIVERSITAT
DRESDEN

Example: AUTOSAR (2/2)

http:/ /www.autosar.org

Future-Proof Software-Systems [Part 3B]

AUTOSAR is well documented in a number of
interesting documents (some only for members)

AUTOSAR:
»Cooperate on
Standards
Compete on

Implementations”

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18

16

TECHNISCHE

Y
DRESDEN

Future-Proof Software-Systems [Part 3B]

BIAN standardizes the full functional

Example: BIAN
p landscape of a financial institution

Banking Industry Architecture Network: http://www.bian.org

Sales & Service

Reference Data Operations & Execution Analytics Business Support

AT Network Oparbons

CUSIOME SUréens

Financal Instrument Mant.
Coune party Adminisiraton
| CrECILACENTy SEnice s |
RefenencaDreciory Mot

Erodud Combnabon
Product Deployment

PRt Traning
Sroduct Cusity Assurance
SToduct Prang Facity

refinement

Lnil Trust AdminisTaton
(Crder Aliogaion
Clezarmg & Settiement
SECUIES Fals PIOCESSn
TrageiPnoe AEpEtng

Acpounts Recenabie

REwands Fonts Admnsiraion

Accourt Regonclaton
Colnlersary Rzt
Posiion Managemean
Fratd DEIEGION

ansachon Engne

|

Consoidanzd Custamer Adh i

Party Channel Specific Marketing) . Bank Portfolio & IT Management
T - S — e e ICES ‘Consumer Products Financial Markets Corporate Products Treasury P
Party Branch Network Mami. Brsiness Development Treasury Management IT A Sids & Guisines
= e ————————————
E-Branch Ma [Erandheragemen:] - y o S{EIEMS AminSTaion
RET AT =T ConsumerLoans Investment Trade Finance L=t s /3 -
GgEMENT Adversn: De it Mi - Azget Securtizahion Der nt Emaronment
T] posits nagement L=fier of Cred
AT Networs. hanas t Promotonal Events Factonng Sysiem Des i
—Er(_e—ﬂ—% Sewred Lea stment Porolic Pl Suzrar: =
mar Oparal Enaspect Campaion Mot = e m : - .—B:*na.m:* =l v Manageme! Production Reeass
Eirancn Ketwotk Opesations pes Larpa % . — M = Eank Porifoko Andlyss Sysiem Depoymant
ﬁ COnsumer = | Irvesiment Portois Mgm: | e ———— 5 o
=-Granch Upetalons Custamer Campagn Mot - 7 = = Bank Sorioio AIministraton ElEmS FEONS
PEX Cperaions 020 _— Corporate Banking SHCK LENOrginy Flam Operabons
Products e

SASIEME ASNIANGE

Cperatonal Rk Models

Business Planning

[Corprance gy |
FrautiAML Rescibon

Branch Cumency Managemen Wholesale Trading Corporate Credt Facify Models J__ e irae Toriral
Branch CUTency Drstnbution g 13 Bck Ciersgn Cerooras Lean INIEral NEtkore Ciperalions -
EIoouct VTR lIEm WaTE Desier Viombench Caah NG & Aocoun 595 m—wmﬁm p— B e T
Proguct Invemory DEmb R e e TheciE Look B - IREUTUCEC N L =
Market Data & TospeCt L anageE A;rm .: o é ﬁ@’i”‘aﬁs NonIT and HR Employes Sayrol & Incenives
Mariet Fesd Adminsaton T S TErl T o = T‘:"! Credit Rk MBS Enterprize Services e
i : =
THATREL FEEd CoeraTen Gross Channel Cffer Management ﬁ:"n = Corporate Aty TS g curance EPEIyes ALCEm PIRE]
El g — - -
TSRS TR e on T L BTl] Sakes Planning e & Advisory Servi Economic Capesl \memal AudL __‘E'Lﬁr_yee =
m— RS Senvcng Event History UndensTiin: & COMpOraee Fange Serwies T hs ‘SEcunty SETWGES i
- —————
F NI Wareel Feseaen eS| Commissen AesTer WEA vy Servoes CUSLOMEr Benawnr Modkls ‘SRcLnly AZSaNGE 0
L Contact Routn: COMMESEn Trarsacien L/ Market Operations mﬂ-—. S TS Fraug Models l2r hanagerent |
H = ——————— BRI
Aarket Cata Disseminaton Adm| = B A // Mtua Fund Adinstation Pubic Offerm: LA _'_m'srre Knuwledne &P
e —— Product Expert Saies Supp: Fung AdmINSiaNm Prvaie Placament Procucien Fisk Modes Z0 =L S e Management

FIRED AS! .ﬁﬁ =

Buildings, Equipment
amr Fac

e H
IntelEczual Property Portioho
FnowiEdge EXcance

|

‘Cusioay AIMNGUasen Corporate Relations
Product Management = Stz Operations —
Cuslomer Entremen Admin — Corporale COmmunications
= | ___oiE Admnsiaion |
Product Design crnes valalion COrporale AliEncalSiaRendicer

COfporaie Raabonsn
Aegualory & Lagal Aunorry
imestor Reldbans

Business Direction

hocounMenagren i OpraonaiSeies (I Foiione s M Dosiges Comnons W ey
Fayments Exsouion 35N ALCOUTT Ford Cand ISsuance. P Conporatz Foloes
= Foam Fewant Ponts Aot Biling Senices Froguct & Senice Polices

Busrness Arhisciure
Continaty Piannin:

Document Mgmt &
Archive

(Coilsheral Management DUmeT: Senices
lateral Assel ADminiEraton AIChIE SEMICES
s
Collections
I

17

G niversivaT Future-Proof Software-Systems [Part 3B]

DRESDEN

Example: 3™ party SW

http:/ /www.bian.org Outsourced or

Internal IT System 3rd part%l SW

\
r | \

Financial Markets Financial
Markets

Investment

The BIAN reference

Investment ;
nvestmen architecture allows

Management

Management

“plug & play” with

Investment Portfolio
Planning I T Service Planning

Investment Portfolio

1 rd
SR own and with 3
Investment Portfolio Portfolio
Analysis er vi ce Analysis party components

Investment Portfolio

Investment Portfolio Management

Management I T Service

eTrading

$S9204d Ssaulsng
$S320.4d Ssaulsng

eTrading I T Service Industry-wide,

exchangeable,
standardized
services

NS

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 18

<

G niversivaT Future-Proof Software-Systems [Part 3B]

DRESDEN

Operationalization

Architectur?
Kaowledg?

Reference Architectures
Architecture Frameworks
Architecture Patterns

Apply & enforce

Future-Proof Software-
Systems Engineer © Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 19

http:/ /biscicol.blogspot.ch/2011/06/biscicol-core-software-architecture.html

TECHNISCHE
@ UNIVERSITAT
DRESDEN

Future-Proof Software-Systems [Part 3A]

The Open Group:
TOGAF® Version 9.1

3679-4

Textbook —

Van Haren Publishing, 2011. ISBN 978-9-0875-

Oliver Scheid:

Textbook —

AUTOSAR Compendium, Part 1 - Application

& RTE

CreateSpace Independent Publishing Platform,

2015. ISBN 978-1-5027-5152-2

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18

20

ONIVERSITAT Future-Proof Software-Systems [Part 3A]

DRESDEN

Martin Fowler:
Patterns of Enterprise Application
Architecture

Addison Wesley, Inc., USA, 2002. ISBN 978-0-

321-12742-6

Textbook —

Textbook —

Frank Buschmann, Regine Meunier, Hans
Rohnert, Peter Sommerlad, Michael Stal:
Pattern-Oriented Software Architecture, Vol. 1
— A System of Patterns

John Wiley & Sons., Inc., USA, 1996. ISBN 978-0

471 95869 7

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18

21

G niversivaT Future-Proof Software-Systems [Part 3B]

DRESDEN

Horizontal Architecture Layer Principles:

= Al: Architecture Layer Isolation

= A2: Partitioning, Encapsulation and Coupling
= A3: Conceptual Integrity

* A4: Redundancy

= AS: Interoperability

* A6: Common Functions

= A7: Reference Architectures, Frameworks and Patterns
= A8: Reuse and Parametrization

= A9: Industry Standards

* A10: Information Architecture

* Al1l: Formal Modeling

» A12: Complexity and Simplification

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 22

G niversivaT Future-Proof Software-Systems [Part 3B]

DRESDEN

Architecture Principle A8:

Reuse and Parametrization

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 23

Future-Proof Software-Systems [Part 3B]

TECHNISCHE
@ UNIVERSITAT
DRESDEN

DEFINITIONS

L1}

Reuse in Software-Systems Engineering

Reuse:

Utilization of Software-Artefacts in another Context or Application

https:/ /static.pexels.com

«Good» reuse can have a strong reward
(in quality, time and money)

CAUTION:

Reuse can be a danger for the consistency and integrity of an

architecture

WATCH

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18

L YOURSTEP

O TOS[00qAT MMM / /A1y

wIO:

Wwod udtsAjoyes mmm/ /:dnyg

J

24

G niversivaT Future-Proof Software-Systems [Part 3B]

DRESDEN

Successful reuse can be done with:
* Requirements

» Specifications

» Reference architectures

e Patterns

e Code (Functionality)

e Data (Information)

W00 dNoIg)oejojIe MMM/ /:5d1g

e Algorithms
* Configurations

e Documentation

e Models — Rules for reuse

[)
et © Prof. Dr. Frank J. Furrer: EPSS - WS 17/18 25

G niversivaT Future-Proof Software-Systems [Part 3B]

DRESDEN

— Rules for reuse

Successful Reuse requires:
* a company-wide reuse strategy

e a strong reuse organization

wWooFsoqiiedo mmm/ /a1y

e a dedicated, committed management

 Adequate development & evolution processes

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 26

TECHNISCHE
@ UNIVERSITAT
DRESDEN

Black Box

Future-Proof Software-Systems [Part 3B]

Types of Reuse

Unmodified (1:1) reuse

Reuse

U

Grey Box

Limited modified reuse
(Specific changes < 25 %)

Reuse

U

White Box

Significantly modified
(Specific changes > 25 %)

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18

Important for
functionality
(code) and
information
(data)

27

TECHNISCHE

G inversioar Future-Proof Software-Systems [Part 3B]

Levels of Reuse

Level 4: Business Process >
Business

Rules \
Workflow

:) A4

Contracts Services

Level 3:

Applications:
Business Functions

T

Encapsulated Functionality & Data:
Components

Level 1: Black Functionality: Data:
Box Code DB-Schema

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 28

Level 2: Interfaces 7

TECHNISCHE

G inversioar Future-Proof Software-Systems [Part 3B]

DRESDEN

Value of Reuse

Level 4: Business Process >
Business

medium Rules
——
Workflow

qd W\
. ’ %
very high | Level 3: Contracts Services
R Applications:
Business Functions
»global®
\ reuse / ‘T
L] L] .
Level 2: N Encapsulated Functionality & Data:
medium Components
w i |
Level 1: Functionality: Data:
Code DB-Schema
\ local reuse)

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 29

G niversivaT Future-Proof Software-Systems [Part 3B]

DRESDEN

Business rules
are reused to Business Process >
implement Business
business Rules \
t
process steps Workflow
Services are @) %
callgd tf) build Clarniies f—‘ Services
2p§1€1§§1’suons or Applications:

y Business Functions
Components Encapsulated Functionality & Data:
are cor?lpo.sed Interfaces [Components
to applications T T

