
Future-Proof Software-Systems [Part 3C]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 1
Version 1.0

Future-Proof Software-Systems (FPSS)

h
ttp

s
:/

/
s
ta

tic
1
.s

q
u

a
re

s
p
a
c
e
.c

o
m

Part 3D: Special Topics (2)

Lecture WS 2017/18: Prof. Dr. Frank J. Furrer

Future-Proof Software-Systems [Part 3C]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 2

Agile Manifesto
and

Future-Proof Software-Systems ?

Future-Proof Software-Systems [Part 3C]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 3

Agile Method:

An agile method is a software development method that is people-focused,
communications-oriented, flexible, speedy, lean, responsive, and learning.

Qumer & Sellers, 2007

h
tt

p
s
:/

/
s
e
ta

n
d
b
m

a
.f

il
e
s
.w

o
rd

p
re

s
s
.c

o
m

In 2001, a group of 17 programming
gurus got together and developed the

“Agile Manifesto”

h
ttp

s
:/

/
s
-m

e
d
ia

-c
a
c
h

e
-a

k
0
.p

in
im

g
.c

o
m

Future-Proof Software-Systems [Part 3C]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 4

Agile methods are the pathway

to efficient and effective

software production

❶
Agile methods are an excuse

to avoid serious software

engineering work

❷

h
ttp

:/
/
w

w
w

.is
u

m
m

a
tio

n
.c

o
m

Agile Methods  Future-Proof Software-Systems ??

Future-Proof Software-Systems [Part 3C]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 5

?
?
?
?

Future-Proof Software-Systems [Part 3C]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 6

h
tt

p
:/

/
w

w
w

.t
ru

c
k
e
r.

d
e

Agilists Traditionalists

What followed ?

Future-Proof Software-Systems [Part 3C]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 7

h
tt

p
s
:/

/
fr

e
n

c
h

.k
w

iz
iq

.c
o
m

Waterfall development process

h
ttp

:/
/
p
e
o
p
le

.c
s
.k

s
u

.e
d
u

Capability Maturity Model Integration

h
tt

p
:/

/
w

w
w

.s
ig

n
a
v
io

.c
o
m

… The software engineering process became seriously overloaded and slow

Some history: 1980 … 2000:

Future-Proof Software-Systems [Part 3C]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 8

Consequence:
h

tt
p
:/

/
y
in

y
a
n

g
m

o
th

e
r.

c
o
m

… (very) heavy & slow

development processes

h
tt

p
:/

/
im

g
-a

w
s
.e

h
o
w

c
d
n

.c
o
m

… Frustrated users

and customers

Future-Proof Software-Systems [Part 3C]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 9

h
tt

p
:/

/
p
o
rt

fo
li
o
.g

o
ld

li
ly

s
-m

e
d
ia

.c
o
m

«We need something radically new»: Agile Methods

h
tt

p
s
:/

/
s
-m

e
d
ia

-c
a
c
h

e
-a

k
0
.p

in
im

g
.c

o
m

Future-Proof Software-Systems [Part 3C]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 10

Scrum

RAD (Rapid Application Development)

XP (Extreme Programming)

AUP, or Agile Unified Process

… soon, new lightweight SW development processes came up:

h
ttp

:/
/
w

w
w

.h
y
d
ro

m
a
x
x
4
0
c
o
u

p
o
n

.c
o
m

Future-Proof Software-Systems [Part 3C]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 11

Measurable property of

a software-system to respond

to new requirements:

• In adequate time (TtM)

• With reasonable cost (DevC)

Set of development

methodologies to shorten the

SW-development cycle

Agilists Traditionalists
?

Agile! Changeability

Future-Proof Software-Systems [Part 3C]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 12

Future-Proof
Software

Agile!
Methods

B
e
rt

ra
n

d
M

e
y
e
r,

2
0
1
4
,
IS

B
N

9
7
8
-3

-3
1
9
-0

5
1
5
4
-3 Agile texts defy a simple judgment:

 you may find in one paragraph a
brilliant insight,

 in the next paragraph a harmless
platitude,

 and in the one after some freakish
advice guaranteed to damage your
software process and products

Future-Proof Software-Systems [Part 3C]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 13

Agilists Traditionalists

What is the situation today ?

h
tt

p
:/

/
i.
h

u
ff

p
o
s
t.

c
o
m

There is still serious mistrust

… but even enterprise architects are now

learning from agilists

Future-Proof Software-Systems [Part 3C]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 14