Functionality: Data:
Fragments of Black Code DB-Schema
code and data Box

are reused in
programs © Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 30

G niversivaT Future-Proof Software-Systems [Part 3B]

DRESDEN

Project
> Development
. Cost
one-time
use / Value
n >
Development
. Time
Business Case = ———
of Reuse Develo
pment
£N : Cost Reusable software
Project .
> requires

Value

considerable

Reusable Software

Reuse more effort in

(n-time use) planning, design,

development and

N
7

> t implementation

Development
Time © Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 31

TECHNISCHE
@ UNIVERSITAT
DRESDEN

Future-Proof Software-Systems [Part 3B]

Reuse-strategy

Reusable software

Development :
e N Cost requires
rojec considerable
Val)
aue more effort in
Reusable Software lannine. desisn
reuse p & gn,
development and
R implementation
> t
Development
Time

Who is paying-

= Enforced reuse-
strategy required

http://blogs.lawyers.com

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 32

G niversivaT Future-Proof Software-Systems [Part 3B]

DRESDEN

Reuse-strategy

The project has additional cost
and longer time-to-market

— Reuse penalty

,__
E——
—

&=

Project Pnia; o

creating reusable o

software artefacts P_.s > e

o

Same project p g

creating one- n+l g

time software A
P

A4

All projects reusing the software have
lower cost and shorter time-to-market

— Reuse benefit

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 33

Guy) IniveRsivar Future-Proof Software-Systems [Part 3B]

DRESDEN

Reuse-strategy Business
Requirements

Spec One-Time Software One-Time

Phase Development Process Software
Architecture 5
Requirements 8
£
g
<
Business Business E
Requirements Szenarios 5

Spec Reusable Software
Phase Development Process Software

Reusable

\
Architecture Reuse Arch
Requirements Requirements

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 34

G niversivaT Future-Proof Software-Systems [Part 3B]

DRESDEN

Elements of
successful Reuse

Reuse
\ Strategy

0A dedicated and @ A company-wide
committed management reuse strategy

:/ /www.amisinsurance.com

\

http:/ /artofsoftwarereuse.com/tag/schemas

http:/ /www.globalnpsolutions.com

9 A strong

Good software reuse organization
@ architects © Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 35

TECHNISCHE
@ UNIVERSITAT
DRESDEN

Future-Proof Software-Systems [Part 3B]

Black Box

Unmodified (1:1) reuse N

Parametrization

_/

Reuse

Reuse

Grey Box

True, value-generating Reuse

ited modified reuse
es <25 %)

Not reuse — unmanaged redundancy

ificantly modified
(Specific cha > 25 %)

Whitey

Not reuse — unmanaged redundancy

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18

36

00 o1eas0}0] gsojoqdis/ /:dpg

Gup) Oniversrrir Future-Proof Software-Systems [Part 3B]

Grey Box Modification — Divergence (Unmanaged Redundancy)

N

Modification A

Change
S
W
Grey Box
A

Modifi-
cation C

Modifi-
cation
D

/

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18

37

G niversivaT Future-Proof Software-Systems [Part 3B]

Black Box White Box

¥ | |

Re-utilization

Owner

http:/ /www.dorgersoft.com

New Regs Black Box

Vx.y + 0.1 ‘ Repository

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 38

< 9[OAD-9SNIY 201AI3G /Iusuodwo)

G niversivaT Future-Proof Software-Systems [Part 3B]

DRESDEN

Parametrization and Business Rules

Unmodified (1:1) reuse

L Peameiaion |
e D

Parametrization: Selection of a predefined behaviour of the black box by parameters stored
outside of the black box (Not part of the black box functionality or data). The parameters are
loaded at run-time. New versions of the black box interpret the parameters correctly.

Black Box

Business Rules: Business rules are specified in BR-languages and define processing logic —
instead of having the processing logic implemented in code within the black box (Not part of
the black box functionality or data). The business rules are loaded at run-time. New
versions of the black box interpret the business rules correctly

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 39

G niversivaT Future-Proof Software-Systems [Part 3B]

DRESDEN

Parametrization

Business Rules

9 \/_\
Y Businss Rules

Loaded /Initialized
at Run-Time

Black Box No error
Parametrization propagation

Business Rules

Parametrization

Distributed /Updated
by Configuration
Management System

Business Rules

1

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 40

TECHNISCHE
UNIVERSITAT
DRESDEN

Future-Proof Software-Systems [Part 3B]

Parametrization Example: Different Account Number Formats

Payment Order

Account Number Format: Bank Leu

Payment Order

Account Number Format: CREDIT SUISSE

Payment
Application

Payment Order

Account Number Format: IBAN

Payment Order

Account Number Format: Future Format

D E—

Clearing
System

v

Accounts DB

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18

41

G niversivaT Future-Proof Software-Systems [Part 3B]

DRESDEN

Business Rules Example: Rental car servicing

wWoo3n00sdo0Ty/ /7dg

Business Process > Verbal Expression:
7 "A car with accumulated
mileage greater than 5000
since its last service must

A\ 4

Application Software be scheduled for service
- .ess Formal Expression:
Logic :
. | f Car.mles-current-
Specific peri od > 5000 then
Interpreter < Business i nvoke Schedul e-
Rules service (Car.id)
End if

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 42

G niversivaT Future-Proof Software-Systems [Part 3B]

DRESDEN

Measuring the Reuse-Factor:

% of reused Business Process >
busi ness rul es Business
in a different Rules
cont ext \
Workflow
of
applications < ’ < ; Strictly
" orvl co Contracts Services managed in
of calls/hour Applications: — | the
Business Functions .
configuration
of system
appl i cations Encapsulated Functionality & Data:
usi ng t he Interfaces {7 Components
conponent T T
of conponent s Functionality: Data:
i mpl enenting Code DB-Schema
t he code/ DB —
f ragnent

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 43

Gu) iniversiTar Future-Proof Software-Systems [Part 3B]

Why should we work with Reuse?

http:/ /artofsoftwarereuse.com/tag/schemas/

Because of:
« The benefits (in development cost and time-to-market) are considerable

« The quality of the software is higher (mature components, managed evolution
and maintenance)

e Use of proven 3™ party components and services

 Optimization: reusable components < one-time components

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 44

TECHNISCHE

G inversioar Future-Proof Software-Systems [Part 3B]

DRESDEN

Which are the risks of reuse?

http:/ /artofsoftwarereuse.com/tag/schemas/

Risks:

e Quality of reusable software not sufficient

* Reuse-factor too low

 Reuse-strategy not complete or adequate

e Creation of unmanged redundancy (both functional and data)
* Development and maintenance process more complicated

« Management not sufficiently supportive of reuse-strategy

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 45

G niversivaT Future-Proof Software-Systems [Part 3B]

DRESDEN

2. Whenever possible, configure the reusable modules via parameters or business rules
(loaded or initiated at run-time)

Architecture Principle AS8:
Reuse and Parametrization

1. Use only the black-box concept to build reusable software

3. Install and consequently use a configuration management system to control the
distribution of reusable software modules

4. Provide the 4 elements of successful reuse: Committed management, reuse-strategy,
reuse-organization and competent software architects

S. Adapt your software development process to produce reusable software

Justification: If done correctly, reuseable components have a significant positive effect on the
agility of the IT-system.

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 46

TECHNISCHE
@ UNIVERSITAT
DRESDEN

Future-Proof Software-Systems [Part 3A]

Textbook —

Michel Ezran:
Practical Software Reuse

ISBN 978-1-852-33502-1

Springer-Verlag, 2013 (reprint of 2002 edition).

Ronald J. Leach:

ISBN 978-1-9391-4235-1

Software Reuse — Methods, Models, Costs
Ronald J Leach Publishing, 274 edition, 2013.)

Textbook —

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18

47

G niversivaT Future-Proof Software-Systems [Part 3B]

DRESDEN

Horizontal Architecture Layer Principles:

= Al: Architecture Layer Isolation

= A2: Partitioning, Encapsulation and Coupling
= A3: Conceptual Integrity

* A4: Redundancy

= AS: Interoperability

* A6: Common Functions

= A7: Reference Architectures, Frameworks and Patterns
* A8: Reuse and Parametrization

= A9: Industry Standards

* A10: Information Architecture

* Al1l: Formal Modeling

» A12: Complexity and Simplification

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 48

G niversivaT Future-Proof Software-Systems [Part 3B]

DRESDEN

Architecture Principle A9:

Industry Standards

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 49

TECHNISCHE
@ UNIVERSITAT
DRESDEN

Interoperability
Requirements

Future-Proof Software-Systems [Part 3B]

System A
Applications Ao(
Interoperability s‘o(\

Semantic \“Ao Agree d

Interoperability

Syntactic
Interoperability

Technical
Interoperability

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18

System B

Applications
Interoperability

Semantic
Interoperability

Syntactic
Interoperability

Technical
Interoperability

50

G niversivaT Future-Proof Software-Systems [Part 3B]

DRESDEN

DEFINITIONS

1

A standard is:

e a formal, established norm for (technical) systems

 a document which establishes uniform (engineering or technical) criteria,
principles, methods, processes and practices

o Jdbdndy . . I
M < 4 AGEINOINIC
L E T E | e cs
WWW. i S0. or g www. i etf.org WWW. 0ITg. Of g Business
\ J Object
. Y o Model
International Standards Organizations V1.1/2009
\ J
|
Company
Standards

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18

51

TECHNISCHE

BEIIEVS%RESJTKT Future-Proof Software-Systems [Part 3B]

Why being constrained and
restricted by industry standards?
e Slow

* Overkilled

e Behind technology

Respected standards are powerful interoperability and productivity concepts

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 52

TECHNISCHE

G inversioar Future-Proof Software-Systems [Part 3B]

DRESDEN

Example:

Napoleonic Guns
(1/3)

http:/ /civilwartalk.com /threads/largest-reenactor-canon.79423

In early pre-Napoleonic times the artillery cannons were individually different and
required matched cannon balls — difficult logistics

Manufacturing tolerances greatly reduced the accuracy and firing power of the
artillery cannons — reduced military impact

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 53

G niversivaT Future-Proof Software-Systems [Part 3B]

DRESDEN

Example: Napoleonic Guns
(2/3)

S1oredrouado//isdnyg

Gribeauval.

1715-1789
1776: The de Gribeauval
standard revolutionized
artillery.

de Gribeauval Standard:

e reduced and standardized the calibers
— complexity reduction

* introduced normalized parts for the cannons
— component technology

» set manufacturing processes & tolerances

—> reuse

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 54

G niversivaT Future-Proof Software-Systems [Part 3B]

DRESDEN

Example: Napoleonic Guns

(3/3)

£

o

Q £

& :

<O

Y

<

:
Napoleonic
Empire
(ca. 1810)

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 55

G niversivaT Future-Proof Software-Systems [Part 3B]

DRESDEN

... standards for interoperability o

PROGRAIVIVING ‘
I ANGI IAGE

HALL SOFTWARE SERIES ‘

... standards for programming languages

... standards for processes

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 56

G niversivaT Future-Proof Software-Systems [Part 3B]

DRESDEN

» What is the impact of standards ?
» Why are standards important ?