Agile Methods:

Effect on Future-Proof Software:

Conclusions:

1. The agile canon misses the foundation of future-proof software (e.g.
requirements gathering, formal modeling, architecture development &
maintenance, system optimization)

2. Agile methods bring benefits to the work of small programming teams (< 25)

3. Some agile ideas are useful in improving processes also for very large
information systems («Disciplined Agile Delivery»

h
ttp

s
:/

/
th

u
m

b
s
.d

re
a
m

s
tim

e
.c

o
m

Future-Proof Software-Systems [Part 3C]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 15

Architecture Recommendations for Agile Methods

1. Never compromise the foundation of future-proof software-systems, i.e. architecture,
models etc. for the sake of «agile»

2. Assure in the development process that – despite agile methods – no technical debt is
accumulated

3. Compensate architecture erosion/divergence as soon as possible

Recommendations

Future-Proof Software-Systems [Part 3C]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 16

Textbook Textbook

Mark W. Lines, Scott Ambler:
Disciplined Agile Delivery – A Practitioner's
Guide to Agile Software Delivery in the
Enterprise
Prentice Hall Inc. (IBM Press), USA, 2012. ISBN
978-0-132-81013-5

Bertrand Meyer:
Agile! – The Good, the Hype and the Ugly
Springer-Verlag, Germany, 2014. ISBN 978-3-
3190-51543

Future-Proof Software-Systems [Part 3C]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 17

Domain Software Engineering

Future-Proof Software-Systems [Part 3C]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 18

h
tt

p
s
:/

/
c
im

x
.w

o
rd

p
re

s
s
.c

o
m

«Software design is a constant battle with complexity»

Eric Evans, 2015

If we don’t manage it well
 Divergence

h
ttp

s
:/

/
i0

.w
p
.c

o
m

Future-Proof Software-Systems [Part 3C]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 19

h
tt

p
:/

/
w

w
w

.s
u

th
e
rl

a
n

d
w

e
s
to

n
.c

o
m

Divergence =

Mismatch between Business Needs and IT-Implementation

Future-Proof Software-Systems [Part 3C]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 20

h
tt

p
:/

/
d
e
.c

li
p
a
rt

lo
g
o
.c

o
m

Desired
Product

Customer
(«Business»)
Customer

(«Business»)

IT
Product

IT
Product

Example: Swing

Future-Proof Software-Systems [Part 3C]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 21

Requirements
h

tt
p
:/

/
p
ro

je
c
tc

a
rt

o
o
n

.c
o
m

/
c
re

a
te

/

How the customer
explained it

How the business
consultant
described it

Specifications

How the project
leader understood
it

Future-Proof Software-Systems [Part 3C]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 22

Implementation
h

tt
p
:/

/
p
ro

je
c
tc

a
rt

o
o
n

.c
o
m

/
c
re

a
te

/

How the analyst
designed it

How the
programmers
implemented it

How the project
was documented

Future-Proof Software-Systems [Part 3C]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 23

Deployment
h

tt
p
:/

/
p
ro

je
c
tc

a
rt

o
o
n

.c
o
m

/
c
re

a
te

/

When the project
was delivered

Operation

What the customer
really wanted

Future-Proof Software-Systems [Part 3C]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 24

What is the reason?

• Different vocabulary between business and IT

• Lots of implicit knowledge and assumptions

• No common model

Failed Communications!
h

tt
p
:/

/
m

a
y
rs

o
m

.c
o
m

Future-Proof Software-Systems [Part 3C]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 25

Failed Communications!

h
ttp

:/
/
m

a
y
rs

o
m

.c
o
m

How can we significantly improve the communications

between business and IT ?

 Domain Software Engineering

Eric Evans, 2003

Future-Proof Software-Systems [Part 3C]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 26

Domain-Driven Design [DDD]

Domain Engineering [DE]

Domain-Specific Languages [DSL]

Domain Language Engineering [DLE]

Domain-Specific Modeling [DSM]

Domain

Software

Engineering

[DSE]

Seminal
Work 2003

The start: Excellent Summary:

Abel Avram, Floyd Marinescu:
Domain-Driven Design - Quickly
C4Media Inc., USA, 2006.
ISBN 978-1-4116-0925-9
Download:
http://www.infoq.com/minibooks/domain-
driven-design-quickly
[last accessed: 2.12.2015]

Future-Proof Software-Systems [Part 3C]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 27

Domain Software Engineering [DSE] =

an architectural methodology

for evolving a software system

that closely aligns to business domains

Important note:

All architecture principles remain strictly valid in DSE

h
tt

p
:/

/
b
lo

g
s
.m

s
d
n

.c
o
m

Future-Proof Software-Systems [Part 3C]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 28

h
ttp

:/
/
m

a
y
rs

o
m

.c
o
m

Why does communications between business and IT increase

the complexity ?