Impact:

* Forcing uniform, interoperable solutions in the industry
* Providing proven, widely accepted and mature solutions
* Enabling exchangeable products (mostly)

» Facilitates reuse

* Foundation for validation & certification

Importance:

* Provides long term stability with managed change

» Forces vendors to comply to interoperable solutions

» Advances industries as a whole

* Provides confidence in technical solutions (e.g. safety or security)

Negative: Standards-setting process is quite slow (Wide consensus required)

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 57

G niversivaT Future-Proof Software-Systems [Part 3B]

DRESDEN

Example: Business Applications _ Domain-specific
Web Standards
Standards SOA-Infrastructure: Web-Services
(1/3) h
Reasoning & Proofs ‘\\ How can we
2 | [Ttestablish trust on
Underlying Logic: DL Q.
g the WWW?
Semantics Business %0
DB Query: (Ontology): Rules: 45_' Web
SPARQL OWL RIF > " Standards
Vocabulary: RDF-S O
2
Data Model: RDF g
O
Syntax: XML £
Addressing: URI Unicode]
71 Technical
Technical Infrastructure — Infrastructure
- Standards

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 58

G niversivaT Future-Proof Software-Systems [Part 3B]

DRESDEN

‘l*;’:;atl,mple: Example: Authentication:
Standards @ How can we establish trust in the
(2/3) identity of an electronic partner ?

Answer:
Use a Public Key Infrastructure — Global
(PKI) interoperability

PKI assigns Digital Certificates
to entities (Persons, organizations)

A digital certificate is an
unforgeable electronic proof of
identity

Digital certificates are
standardized in m

On the Internet, nobody knows you're a dog | globally accepted and used

https://encyclopediadramatica.se/On_the Internet, nobody knows you're a_do

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 59

TECHNISCHE

G inversioar Future-Proof Software-Systems [Part 3B]

Example: Web Standards

(3/3) CA
Certification Agency
[Trusted Entity]
(@)
X. 509
Certificate
_issuer
_validity
_subj ect
_publ i cKey Trustworthy
e _CA-Signature __| electronic
.; authentication
- procedure
resents
P =
< >

Server

Client

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 60

Future-Proof Software-Systems [Part 3B]

Industry-Standard

— 1 T

Technical Impact: Certification: Knowledge:

* Interoperability « Safety * Processes

e Communications e Security e Domain-Knowledge
e Technology * Interfaces « Cooperation

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 61

G niversivaT Future-Proof Software-Systems [Part 3B]

DRESDEN

1. Strictly adhere to proven, accepted industry-standards in all 5 architecture layers and for
all phases of the system lifecycle

Architecture Principle A9:
Industry Standards

2. Never allow any use of vendor-specific standards «extensions» (even if they look tempting
and useful)

3. Keep the number of standards in use to a minimum
4. Introduce new standards only based on very good reasons

5. If for a certain field of your activity there is no industry standard, formulate and
instantiate a company standard

6. Enforce strict adherence to (pure) standards via regular reviews

Justification: A heterogenous industry (such as software-production) requires clearly stated
foundations for technologies, products and processes — otherwise no interoperability, certification,
reuse and vendor-independence is possible

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 62

G niversivaT Future-Proof Software-Systems [Part 3B]

DRESDEN

Horizontal Architecture Layer Principles:

= Al: Architecture Layer Isolation

= A2: Partitioning, Encapsulation and Coupling
= A3: Conceptual Integrity

* A4: Redundancy

= AS: Interoperability

* A6: Common Functions

= A7: Reference Architectures, Frameworks and Patterns
* A8: Reuse and Parametrization

= A9: Industry Standards

= A10: Information Architecture

* Al1l: Formal Modeling

» A12: Complexity and Simplification

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 63

G niversivaT Future-Proof Software-Systems [Part 3B]

DRESDEN

Architecture Principle A10:

Information Architecture

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 64

G niversivaT Future-Proof Software-Systems [Part 3B]

DRESDEN

Information Architecture

,Data models are perhaps the most important
part of developing software, because they
have such a profound effect: Not only on how
the software is written, but also on how we
think about the problem that we are solving”

Martin Kleppmann, 2017

Static, dynamic, stable, 7
unstable, uncertain, ...
Business, people, autonomic,
safety-critical, ...

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18

Humans, machines,
robots, artificial
intelligence, ...

Big data, real-time,
confidential, fuzzy,
experimental, long-lived, ...

O OATJOEIOFU-IJUe MM / /1dR]

wIo:

G niversivaT Future-Proof Software-Systems [Part 3B]

DRESDEN

IT-System
Functionalit Data, Documentation,
y Information Models etc.
v v
N |
Software Struct .
(Components, rup ure.s’ Repository
Applications) Relationships
Technical Infrastructure
Data/Information
Architecture

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 66

G niversivaT Future-Proof Software-Systems [Part 3B]

DRESDEN

o
3
c
N
%4
=
=N

Information = Data that is A ,ﬂ%
accurate and timely, Eﬂ |

specific and organized for a purpose,
presented within a context that gives it meaning and relevance,
4. leads to an increase in understanding and decrease in uncertainty

@ N

http://www.businessdictionary.com © Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 67

TECHNISCHE
UNIVERSITAT
DRESDEN

Structural Architecture Layers

Horizontal Architectures

A

Future-Proof Software-Systems [Part 3B]

Information Architecture

Business

Architecture
(Business Processes)

Applications

Architecture
(Functionality)

Information (Data)

Architecture
(Information & Data)

Integration

Architecture
(Cooperation
Mechanisms)

Technical

Architecture
(Technical
Infrastructure)

Ay
Y
™,

M'l

S
i

[Users | Content'

'. /H'.

.

e

. T

Cuntéﬁ .
/

http:/ /www.rockley.com

© Prof. Dr. Frank J.

Furrer: FPSS - WS 17/18

68

G niversivaT Future-Proof Software-Systems [Part 3B]

DRESDEN

Data/Information Architecture

Definition (1/2):

Information Architecture is a engineering discipline and a

(resulting) structure that is focused on making information:

 dependable .

e understandable

 findable °

correct (content- & time-wise)
complete

consistent & integer
protected

e accountable

semantics
structured

organized
available
unique (no unmanaged redundancy)

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18

7 N

DIEIEHS
A4

69

TECHNISCHE
UNIVERSITAT
DRESDEN

Future-Proof Software-Systems [Part 3B]

Data/Information Architecture
Definition (2/2):

The Data/Information Architecture defines principles for:

» The classification of data/information

» The structure of data/information

 The modeling of data/information

* The quality assurance of data/information
» The protection of data/information

* The deployment of data/information

» The disaster recovery of data/information

* [The process for building and maintaining the architecture]

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18

http:/ /www.ub.tum.de

7 N

DIEIEHS
A4

70

Guy) IniveRsivar Future-Proof Software-Systems [Part 3B]

DRESDEN

... a little bit of history:

Year: 1472

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 71

TECHNISCHE

Y
DRESDEN

Future-Proof Software-Systems [Part 3B]

Information Architecture Artefacts

Structure

Metadata

Semantics

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18

Information
Strategy

72

TECHNISCHE
UNIVERSITAT
DRESDEN

Future-Proof Software-Systems [Part 3B]

Structure

Metadata

Semantics

Information
Strategy

The logical organization of the
information universe of a company

Metadata is data providing
information about aspects of the
data (source, purpose, content, ...)

Definition and representation of
meaning of the information

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 73

G niversivaT Future-Proof Software-Systems [Part 3B]

DRESDEN
Example: Metadata for Publishing .
Standardized PO
[ACM] S;mantlcci‘s. SCIENTIFIC PAPERS.
eyw ordas (1800-1863)
. [ACM Dictionary] o
MaChlne_ COMPILED AND PUBLISHED
readable (XxML)
ROYAL SOCIETY OF LONDON.
Complete Tvonn,

LONDON:
PRINTED BY GEORGE EDWARD EYRE AND WILLIAM EPOTTISWOODE,
FRINTERS TO THE QUEEN'S MOST EXCELLENT MAJESTY.
TOR HER MAJESTY'S STATIONERY OFFICE.

1807,

http: / /www.ghtc.usp.br/sources/catalogue.htm

Metadata =
Data about Data

<aut hor>W H. Jaco</ aut hor >

<title>PL mnimal surfaces in $3%-manifolds</title>

<] SSN>0022- 040X</ | SSN>

<URL>J. Differential Goem </ URL>

<article text>The body of the article included here</article text>

... More

Full template:

http:/ /www.ams.org/publications/journals/sample-data-file
© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18

74

G niversivaT Future-Proof Software-Systems [Part 3B]

DRESDEN

T X

http://blogs.teradata.com

Data

e Characterization » Storage e Data structure
« Tags * Access » Hierarchies
 Keywords * Rights (IPR) « Composition

e Description e Delivery e Ordering

* Relations * Rendering * Coherence

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 75

G niversivaT Future-Proof Software-Systems [Part 3B]

DRESDEN

The Pyramid of Knowledge

-
=
1 : : :
» O
N
1 O
http://ancienthistory.about.com/od/pyramids/ i : é’ :
tp/91012-The-Main-Pyramids-Of-Egypt.htm Knowledge i L_A
Context c _
T :
i g o Data/Information
Information | = A Architecture
__________ H "

O
€
Data E
a
ZaN
P
€
Chaos @

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 76

TECHNISCHE
@ UNIVERSITAT
DRESDEN

Future-Proof Software-Systems [Part 3B]

Data &
Information
Architecture

Classification of data/information
Structure of data/information
Semantics (Meaning) of information
Modeling of information
Quality assurance of data/information

Protection of data/information

Information
Architecture

Modeling of data (structure)
Deployment of data/information

Disaster recovery of data/information

Data
Architecture

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18

77

TECHNISCHE
UNIVERSITAT
DRESDEN

Wod Tenmynuiio mmm/ /:d1g

The principles for

Future-Proof Software-Systems [Part 3B]

Data/Information Architecture

building applications are the same in all application doma%
[sometimes with some tradeoffs]

Q: Is this also true for information/data architecture ?

Enterprise data/information

architecture

Vehicle data/information
Architecture
[Embedded Systems]

... unfortunately NO!

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18

http://www.ove.uk.com

78

G niversivaT Future-Proof Software-Systems [Part 3B]

DRESDEN

What is different in embedded systems data & information?

Data items have

timing relationships
[]
Tl me ! between them

... sometimes very
demanding and
stringent!

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 79

G niversivaT Future-Proof Software-Systems [Part 3B]

DRESDEN

What is different in embedded systems data & information?

Data items may have
inconsistencies
between them

Inconsistency !