Because it needs a translation between

the «business world» and the «IT world»

Error-prone
Time-consuming

Annoying

Future-Proof Software-Systems [Part 3C]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 29

Essential complexity Accidental Complexity

… is the inherent complexity
of the system to be built.

Essential complexity for a
given problem cannot be
reduced.

It can only be lessened by
simplifying the requirements
for the system extension.

… is introduced by our
development activities or by
constraints from our
environment.

This is unnecessary and can
be reduced or eliminated.

 Development methodology!

h
tt

p
:/

/
w

w
w

.s
h

e
rw

e
b
.c

o
m

Manage essential complexity

Combat
accidental
complexity

Future-Proof Software-Systems [Part 3C]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 30

h
ttp

:/
/
y
e
a
r7

h
is

to
ry

g
r.e

d
u

b
lo

g
s
.o

rg

h
tt

p
:/

/
w

w
w

.e
x
p
e
rt

o
.d

e


T
o
n

i
E

s
te

v
e
s

h
ttp

s
:/

/
c
im

x
.w

o
rd

p
re

s
s
.c

o
m

Future-Proof Software-Systems [Part 3C]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 31

Divergence =

Mismatch between:

Business Needs  IT-Implementation

Frustration !
h

ttp
s
:/

/
c
im

x
.w

o
rd

p
re

s
s
.c

o
m

IT ImplementationCustomer/Business Needs

h
tt

p
:/

/
c
li
p
a
rt

ze
b
ra

z.
c
o
m

Essential Complexity Accidental Complexity

Misunderstandings

Lack of Precision

Semantic Differences

DSE

Future-Proof Software-Systems [Part 3C]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 32

h
ttp

s
:/

/
c
im

x
.w

o
rd

p
re

s
s
.c

o
m

IT ImplementationCustomer/Business Needs

h
tt

p
:/

/
c
li
p
a
rt

ze
b
ra

z.
c
o
m

DSE

Which are the key elements of DSE (Domain Software Engineering?)

1. Understanding the Business/Application Domain in terms of the business

( Domain Model)

2. Use of an ubiquitous language

(Business  IT alignment)

3. Software: Implementation of Business Domain concepts

(Concepts  Business objects  Programm objects)

1. Understanding the Business/Application Domain in terms of the business

( Domain Model)

2. Use of an ubiquitous language

(Business  IT alignment)

3. Software: Implementation of Business Domain concepts

(Concepts  Business objects  Programm objects)

Universale Ausdrucksform

Future-Proof Software-Systems [Part 3C]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 33

h
tt

p
:/

/
b
lo

g
s
.m

s
d
n

.c
o
m

Business/Application Domain =

A Domain is a Sphere of Knowledge, Influence or Activity.

A Domain lives within a Bounded Context.

A Domain represents a well-defined Part of the Real World.

A Domain encapsulates a Domain Model.
www.thinkddd.com

DSE Concepts

• Business/Application Domain

• Bounded Context

• Domain Model

• Anticorruption Layer

Domain
Software

Engineering
(DSE)

Future-Proof Software-Systems [Part 3C]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 34

Business/Application Domain =

A Domain is a Sphere of Knowledge, Influence or Activity.

A Domain lives within a Bounded Context.

A Domain represents a well-defined Part of the Real World.

A Domain encapsulates a Domain Model.

h
tt

p
:/

/
b
lo

g
s
.m

s
d
n

.c
o
m

www.thinkddd.com

Future-Proof Software-Systems [Part 3C]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 35www.thinkddd.com

Bounded Context =

The Bounded Context is the Boundary of a Model.

When you have multiple Models you should define
Bounded Contexts.