... due to mechanical,
communications or
electronic glitches

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 80

G niversivaT Future-Proof Software-Systems [Part 3B]

DRESDEN

a) Enterprise Data/Information Architecture

o
=
3
c
=
c
=
o
o
=]

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 81

G niversivaT Future-Proof Software-Systems [Part 3B]

DRESDEN

IT-System
: l

Functionalit Data, Documentation,
y Information Models etc.
! } !
B >
Software Structures, Repository
Relationships

wod ueIpIensay} mmm/ /:

http:/ /xn--80agafcrtq.cc/de

Functionality: Data/ Information:
» mostly good * often disorganized

» well organized ¢ inconsistent(redundant)

It is easy to change functionality - but very hard to change data/information

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 82

G niversivaT Future-Proof Software-Systems [Part 3B]

DRESDEN

Data/Information Architecture Stack

Information Architecture

Business Model

Enterprise Model
... how to generate revenue

Business Processes
... how to execute the business
operations

Business Logic Model

Applications/Components

& Data/Information
... implementation of business

Domain Model
Business Object Model

operations
Database/Table Databases/Tables
Models ... persistent storage of business

entities & transactions

Data/information architecture = A set of consistent, complete models

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 83

TECHNISCHE
UNIVERSITAT
DRESDEN

Future-Proof Software-Systems [Part 3B]

Example: Typical enterprise volumes (large bank)

Update/Access

Mirroring-

Save-

REIE! SlEELTY Rate Interval Intervall REEE
Transaction High 40 .. 400 Million Transaction 24 h Mainframe
Data Transactions/day Level
Control Very high 14’000 After each 24 h Mainframe
Table Data accesses/sec update
& Reference
Data
Application Very high 2 ...5000 After each 24 h Mainframe
control data accesses/sec update
Accounting Very high 50 ... 100 Million 24 h 24 h After EOD
data Transactions/day (= End of
Day)
processing

Archive Very high High write, very 8 hrs daily

low read rate

Application High 0 ... 10 Million After each daily After EOD

Data updates/day change (= End of
Day)
processing

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18

84

G niversivaT Future-Proof Software-Systems [Part 3B]

DRESDEN

Example: CERN storage volume 2015

1’°000°000’°000°000°000°000
(1018 Bytes)/
‘ Disk based storage volume at
CERN in 2015 is on the

Exabyte scale with hundreds
of millions of files

\l/

http://public-archive.web.cern.ch

CERN: Future ICT Challenges in Scientific Research:

Available from:
http://openlab.cern/sites/openlab.web.cern.ch/files/technical
_documents /Whitepaper_brochure ONLINE_O.pdf
[last accessed: 23.11.2017]

00 oNDIJA[S[ooM MMM / TH00 dM 11/ /Sdpq

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 85

G niversivaT Future-Proof Software-Systems [Part 3B]

Data/Information Architecture Implementation

Metadata
Structure [,Data about
[DB-Schemas] data“]
\ //
Enterprise Data/Information
.

Performance

Naming equirements
Standards

Disaster
Recovery N Security
& Strategy

Business

| Continuity

Distributed Deployment
Strategy

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 86

TECHNISCHE
UNIVERSITAT
DRESDEN

Future-Proof Software-Systems [Part 3B]

Enterprise Data/Information Strategy APPROVED

by CIO & CEO

Enterprise Data
& Information Strategy

» Enterprise Context

» Data/Information Modelling

» Metadata

» Data Integration

» Data Quality Standards

» Organizational roles & responsibilities

http: / /www.trupphr.com

No enterprise data strategy » Performance & Measurement

= Chaos . .
 bad data quality » Security & Privacy
« redundant data (inconsistent) * Business Continuity & Disaster Recovery
* inability to integrate » Legal & Compliance Requirements

* low agility for changes
* bad performance

= Unstructured Data

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 87

TECHNISCHE
UNIVERSITAT
DRESDEN

Future-Proof Software-Systems [Part 3B]

Data/information architecture = A set of consistent, complete models

Modeling Data/Information:
= 2 «competing» notations

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18

88

G niversivaT Future-Proof Software-Systems [Part 3B]

DRESDEN

Example: UML Data/Information Model

http://indalog.ual.es/mdd/udbi/DB_ClassDiagram.pn
© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 89

ONVERSITAT Future-Proof Software-Systems [Part 3B]

Example: Entity Relationsship Diagram (ERD)

CASE contains L
general information
about contracts.

CLIENT

CORPORATE

CORPORATE I
CORPORATE Lrepresents—H— BARRISTER contains specific

CASE
. information about
instructs/ is the type of contract for corporate contracts
-] like the negotiated

is instructed by
}<] REPRESENTATION rates/costs.

is of type
P is represented by RATE contains
information abouta
solicitors rate; when
is/ they are first used
CASE r has—H_ EXTERNAL CLIENT (start date), the
amount and possibly
when they

j[Z are superseded (end

has/ ils associ_ated wi_thf 4 EXTERNAL PARTY date)/

is about is associated with

SOLICITOR -H—| Y EXTERNAL PARTY Iy
» holds information to

writes/ w ol f c
is written by lndlcate. |_fthe paﬂy is
} NOTE is/ 11| EXTERMNAL LAW opposition or third
' has m FIRM party
associated with/
associated with
http://i.stack.imgur.com/GiAos.pn;

RATE

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 90

G niversivaT Future-Proof Software-Systems [Part 3B]

DRESDEN

UML Data/Information Model Multiple Views:
/

S Show only
Z}‘QOZ(relevant elements
@

http://indalog.ual.es/mdd /udbi/DB_ClassDiagram.png

Entity Relationsship Diagram (ERD)

€r.
formanCe View

WOod "wmnasnuweddar mmm/ /1

Technology View

Consistency:!

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 91

TECHNISCHE

G inversioar Future-Proof Software-Systems [Part 3B]

DRESDEN

_ Architecture Principle A10 (a):

Enterprise Data/Information Architecture
1. Define and adhere to an enterprise wide data/information strategy (approved by CIO and
CEO)
2. Model top-down with consistent, redundancy-free, complete models
[= Metadata & Semantics]
3. Assign roles and responsibilities for all data/information items
4. Define and strictly enforce data quality standards
5. Never allow unmanaged redundancy (,single version of truth®)
6. Specify and enforce data naming and abbreviation standards

7. Define and implement suitable mechanisms for data validation (correctness, timeliness —
possibly using acquisition redundancy)

Justification: A good data/information architecture (and implementation!) is a highly valuable
backbone for the enterprise. On the contrary, an unsuitable, inconsistent or badly implemented
data/information architecture is a constant source of problems

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 92

TECHNISCHE

G inversioar Future-Proof Software-Systems [Part 3A]

Textbook — Textbook —

Martin Kleppmann:

Andrew Hinton: Designing Data-Intensive Applications - The

Understanding Context — Environment, Big Ideas Behind Reliable, Scalable, and
Language, and Information Architecture Maintainable Systems
O'Reilly and Associates, USA, 2015. ISBN 978- O'Reilly UK Ltd., revised edition, 2017. ISBN

1-449-32317-2 978-1-449-37332-0

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 93

G niversivaT Future-Proof Software-Systems [Part 3B]

DRESDEN

b) Embedded Systems Data/Information Architecture

http:/ /www.ove.uk.com

Example: Vehicle data/information Architecture
[Embedded Systems]

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 94

TECHNISCHE
UNIVERSITAT
DRESDEN

Future-Proof Software-Systems [Part 3B]

Data items have
timing relationships

Ti m e ! between them

... sometimes very
demanding and
stringent!

http:/ /thorntoncenter.net

Time & timing relationships are an integral part of
an embedded data/information architecture

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18

95

TECHNISCHE
@ UNIVERSITAT
DRESDEN

Example: Wheel rotation information in a brake-by-wire car

http: / /www.tomorrowstechnician.com

Future-Proof Software-Systems [Part 3B]

Brake Control

|

< 10 nsecC
100 x/ sec

|

<«—— Sensor FR
< Sensor BL

-z Sensor FL
<«——— Sensor BR

Electronic Stability Program

(ESP)

Computing
Intervall
| | |
| 1 I .
— —— Time [ms]
Acquisition Impact
Interval Interval

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 96

G niversivaT Future-Proof Software-Systems [Part 3B]

DRESDEN

Data items may have
inconsistencies
between them

Inconsistency !

... due to mechanical,
communications or
electronic glitches

Inconsistencies are an important part of an
embedded data/information architecture

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 97

G niversivaT Future-Proof Software-Systems [Part 3B]

DRESDEN

Example: Inconsistent wheel rotation rate information

10 rev/mn
—p
. 110,7 revimn ?
¢ > 119,3 rev/nin ®
E > :
5 9.9 rev/imn
5 JXoe
_;3 LL QLM
§ 5555
g 2222 -
> QLD o
& nunnwy B
Z <
o
Computing %
) Intervall =
Wheel rotation speed sensor ,%S
I I 1
Ti me
l_'_l
Acquisition Impact [rTB]
Interval Interval

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 98

TECHNISCHE
UNIVERSITAT
DRESDEN

Future-Proof Software-Systems [Part 3B]

How do we deal with data inconsistency?

1. Planned redundancy in acquisition (multiple sensors)

2. Algorithmic ,cleaning® of data (Validation)

Redundancy S
o=
A 13
(| 5 -
<< mMmMmm OQouooo [o)
YY1 Ay I — e
Ll M LML M LWL Mm O E
5555 5555 5555 (S o
2220 2200 2000 ~ @)
3333 3338 3333 g P
T | Computing %é
® o
o) Intervall m
G Ti
: LS : | I me
| | — [ms]
L ‘ J _I_’
Acquisition Interval Impact

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 Interval 99

G niversivaT Future-Proof Software-Systems [Part 3B]

DRESDEN

Redundancy & Fault Tolerance

Data is acquired multiple times < managed redundancy

—_—

<< mmmm Oooo

N0 o N N I o N I 0 0 | .

ISiE Cold Coid e Time redundancy
Gonn 0005 2980 __Sensor e Spatial redundancy
3888 3333 3383 | redundancy .

Example: Triple wheel rotation sensor

\

Sensor data is captured
by 3 independent

_ sensors and transmitted
| to the computing unit

j TRIPLE REDUNDANT
Sensor Design

http://www.designworldonline.com

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 100

G niversivaT Future-Proof Software-Systems [Part 3B]

DRESDEN
Validation
-
o
o=
i)
O
> e }
g =~ o
: > [W55 1000005, |
.5 O val@{}’%@l’lg%l@@@@l@l 11 Qlé g
E _ Conisetiee1010779 &
; O 006G 16100 19 > ;S
- = [J
© |
Multiple O | Consistent, correct data
o e, e y—
acquisition ®©
of data —
|

Deterministic or statistical algorithms

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 101

TECHNISCHE

G inversioar Future-Proof Software-Systems [Part 3B]

DRESDEN

1. Define and adhere to a product data/information strategy

Architecture Principle A10 (b):

Embedded Data/Information Architecture

2. Model top-down with consistent, redundancy-free, complete models
[= Metadata & Semantics]

3. Never allow unmanaged redundancy (,,single version of truth®)

4. Stronly validate data/information after acquisition and before use (correctness,
timeliness — possibly using acquisition redundancy)

Justification: A good data/information architecture (and implementation!) is necessary for all
products based on embedded software.

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 102

TECHNISCHE

G inversioar Future-Proof Software-Systems [Part 3A]

DRESDEN

Textbook — Textbook —

Peter Marwedel:

Miroslaw Staron: Embedded System Design - Embedded
Automotive Software Architectures — An Systems Foundations of Cyber-Physical
Introduction Systems, and the Internet of Things
Springer-Verlag, Germany, 2017. ISBN 978-3- Springer-Verlag, Germany, 3" edition, 2018.

319-58609-0 ISBN 978-3-319-56043-4

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 103

G niversivaT Future-Proof Software-Systems [Part 3B]

DRESDEN

Horizontal Architecture Layer Principles:

= Al: Architecture Layer Isolation

= A2: Partitioning, Encapsulation and Coupling
= A3: Conceptual Integrity

* A4: Redundancy

= AS: Interoperability

* A6: Common Functions

= A7: Reference Architectures, Frameworks and Patterns
* A8: Reuse and Parametrization

= A9: Industry Standards

* A10: Information Architecture

= Al1l: Formal Modeling

» A12: Complexity and Simplification

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 104

G niversivaT Future-Proof Software-Systems [Part 3B]

DRESDEN

Architecture Principle All:

Formal Modeling

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 105

Future-Proof Software-Systems [Part 3B]

Example: Vasa (1/3)

1628:
Swedish Warship Vasa

e« 2 gun decks
e 32 X 24-pound guns

On August 10th, 1628 the warship Vasa set sail in Stockholm harbor on its maiden voyage as
the newest ship in the Royal Swedish Navy.

The country was at war with Poland and the ship Vasa was urgently needed for the war effort
106

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18

G niversivaT Future-Proof Software-Systems [Part 3B]

DRESDEN

Example: Vasa (2/3)

After sailing about 1’300 meters, a light gust of wind caused the Vasa to heel over on its side.
Water poured in through the gun portals and the ship sank

http:/ /www.hochschule-rhein-waal.de

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 107

G niversivaT Future-Proof Software-Systems [Part 3B]

DRESDEN

Example: Vasa (3/3)

What happened?

Sp BEem-UIeUI-9[NyoSYo0y MMM/ /d1Iq

Center of Gravity

(TIOS) BSA /T /SI0 BIpadnia op/ /SANY

Waterline

A simple model TS
would have }

shown that the
ship was not
seaworthy!

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 108

G niversivaT Future-Proof Software-Systems [Part 3B]

DRESDEN

Modeling of IT-Systems

Lecture:
1. Motivation Hope
s :
2. Definitions !
; Confusion
:
3. State of the Art ;
:
E
é v
4. Engineering Solutions Engineering
‘g Solutions

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 109

G niversivaT Future-Proof Software-Systems [Part 3B]

DRESDEN

Motivation

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 110

G niversivaT Future-Proof Software-Systems [Part 3B]

DRESDEN

"All models are wrong - but some are useful”

— Models simplify the real world

— Models abstract the real world

om.au/treasures

— Models focus the real world

Why wrong?

http://museumvictoria.c

Why useful?

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 111

TECHNISCHE

G inversioar Future-Proof Software-Systems [Part 3B]

DRESDEN

Why wrong?

e Oversimplified
 Distances very wrong
 Planet sizes completely wrong

« Movement circular (not elliptical)

Why useful?

Basic movements understandable

http://museumvictoria.com.au/treasures

Important details shown

Synchronized operation (rotation)

Projections possible (e.g. distances)

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 112

G niversivaT Future-Proof Software-Systems [Part 3B]

DRESDEN

Why models?

Adequate Models provide:

\ Clarity

\/ Committment

\/ Communication

\/ Control

‘ ! The 4 C‘s of models

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 113

G niversivaT Future-Proof Software-Systems [Part 3B]

DRESDEN

‘ The 4 C‘s of models

Clarity C 1 Committment C 2
The concepts, relationships, and All stakeholders have
their attributes are accepted the model, its
unambigously defined and representation and the
understood by all stakeholders consequences (agreement)
Communication C 3 Control C 4
The model truly and sufficiently The model is used for the
represents the key properties assessment of
of the real world to be mapped specifications, design,
into the IT-solution implementation, reviews
and evolution

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 114

G niversivaT Future-Proof Software-Systems [Part 3B]

DRESDEN

‘ ! The 4 C‘s of models

Before starting any modeling activity, clearly define:

Purpose of the Model
Which is the objective of the model? Which solutions shall the model facilitate? For what
shall the model be used? How fine-granular shall the model be? Which is the modeling

boundary?
Who is the owner of the model? Which process shall be used to evolve and maintain the

model?

Audience of the Model
Who benefits from the model (stakeholders)? Who needs to agree to the model? Who
needs to influence or accept the model? Who finances the modeling activity and what

is the model‘s business case?

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 115

G niversivaT Future-Proof Software-Systems [Part 3B]

DRESDEN

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 116

G niversivaT Future-Proof Software-Systems [Part 3B]

DRESDEN

Model: ?

Syntax: Intuitive low
Semantics: Intuitive

Informal Modeling = Informal discussions

Syntax: Formalized
Semantics: Semi-formal

Semi-formal

;o)
o
%
Modeling — Semi-formal discussions =
& Model-exchange, Profiles A
Limited Model Checking g
&
Syntax: Formalized =
Semantics: Formalized
Formal
Modeling = Formal discussions

Extensive Model Checking
Reasoning high

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 117

TECHNISCHE
UNIVERSITAT

DRESDEN

Future-Proof Software-Systems [Part 3B]

Model Typology

oy K
() :?ﬂa

Conceptual Model(s)

Models the concepts, their
relationships and their
behaviour of a specific domain

Database Model(s)

=

Technology Model(s)

Models the elements and the
structure of databases

Models the technology elements
(servers, networks, busses,
system software, backup and
disaster recovery configurations
etc.)

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 118

TECHNISCHE

G inversioar Future-Proof Software-Systems [Part 3B]

« Business Architecture Layer '
Example: ,,Customer Y Concept: Customer Attributes:
associ ation »A person or organization Name:
Concept: Account . , | buying goods or services gddresfsb....h.
1..% 1..% from our organization® etite of birth: ...
Business area:

Financial institution %

Application (Software) Architecture Layer

il Business
w o . Continuit
Database Datab Desi § *3 Service & Disaste}rl
atabase Design i
Schema g 28 design Recovery
Plan

Deployment Architecture Layer
<

N

Concept: ﬁ é Archive

Customer

i | | | Infrastructure Services | | | | | |

Technical Infrastructure Architecture Layer

r;
r'é
e L
Server

Main-
frame

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 119

G niversivaT Future-Proof Software-Systems [Part 3B]

DRESDEN

DEFINITIONS

Definition m}

Formal Model:
Abstraction of a specific domain using:
* a precise syntax,

e rich semantics,

e based on a formal logical foundation,

enabling model checking, validation and reasoning

[at least to a certain degree]|

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 120

TECHNISCHE

Y
DRESDEN

images.php/Godel 5.jpg

http://www.name-list.net/im

http://ro.math.wikia.com/wiki/George Boole

Kurt Godel

George Boole

undecidable

m
0,1
-, V, A

decidable

very high et

Future-Proof Software-Systems [Part 3B]

Model Expressivity

A Expressivity

high et
DL = Description Logic

Time

edium ===

dynamic

static

low ==

Type

discrete)
continuous

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18

Engineering use:
Decidable logic
in finite time

121

G niversivaT Future-Proof Software-Systems [Part 3B]

DRESDEN

Example: Boolean Logic
Variables: x € [0, 1]
Qperators: and, or, not

George Boole

1y
[)
:)C - D__ Boolean logic allows the
7 precise modeling of
>QJ arbitrarily large digital

computers
© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 122

Ll S I T R)
00—~ — 08 m
R, O

http://drstienecker.com /tech-332

G niversivaT Future-Proof Software-Systems [Part 3B]

DRESDEN
Example: Car Ontology (1/2) paria)
part Of {BOdY} part Of {Door}
part Of
Parts e part o
An ontology
part Of PartY 692089 formalizes the
i nstanceOf | Screw\M8x16 Complete
. {Steering Part # 692087 -
{Car} _parT {ChaSSIS} — bart of Column} parT {Screw} - Screwngz()) Stmctural
/ . knowledge of a
/ part Of i nst ancedt 23256:)2/8,, Sp601f10 domain
Relationship
Part # 692126
5 i nst anceOf Screw M4x8
part
- Part # 692262
part Of i nstanceof | Screw M6x12
“oarta {Power Train} —f .o {Engine}
arto 1Gearbox}

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 123

Future-Proof Software-Systems [Part 3B]

TECHNISCHE
@ UNIVERSITAT
DRESDEN

Example: Car Ontology (2/2)

{Car} —

OWL-DL (Web Ontology Language) Representation:

— {Chassis}

N\

<ow :Class rdf: I D=“Car“/>
<ow : O ass rdf: | D="Body"“>
<rdfs:subC assO rdf:resource=*“Car“/>
</ow : C ass>
<ow : C ass rdf: | D="Chassis">
<rdfs:subC assO
</ow : C ass>
<ow : C ass rdf: | D="Power Trai n“>
<rdfs:subC assO
</ow : C ass>

rdf : resource="“Car*“/ >

rdf : resource="“Car*“/ >

Relationship

vartor {Power Train}

Kurt Godel

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18

Formal, machine-
processable,
decidable
representation of
the domain
structure
knowledge

124

TECHNISCHE

umvensnm Future-Proof Software-Systems [Part 3B]

DRESDEN

Modeling is a powerful instrument.

It provides:

\/ Clarity

\/ Committment C 1 . 4

\/ Communication The 4 C’s
of models

\/ Control

... during the whole life-cycle of an IT-system

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 125

G niversivaT Future-Proof Software-Systems [Part 3B]

DRESDEN

However: Models can become very large and complex!

http:/ /wiki.eclipse.org

How can we handle model size & complexity?

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 126

G niversivaT Future-Proof Software-Systems [Part 3B]

DRESDEN

How can we handle model size & complexity?

I TN

Domains Hierarchical Views Tools
refinement

\
J——
V

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 127

Guy) IniveRsivar Future-Proof Software-Systems [Part 3B]

DRESDEN

Model Refinement «Domains»

Partitioning the
5: Communications & Collaboration system into

r— «domains» and
Business Partner Applications (BPA) Financial Instruments, Research & Market Data (FIN) mOdelln g eaCh
| —

domain individually
B = massive

>
Iz
w [F " (PAY) . .
£ K [g complexity reduction
o = Trading - Single Accounts
o [o3 ©
Tl 5 —~ - (TRA) o (SAC)
< ¥ E 5 2
S ERA|lE ° i
© T~ ' -a-; Settlement and Clearing
oo [e n (scL) 8
I © z 2 g
= K = g
o a) Q Product Control -g ; 7
'E & g (PRC) © Custody 5 8
S © < (CDY) S
= © 2
- [0
= g N < Corporate Actions
§ § (COA)
Q
c E
< = 7: Enterprise Common Services
O I3
=]
g Logistics Accounting Control Basic Facilities
23 (LOG) (AOC) (BAS)

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 128

TECHNISCHE
UNIVERSITAT
DRESDEN

Future-Proof Software-Systems [Part 3B]

Model Refinement (Model hierarchy):

Top Level
Model

Detail 1 Level
Model

Detail 1 Level
Model

Detail 1 Level
Model

2nd reﬂnem

Detail 2 Level
Model

Detail 2 Level
Model

Detail 2 Level
Model

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18

[Te19Pp JO [9A9] SUISBaIOU]

douejrIdyuU] (wWw3rpeied

TE"“"'SC'-*-E Future-Proof Software-Systems [Part 3B]

UNIVERSITAT
DRESDEN

Example: Domain & Hierarchy Model for a Financial Institution

Top Level
Model for
Additional . e
Partitioning Domain Partitioning
Detail 1
Level Model
for
v Partitioning
Subdomain Subdomain Subdomain Subdomain
% g - A N A N/ A N N A
? N o [S
3 | I|—| — = EB- e Y s I — =
g = 0 0 —aoeam = = ==
=< S0 SOpp o " @ O
g —1 [| = s [= I | — e I
E=AN . — = =
S \ = =
S, Detail 2 e =
<% - Level Model

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 130

Part1t10n1ng

TECHNISCHE

G inversioar Future-Proof Software-Systems [Part 3B]

Model Views:

W/

Structure
The complete model is
| segmented into
Top Level Security specific, consistent
Model views

efc.

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 131

TECHNISCHE
UNIVERSITAT
DRESDEN

Language Editor
Syntax Check
Composition
Libraries
Administration
Exchange

Graphics

Profiles /Extensions
Views

Future-Proof Software-Systems [Part 3B]

Modeling Tools:

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18

Tools
supporting the
full modeling
cycle

132

G niversivaT Future-Proof Software-Systems [Part 3B]

DRESDEN

Modeling of IT-Systems

Business Stakeholders
... need to model:

www.123rf.com

» Business processes
* Data/Information content & structure
e Future business scenarios
o External relationships

G m

IT Stakeholders

... heed to model:

» IT system structure
 IT system behaviour

 IT system interaction with the environment
 IT system evolution

IS system operation /

AOU9a]sISU0)
A11393u] ren3daouo)

:/ /creattica.com

\Z

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 133

G niversivaT Future-Proof Software-Systems [Part 3B]

DRESDEN

State of the Art

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 134

G niversivaT Future-Proof Software-Systems [Part 3B]

DRESDEN

Modeling :
Universe Hlerarchy System-of-Systems (SoS) System

World Interaction Appllcat.:lon Interaction
Structure Behaviour with the Domain Structure Behaviour with the
environment environment

Modeling Hierarchy >

Metamodel
[> Modeling
elements &
Notation]

IT-System

Conceptual
Model

[— Concepts &
relationships in
the real
application
domain world]

LCVG]. Architecture
Model

[Structure, i.e.
parts and their
connections]

[2A97T SUI[OPOIN

Implementation g
Model

[- Planned
deployment of
the parts + v \‘ \ \

v connectionsj © Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 135

TECHNISCHE
@ UNIVERSITAT
DRESDEN

Future-Proof Software-Systems [Part 3B]

State of the Art

Modeling
Instruments:
Overview

System-of-Systems (SoS) System
Modeling World Interaction Appllcat.lon Interaction
Level Structure | Behaviour with the Domain Structure | Behaviour with the
environment environment
Metamodel Boundary SoS SoS SoS Domain OMG Meta- | Component | Interface
Definition Metamodel | Interaction Interaction Metamodel model & Model theories,
Model Model Profiles, Contract
Graphs Models
Conceptual Upper UML, System SoS-Model, Domain UML, Hybrid SoS-Model,
Model (World) SysML Black Box UML, SysML, Ontology, SysML Compo- UML, SysML,
Ontology Model, Contracts Business nents, Contracts
Gover- (Technical & Object Model, Business
nance Legal) Application Process
Model Domain Model Orchestra-
(DSL), Business tion
Process Models
Architecture - UML, Contracts, Contracts, Reference UML, State- Contracts,
Model SysML, Web-Stds Web-Stds architecture, SysML, machines, Web-Stds (e.g.
Petri-Nets (e.g. (e.g. WSDL) Architecture Petri-Nets timed WSDL)
Frame- WSDL) Framework Frame- automata,
works, works, Simulink,
Contracts Contracts,
Web-Stds
(e.g.
WSDL)
Implementa- - Annotated, - Annotated, - Annotated, - Annotated,
tion Model directed directed directed directed
Hyper- Hypergraphs Hypergrap Hypergraphs
graphs hs
Run-Time - model@run | - model@run- - model@run | - model@run-
Model -time time -time time
© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 136

Gu) iniversiTar Future-Proof Software-Systems [Part 3B]

Modeling of IT-Systems: State of the Art

=0 Fr amewor ks Domai n Model Contracts
UM raxonony S mulink
SysM. Model's pgysiness
Di rected Hypergraph hj ect
Model -
Ti med Aut omat a
Petri Net @
; | Modeling

St at e Machi nes E Zoo

Ont ol ogy ONAL

nodel @ unti ne N

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 137

G niversivaT Future-Proof Software-Systems [Part 3B]

DRESDEN

Modeling of IT-Systems: State of the Art

Why the confusion?

= Modeling is an evolving science (Many papers/books published every year)
* Modeling instruments depend heavily on purpose/audience

» The standardization bodies (OMG, W3C, ietf, ISO, ...) are slow

» Strong — and conflicting — interest of major industry players (Divergence)

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 138

TECHNISCHE
UNIVERSITAT
DRESDEN

Future-Proof Software-Systems [Part 3B]

http: / /www.ubizoo.de

Which are today‘s engineering
modeling solutions?

Mature and in wide use:
v Domain Models
v Business Object Models

v Web-Standards (WSDL, ...

v OCL

v Ontologies (OWL-DL)
v UML, SysML + Profiles
v’ State machines

v’ Timed automata

v' Simulink Models

v ERD for Databases

Emerging and in selected use:

v Domain Specific Languages

v Contracts (CSLs)

v’ (Coloured) Petri Nets

v' Annotated, directed hypergraphs

v' Graph rewriting

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18

139

G niversivaT Future-Proof Software-Systems [Part 3B]

DRESDEN

Model Checking & Verification

A formalized model based on
a formal logical foundation
allows automatic verification
of:

e Syntactical correctness

http:/ /www.cprover.org/wmm/

e Semantic correctness

e Behavioural correctness

Model
Quality

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 140

G niversivaT Future-Proof Software-Systems [Part 3B]

DRESDEN

Reasoning

A formalized model based on a formal
logical foundation allows reasoning:

- extracting implicit knowledge (reasoning)

http://ermentor.com

- deciding statements (true/false)

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 141

G niversivaT Future-Proof Software-Systems [Part 3B]

DRESDEN

Example: Reasoning in an Ontology

Reasoning: From the explicitly formulated knowledge in an
Ontology (= model) implicit knowledge is extracted via defined rules

Nontrivial example (http://owl.man.ac.uk/2003 /why/latest):

Content of the ontology:

« ,Cat owners have cats as pets® « Statement in the ontology

» Jhas pet® « Subproperty of ,loves pet“ (Statement in the ontology)

Reasoning Conclusion:

- ,Cat owners love their cats®

— deduction
— checking

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 142

G niversivaT Future-Proof Software-Systems [Part 3B]

DRESDEN

A view into the future:

: <
.g m
)
Model: >
b « Structure o
E Behaviour B
z e Constraints wn
g ~
P ()
5 -
& o
‘ Automatic Code Generation E-.
S
Q
g =
; Code: o
e executable =
% e checked Q@

3 e = framework

<

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 143

G niversivaT Future-Proof Software-Systems [Part 3B]

DRESDEN

Engineering Solutions

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 144

G niversivaT Future-Proof Software-Systems [Part 3B]

DRESDEN

Modeling of IT-Systems: Engineering Solutions

Which instruments can we use in today‘s SW-engineering work?

http:/ /www.choicebond.com

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 145

G niversivaT Future-Proof Software-Systems [Part 3B]

DRESDEN

Which are today‘s engineering
modeling solutions?

http: / /www.ubizoo.de

Mature and in wide use: Emerging and in selected use: Waiting in the trenches:
v Domain Models v Domain Specific Languages v «Z»-Language

v Business Object Models v Contracts (CSLs) v «Event-B» Language

v’ Web-Standards (WSDL, ...) v (Coloured) Petri Nets v Certified Code generators
v OCL v' Annotated, directed hypergraphs v Correctness provers

v Ontologies (OWL-DL) v Graph rewriting

v UML, SysML + Profiles v Role-based modeling (RoSI)

v State machines

v Timed automata

v Simulink Models
v ERD for Databases

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 146

Future-Proof Software-Systems [Part 3B]
Modeling of IT-Systems: Engineering Solutions

TECHNISCHE
@ UNIVERSITAT
DRESDEN

g
55 Stakeholders:
é Business People, ...
I] [[e
1 0] 80
- Business Object
Domain Model Model

Architecting &
Engineering

= I;_gy

r=

Behaviour Model

Structural Model

:ESED:
A B8 oo

Database Model Deployment Model

Implementation:
SW-People E

:/ /creattica.com

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 147

TECHNISCHE
UNIVERSITAT
DRESDEN

Future-Proof Software-Systems [Part 3B]

Modeling of IT-Systems: Engineering Solutions

=
|

Domain Model

BO BO

BO ||| BO

Business Object
Model

>

Structural Model

0

Behaviour Model

s

Database Model

L1800

Eﬁ[ﬁl O O

Deployment Model

Domain-Model,
Business Object Model
Domain Ontology
UML + Profile Model

Application Taxonomy
UML + Profile(s) Model
[Interface Contract Model]

Data Dictionary
ERD-Model
Graphs/Petri Nets

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18

148

Future-Proof Software-Systems [Part 3B]

TECHNISCHE
@ UNIVERSITAT
DRESDEN

Example: Domain Model for a Financial Institution

5: Communications & Collaboration

Client Communication (CHA)

Enterprise Content Management (ECM) Financial Instruments, Research & Market Data (FIN)

Street Side Interfaces (SSI)

Business Partner Applications (BPA)

Logistics
(LOG)

Accounting Control
(AOC)

Basic Facilities
(BAS)

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18

2 Payments
oo [a (PAY)
N o © e
e S \
S g o3 Trading ',g Single Accounts
ol S - (TRA) © (SAC)
(o4 @ c <))
sEHl||: g
g D{ 7 o Settlement and Clearing
oo (= o v (scL) 8
c E £ 2 &
= I = ;
o ED o Product Control -g % &
b= & g (PRC) © Custody f =)
o © < (CDY) 2 e
) c a S
- = © +©
oo [- o 2
=i g o < Corporate Actions <)
S § (COA)
S B
< 3 .
< = 7: Enterprise Common Services
O 3
=]
©
A=
e

149

TECHNISCHE

G inversioar Future-Proof Software-Systems [Part 3B]

Modeling of IT-Systems: Engineering Solutions

Domain Ontology

Single Accounts
(SAC)

Savi ngs Account
Attri butes:

e max credit/debit/ nonth
* etc.

part Of

Account

Attributes: Checki ng Account
« Onner part O Attributes:
e Currency e max overdraft

e m n/ max bal ance * repay conditions
. etc. . etc.

XXX Account
Attributes:

* XX

* XX

e etc.

part Of

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 150

G niversivaT Future-Proof Software-Systems [Part 3B]

DRESDEN
g OrganizationEntity g Agreement obligates/entitles g party
TOp eBO obligates/entitles eBO eBO Reﬁnement
Level
1 —. c 1=} b
Business manages aggregates g5 . S P
c ® O L 3 =
Object : 52 0 s B |2
2 - =9 o] ° = o @,
g £ AgreementPortfolio 23 £ > & s 2
2 5
Model S 53
E . = = Request
(Enterprise =)
>
[=X
c
Level) offers specifies §
@
=}
. . — (1]
= Product | contains |=5 TermCondition | |2)
(standard) o 2
eBO eBO 8
3
2
@ provides :.,
% rules for g
@ "
i} 3 = Operation == EconomicResource
@ c eBO Transfers/
% § transforms e
3
@,
<
& produces embodies
=4 Financiallnstrument
eBO

= Document/Report

eBO

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 151

Future-Proof Software-Systems [Part 3B]

TECHNISCHE
@ UNIVERSITAT
DRESDEN

E) = Party = Agreement
nterlprlse eBO Refinement ¢BO
Leve l
Domai n % PartnerPartnerContext e e
Level a0
%PartnerDossierContext
= Segmentation 980
dBO / \
\g Partner Dossier = PartnerAgreement
= PartnerGroup 50 50 50
dBO
= Instruction /
dBO
= Address
dBO
E Adressinginstruction Compliance VariousData
dBo dBO dBO
= Servicing
5 Example: Business Object Model
Refinement for a Financial Institution
= Contact
dso © Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 152

G niversivaT Future-Proof Software-Systems [Part 3B]

DRESDEN

Modeling of IT-Systems: Engineering Solutions

Mature and in wide use:

Donr.lam Mod-els \/ The Object Management Group (OMG®) is an
Business Object Models \/ international computer industry standards

Web-Standards (WSDL, ...) |consortium
OCL Founded in 1989, OMG standards are driven
Ontologies (OWL-DL) \/ by vendors, end-users, academic institutions

UML, SysML + Profiles and government agencies

State machines OMG’s modeling standards, including the
Unified Modeling Language (UML) and Model
Driven Architecture (MDA), enable powerful
Simulink Models visual design, execution and maintenance of
ERD for Databases software and other processes

Timed automata

http:/ /www.omg.org

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 153

TECHNISCHE
UNIVERSITAT
DRESDEN

Future-Proof Software-Systems [Part 3B]

Modeling of IT-Systems: Modeling Instruments

Diagram

Structure Behaviour
Diagram Diagram
h p
| I I |
Class Component Object Activity Use Case
Diagram Diagram Diagram Diagram Diagram
Profile Composite Deployment Package Interaction Stat.e
. Structure . . . Machine
Diagram . Diagram Diagram Diagram .
Diagram Diagram
JAY
I I I
Communi- Interaction o
Sequence . . Timing
. cation Overview .
Diagram . . Diagram
Diagram Diagram

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18

154

TECHNISCHE

G inversioar Future-Proof Software-Systems [Part 3B]

Environment | 1 1.+
= interacts System-of-Systems is defined by p Mission [M] 1 1| Mission Owner
1 1% [SoS] 1 1 [MO]
Users benefit « implements
- Al
1..* 1. *
Coordinator | governs » Coopera'tion interconnects . Constituent.
[CE] 1 1o Domain L L System Domain
N [CD] o o [CSD]
1 1 v enforces
.. 1 L
Cooperation
Standards
[CS]
Il..* |1..* 1..* |1*
Cooperation Cooperation -
Mechanism [CE] Contract [CC] Process Constituent 1 Globa.l
[Proc] System (synchronized)
[CS] 1.» Time
L% | utilizes « delivers
1..* v
Capability [C]
A1l .*
builds | » 1+ 1
State of the Art Example: , Function Owner
Function [F] [FO]
SoS Conceptual Model: 1. L
i © Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 155
Structure (High Level)

TECHNISCHE
@ UNIVERSITAT
DRESDEN

Future-Proof Software-Systems [Part 3B]

Modeling of IT-Systems: Modeling Instruments

Meaning UML and Semantics
assigned
by modeler Meaning
Associ ation assigned

(Rel ati onshi p)

by modeler
Environment L’ 1 1. e

/|| « interacts System-of-Systems is defined by p- Mission [M] L Mission Owner
P 1 1..* [SoS] 1

1 [MO]
Users <« benefit §]>

« implements

1..* 1. *
(ECItGIIStS) Cooperation | interconnects > Constituent \ Aggr egat I on
ntity

Domain 1 1 System Domain (Corrposi ti on)
[CD] [CSD] T
Meaning
ymeaningless” defined
container in UML
© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18

156

TECHNISCHE
@ UNIVERSITAT
DRESDEN

http: / /www.technologyuk.net

Future-Proof Software-Systems [Part 3B]

Modeling of IT-Systems: Modeling Instruments

UML and Semantics

How can we define semantics (meaning) in UML diagrams?

a) By building an ontology based on a domain-
model which formally defines the meaning of all

Fish |

==profile== |
Network

User

loginMame : int

==metaclags== '

Device

==metaclass==
Class

==stereotypes==
NetworkNode

MAC : string

IP : string
location : string
nodeType : string

==stereotype==
Workstation

==stereotype==

Server

<=stereotype==
Switch/Router

concepts (classes), relationships (associations) and
their attributes

b) By defining an UML-profile,
extending UML with a domain-
specific vocabulary (including
relationships)

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 157

G niversivaT Future-Proof Software-Systems [Part 3B]

DRESDEN

Modeling of IT-Systems: Engineering Solutions

UML and Semantics

DEFINITIONS

LL]

Definition:

An UML-profile allows UML to model systems intended for use in a particular domain
(for example medicine, financial services or specialized engineering fields, such as
safety-critical embedded systems or systems-of-systems).

A profile extends the UML to allow user-defined stereotypes, meta-attributes, and
constraints. The vocabulary of the UML is thus extended with a domain-specific
vocabulary that allows more meaningful names to be assigned to model elements.

UML-profiles allow the formalized exchange of domain-knowledge between different
users and enforce a standardization of UML models.

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 158

TECHNISCHE

G inversioar Future-Proof Software-Systems [Part 3B]

DRESDEN

Modeling of IT-Systems: Engineering Solutions
UML and Semantics

[1
|\|0tl¢J':l'\t/Li on E UM
Profile
Modeling Domain/Application-specific
Language concepts & semantics

Example: Important UML-profiles (Standardized by the OMG)

MARTE (Modeling and Analysis of Real-Time and Embedded Systems): MARTE is

an UML profile intended for model-based development of real-time and embedded
systems

UDMP (Unified Profile for DoDAF and MODAF Profile): Profile for enterprise and
system of systems (SoS) architecture modeling

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 159

G niversivaT Future-Proof Software-Systems [Part 3B]

DRESDEN

Quality of Models

The quality of a model can be expressed as follows:
Syntactic Quality: The model does not violate any syntactic rules of the modeling language

Semantic Quality: All the elements in the model have a unambigously specified and agreed
meaning

Pragmatic Quality: The interpretation by the human stakeholders is correct with respect to
what is meant to be expressed by the model. The interpretation by the tool(s) is correct
with respect to the intended functionality

Social Quality: The model has sufficient agreement by all stakeholders

Completeness Quality: The model contains sufficient information to fullfill its role ,clarity,
committment, communication, control® for the intended goal

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 160

Gu) iniversiTar Future-Proof Software-Systems [Part 3B]

The System Modeler

YOU !

A good system modeller needs:

» A strong theoretical background of the choosen modeling instrument

*An excellent fluency in the modelling language and the modeling tools

» Good skills to extract the knowledge from the stakeholders in the domain

= Mediation skills to reach agreement for the model between the stakeholders

= A ,touch of art” — to make simple and beautiful, rich models

= A good and reliable memory to have the full model present at all times

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18

161

TECHNISCHE

UNIVERSITAT Future-Proof Software-Systems [Part 3B]

The Future: Contract-Based Systems Engineering

http: / /www.yellowjacketdisposal.com

DEFINITIONS

LL]

Definition:

Contracts are formal, binding agreements between a service provider and a service

consumer.

They cover the functional interface specifications (functionality and data), the non-
functional properties (timing, security etc.) and in some cases also the commercial

conditions (terms of use, guarantees, liability etc.)

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18

162

TECHNISCHE

UNIVERSITAT
DRESDEN

Future-Proof Software-Systems [Part 3B]

The Future: Contract-Based Systems Engineering

Service
Contract

I nterface

Component,
Application

Service
Contract

Service
Contract

Service
Contract

I nterface Interface I nterface
Component, Component, Component,
Application Application Application

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18

09
‘»
o
Q.
£
o
O

163

G niversivaT Future-Proof Software-Systems [Part 3B]

DRESDEN

www.publicdomainpictures.net

The Future: Contract-Based Systems Engineering

Example: Emergency Services

“All FireStation host at least one Fire Fighting Car”
SoS.itsFireStations->forAll(fstation | fstation.hostedFireFightingCars->size() >= 1)

“Any district cannot have more than 1 fire station, except if all districts have at least 1”
SoS.itsDistricts->exists(district | district.containedFireStations->size() > 1) implies
SoS.itsDistricts->forAll(containedFireStations->size() >= 1)

”

“The fire fighting cars hosted by a fire station shall be used all simultaneously at least once in 6 months
SoS.itsFireStations->forAll(fireStation |
Whenever [fireStation.hostedFireFightingCars->exists(isAtFireStation)] occurs,
[fireStation.hostedFireFightingCars->forall(isAtFireStation = false)]
occurs within [6 months])

red = identifiers from the model / blue = OCL constraints / bold black = temporal operators

TPA7ISOD ¢ €90 ASNVA/SI[qeI9ATSp/SITETWT/WoY /o AI-o5uep Mmm / / S03Y

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 164

G niversivaT Future-Proof Software-Systems [Part 3B]

DRESDEN

Granularity (Size) of Services

SOA-Service Microservice
coarse-grained fine-grained
ﬂpplication A \
IT-System ot
{ Apphzatlon J Mo dule
{ Application J Module
B

Y
[Application]
C S Micro-
Service

Services
Orchestrat1on /

Business Process I

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 SGI‘ViCC 165

G niversivaT Future-Proof Software-Systems [Part 3B]

DRESDEN

Micro-Services

DEFINITIONS
»lhe microservice architectural style is an 1]
approach to developing a single application as a

suite of small services, each running in its own process and communicating
with lightweight mechanisms, often an HTTP resource APIL.“

Martin Fowler:
http:/ /martinfowler.com/articles /microservices.html

Microservices have emerged from:

« Domain-driven design

e Continuous delivery

e On-demand virtualization

e Infrastructure automation

e Small autonomous teams

e Systems at scale Sam Newman: Building Microservices, 2015

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 166

G niversivaT Future-Proof Software-Systems [Part 3B]

DRESDEN

«The glamour lies
in software»

https://cdnl.lockerdome.com

«The future lies
in modeling»

SrIow MMM/ /Tdg

W09 IOJTE:

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 167

TECHNISCHE

G inversioar Future-Proof Software-Systems [Part 3B]

DRESDEN

- Architecture Principle A11:

Formal Modeling

1. Model as many parts of your IT-system as possible (organization & skills
contraints?)

2. Use the highest possible degree of formalization
3. Use industry-standard modeling instruments & tools

4. Treat models as a long-term, highly valuable assets in your company and
maintain them in a repository

S. Keep models complete& up-to date

Justification: The 4 C’s — Clarity, Committment, Communication and Control

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 168

TECHNISCHE

UNIVERSITAT Future-Proof Software-Systems [Part 3A]

DRESDEN

Textbook —

Gerard O'Regan:

Concise Guide to Formal Methods - Theory,
Fundamentals and Industry Applications
Springer-Verlag, Germany, 2017. ISBN 978-3-
319-64020-4

Textbook —

Berthold Daum, Udo Merten:

System Architecture with XML

Dpunkt Verlag, Germany, 2002. ISBN 978-3-
8986-4196-8

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 169

G niversivaT Future-Proof Software-Systems [Part 3B]

DRESDEN

Horizontal Architecture Layer Principles:

= Al: Architecture Layer Isolation

= A2: Partitioning, Encapsulation and Coupling
= A3: Conceptual Integrity

* A4: Redundancy

= AS: Interoperability

* A6: Common Functions

= A7: Reference Architectures, Frameworks and Patterns
* A8: Reuse and Parametrization

= A9: Industry Standards

* A10: Information Architecture

* Al1l: Formal Modeling

= A12: Complexity and Simplification

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 170

Gu) iniversiTar Future-Proof Software-Systems [Part 3B]

Architecture Principle A12:

Complexity and Simplification

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 171

Gu) iniversiTar Future-Proof Software-Systems [Part 3B]
Complexity

 Biology

e Sociology

e Astronomy
* Physics

e Information Technology (IT)

2

“Complexity is that property of an IT-system which makes it
difficult to formulate its overall behaviour, even when given
complete information about its parts and their relationships”

http://blog.digital.telefonica.com

DEFIMITIONMNS

L]

wiuuic

ey Complexity = (IT-) Risk
RISK _~»

.
I s l — Hinh © Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 172

Gu) iniversiTar Future-Proof Software-Systems [Part 3B]

Example: U.S. FAA Air Traffic Control System

1995: The FAA (US Federal
Aviation Agency) admits the
colossal modernization failure
of the Advanced Automation
System (AAS). That effort
took 16 years of effort and
cost taxpayers $23 billion

O,
o
2.
o
5
(o]
S
5
=3
D
5
=3
=
D
2
I
(o]
S
8

http:/ /www.informationweek.com /664 /64iufaa.htm

“FAA did not recognize the technical complexity of the effort, realistically
estimate the resources required, adequately oversee its contractors'
activities, or effectively control system requirements"

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 173

TECHNISCHE

G inversioar Future-Proof Software-Systems [Part 3B]

DRESDEN

wviaaie

fr"bb Complexity = (IT-) Risk
RISK %
Low 2 i good l \ bad

- Complexity makes large, « It is the single most important
useful systems possible reason for disasters in IT
* It forces us to develop science || ¢ It makes understanding,
for dealing with complexity explaining and evolving IT-systems
e it is a highly interesting and very hard
fruitful area of research * [t may lead to unpredictable

(= emergent) behaviour

Complexity must be managed !

e Identify it
« Understand it
e Avoid and reduce it as much as possible

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 174

TECHNISCHE

G inversioar Future-Proof Software-Systems [Part 3B]

DRESDEN

Essential complexity Accidental Complexity

... 1s the inherent complexity RISK % ... 1s introduced in addition
of the system to be built. I ow = Z..i. | to the essential complexity
Essential complexity for a by our development activities
given problem cannot be or b.y constraints from our
reduced. environment.

It can only be lessened by This is unnecessary and

simplifying the requirements threatening complexity!

for the system extension.

— However, essential = Avoiding and eliminating
complexity can be managed accidental complexity is a
and its negative effects can continuous task in the

be minimized by good development process — from
architecture requirements to deployment!

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 175

G niversivaT Future-Proof Software-Systems [Part 3B]

DRESDEN

Classification of Complexity

Necessary or desired complexity:
Essential complexity

... 1s caused by the problem to be
solved. Nothing can remove tit.
Represents the inherent difficulty

Unnecessary or undesired
complexity: Accidental Complexity

... 1s caused by solutions that we create
on our own or by impacts from our _
environment — 1 + 1

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18

[(27/3)/3] -1

2

176

Woo pedadA) geoewigoisd/ /1dny

g
19)
©
=]
he}
S
=
[}
Y
o
[
g
J
J
P
al
b
<

TECHNISCHE
UNIVERSITAT
DRESDEN

Future-Proof Software-Systems [Part 3B]

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18

Avoidance of
accidental
complexity

Minimization of
essential
complexity

177

G niversivaT Future-Proof Software-Systems [Part 3B]

DRESDEN

Example: | 1
Database Extension :

y

NAANAA
|
\

_.| Application

Problem: New

New database standard . ” Application
= ORACLE

Old
Applications
Migration N
ew
<—> Applications

Bridging

N

A4

N

N

Essential complexity: minimized
Accidental complexity: none Essential complexity: high
Accidental complexity: high e

© Prof. Dr. Frank J. Furrer: FPSS

TECHNISCHE
@ UNIVERSITAT
DRESDEN

Future-Proof Software-Systems [Part 3B]

Managing Complexity
e OS
« DBMS
o Known (identified) Unknown (hidden) « TCP/IP Stack
Complexity Complexity Complexity o . etc.
Necessary (desired)
Complexity manage it use it carefully
[Essential Complexity]
U””ec?ssar Y avoid it « Technical debt
(undesne@) eliminate it e Architecture
Complexity e o
[Accidental Complexity] attack it |

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18

179

TECHNISCHE
@ UNIVERSITAT
DRESDEN

Complexity Metric

Functional
complexity of
internal
interfaces @

Future-Proof Software-Systems [Part 3B]

System Boundary (Governance !)

Functional

\ complexity of

external
interfaces ©

<]
-A\', NS = AV
c;,«,,‘ 5 B Y56
S AT
Z e
i,?,_iﬁf"gA 258 EC
o
\v-“\'! Numb(i,r (2]
" 4" of internal
“:- .giﬁf- - ’ dependencies
:-5‘-"1‘-!“_ Bajs . i .
Number o 2 5 es e ©
of external b S Encapsulation
dfepe;deniies (Units)p

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18

180

G niversivaT Future-Proof Software-Systems [Part 3B]

DRESDEN

Complexity Contributors:

O Number of Parts (Structural complexity) Integer number (No)

® Number internal dependencies (Structural complexity) Integer number (N)
©® Number external dependencies (Structural complexity) Integer number (N,p)
O Functional complexity of internal interfaces # of FP, UCP (Fi | i)

© Functional complexity of external interfaces # of FP, UCP (Fe)

C lexity Metric: o oo A
omplexity Metric No distinction between

essential complexity and
accidental complexity

SysCompl = f[No, N Nop, ZFi |, ZFe;]

A number of complexity metrics exist in the literature.
However, none of them is satisfactory for engineering system complexity

— Interesting open research question (PhD-Level) !

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 181

G niversivaT Future-Proof Software-Systems [Part 3B]

DRESDEN

Sources accidental IT-complexity:

» Specifications: overlaps, duplication

» Redundancy: functional, data & interface redundancy

= Lack of conceptual integrity: diverging concepts, misunderstandings
» Disregard of (industry) standards: technology explosion

» 374 party software: forced, incompatible concepts, redundancy
» Inconsistent housekeeping: ,dead“ code & data
= Diversity in vertical architectures: proliferation of solutions

= Neglected legacy systems: old technology, out-of-use components

If you don‘t properly manage complexity, it may kill your system
(... most probably: it will)

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 182

G niversivaT Future-Proof Software-Systems [Part 3B]

DRESDEN

The nasty ways of complexity:

» Complexity creeps up, incrementally growing over long time
» Complexity occurs locally in many different specifications, programs and
interfaces, but its impact is global

» Complexity may grow to such a state, that the IT-ystem becomes unmanageable
or commercially unviable

» Containing complexity growth requires continuous and substantial architectural
intervention and strong management committment

How can we manage complexity ?

a) Implement a process step ,,simplification® in your development process

b) Periodically carry out re-architecture programs ,,complexity reduction”

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 183

G niversivaT Future-Proof Software-Systems [Part 3B]

DRESDEN

Implement a process step ,,simplification® in your development process

Reqgs Specs Arch Design ? Build Test
A ,[

%

Check-
| i st

Periodically carry out re-architecture programs ,,complexity reduction®

Application Landscape 1| Re-Architecture Program 2014
» Eliminate ...

» Refactor ...
|:> > Replace ...
> Redesign ...

> €etc.

Technology Portfolio

http:/ /blogs.proquest.com

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18

Effort:
1100 MM

Cost:
27 M€

184

G niversivaT Future-Proof Software-Systems [Part 3B]

DRESDEN

Complexity Reduction — Simplification Process — Architecture Exploration

Busi New
usiness Requirements
(Functional & Quality)

B new
1 changed

juswrdoraaaq
2IN30933IYoIy

The architecture
options are
evaluated, assessed
and the best one is
selected

uoryenjeaqg
9IN30931YoIy

* Functional Reqgs
* Quality Properties
* Fit into Legacy

» Refactoring

-

uornyejuswajduuy
2IN30931YoIY

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 185

() ONiversiTar Future-Proof Software-Systems [Part 3B]

DRESDEN

Architecture Principle A12:
Complexity and Simplification

1. Actively manage the complexity in your system:
o Identify it
* Understand it
* Avoid and reduce it as much as possible (especially the accidental
complexity)

2. Install a formal, controlled process step ,simplification® in your design and evolution
procedures

3. For any (substantial) set of requirements develop several possible architectures and use an
architecture assessment method to select the most suitable

4. Periodically execute re-architeture programs with the objective to reduce the complexity of
your IT-system

Justification: Complexity is the largest single risk in IT-systems. By managing complexity, the
unwanted or unnecessary complexity can be reduced — thus making the IT-system more changeable,
manageable and dependable.

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 186

G niversivaT Future-Proof Software-Systems [Part 3B]

DRESDEN

om

st.c

https:/ /www.pintere

Diomidis Spinellis, Georgios Gousios:

Beautiful Architecture — Leading Thinkers
Reveal the Hidden Beauty in Software Design
O'Reilly and Associates, USA, 2009. ISBN 978-0-
596-51798-4

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 187

TECHNISCHE

UNIVERSITAT Future-Proof Software-Systems [Part 3A]

DRESDEN

Roger Sessions:
Simple Architectures for Complex
Enterprises

Microsoft Press, USA, 2008. ISBN 978-0-735-

62578-5

Textbook —

Textbook —

Edward de Bono:
Simplicity
Penguin Life, 2015. ISBN 978-0-241-25748-7

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 188

G niversivaT Future-Proof Software-Systems [Part 3B]

DRESDEN

Architectuwre Quality

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 189

TECHNISCHE
@ UNIVERSITAT
DRESDEN

Future-Proof Software-Systems [Part 3B]

Business
Architecture

Application
Architecture

Information
Architecture

Integration
Architecture

Technical
Architecture

Architecture Quality

Architecture quality =
Degree of conformance
to architecture
principles

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18

Architecture Principles

190

G niversivaT Future-Proof Software-Systems [Part 3B]

DRESDEN

Architecture Quality

Architecture Principles

Application Landscape

Application Landscape
Architecture Quality
Table

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 191

G niversivaT Future-Proof Software-Systems [Part 3B]

DRESDEN

Beautiful Architecture Principles
: Requirements
Architecture Requ A a e
o
-

!

Functionality (Business Value)

Architecture Properties:
 Changeability
 Dependability

* Performance

I99UI3Uuy] WalSAQ
-91eM}]JOS JOOIJ-9ININy

Architecture-Greatness:
» Simplicity
» Elegance

o
3]
o
R
(2]
8|
—
)
kel

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 192

Gu) iniversiTar Future-Proof Software-Systems [Part 3A]

Textbook — Textbook —

Paul Clements, Rick Kazman, Mark Klein:
Evaluating Software Architectures — Methods
and Case Studies Architectures

SEI Series in Software Engineering, Addison- Springer-Verlag, Germany, 2016. ISBN 978-3-
Wesley, USA, 2001. ISBN 978-0-201-70482-2 319-34176-7

Jens Knodel, Matthias Naab:
Pragmatic Evaluation of Software

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 193

G niversivaT Future-Proof Software-Systems [Part 1]

DRESDEN

Part 3B

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 194