To map between Bounded Contexts you use a Context
Map.

h
tt

p
s
:/

/
th

o
u

g
h

ts
fr

o
m

th
is

fl
o
w

e
r.

w
o
rd

p
re

s
s
.c

o
m

Future-Proof Software-Systems [Part 3C]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 36
www.thinkddd.com

Domain Model =

A Domain Model is a representation of the Entities,
Relationships and their Properties in your Domain

The Domain Model should be recognizable and
understandable by the business and IT

The domain model has sufficient essential details

h
tt

p
:/

/
c
li
p
a
rt

s
.c

o
/
m

e
e
ti

n
g
-p

ic
tu

re
s

Future-Proof Software-Systems [Part 3C]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 37

www.thinkddd.com

Anticorruption Layer =

An Anti-Corruption Layer is a method to isolate two domains
or systems, allowing systems to be integrated without

knowledge of each other

An Anti-Corruption Layer presents a Facade to both
systems, defined in terms of their specific models

Anti-Corruption Layers maintain the integrity of differing
systems and models

Future-Proof Software-Systems [Part 3C]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 38

h
tt

p
:/

/
c
li
p
a
rt

ze
b
ra

z.
c
o
m

Business/Application Domain «A»

DSE
Definitions:
Summary

Domain «B»

Bounded Contex «A»

Bounded Contex «B»

Domain Model «A»

IT Implementation «A»

Anticorruption
Layer

Future-Proof Software-Systems [Part 3C]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 39

h
tt

p
:/

/
w

w
w

.s
k
y
g
u

id
e
.c

h

Example: Business/Application Domain

Domain = Flight Monitoring

Context:

Thousands of planes are in the air all over the planet. The flight

monitoring systems track every flight and avoid mid-air collisions

Future-Proof Software-Systems [Part 3C]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 40

h
tt

p
s
:/

/
w

w
w

.f
li
g
h

tr
a
d
a
r2

4
.c

o
m

Example: Bounded Context  SKYGUIDE Switzerland

Boundary = Contractual Responsibility within the European System

Future-Proof Software-Systems [Part 3C]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 41

h
tt

p
s
:/

/
w

w
w

.f
li
g
h

tr
a
d
a
r2

4
.c

o
m

Example: Bounded Context

Anticorruption Layer = X-Compatibility Layer

Future-Proof Software-Systems [Part 3C]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 42

Example:
Flight Monitoring Domain Model

… Development of the Domain Model
 Search & Definition of Key Concepts

Aircraft Route

Departure

Destination

Future-Proof Software-Systems [Part 3C]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 43

Example:
Flight Monitoring Domain Model

Aircraft Route Fix

3D-Point

Future-Proof Software-Systems [Part 3C]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 44

Example:
Flight Monitoring Domain Model

Aircraft Flight Plan Route

Fix

3D-Point

Future-Proof Software-Systems [Part 3C]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 45

Example:
Flight Monitoring Domain Model

Aircraft Flight Plan Route

Fix

3D-Point

Real-Time
Tracking

Collision
Avoidance

Future-Proof Software-Systems [Part 3C]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 46

DCF

System «A»

• Reference: DCF77
• Resolution: 1 sec
• Operation: continuous

E287A19B5

System «B»

• Reference: quartz impulses
• Resolution: 1 msec
• Operation: counter
• Nulled at power-up

Example:
Concept «Time»

Get{time}

22:09:01 E287A19B5

Anticorruption Layer
• Domain concepts
• Models
• Implementation

Future-Proof Software-Systems [Part 3C]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 47

Domain Model =

Reminder: A Domain Model is a representation of the Entities,
Relationships and their Properties in your Domain

Entity: …

Properties:
…
…

Entity: …

Properties:
…
…

Entity: …

Properties:
…
…

Entity: …

Properties:
…
…

Entity: …

Properties:
…
…

Relationships

Future-Proof Software-Systems [Part 3C]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 48

h
tt

p
:/

/
k
n

o
w

h
o
w

.v
is

u
a
l-

p
a
ra

d
ig

m
.c

o
m

Problem:

Model-Explosion.

 Size of the
models grows!

Build
hierarchical

models

Future-Proof Software-Systems [Part 3C]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 49

AgreementPortfolio
eBO

OrganizationEntity
eBO

Request
eBO

Operation
eBO

Product
eBO

obligates/entitles

obligates/entitlesAgreement
eBO

Party
eBO

aggregatesmanages

c
o
n
ta

in
s

(in
d
iv

id
u
a
l)

is
co

n
tra

c
tu

a
l

b
a
se

fo
r

iss
u
e
s
/a

c
ts

o
n

is
s
u
e
s/a

c
ts

o
n

provides
rules for

produces

offers specifies

contains
(standard)

su
p
p
o
rts

/in
clu

d
e

s

n
e
e
d
s/re

c
e
iv

e
s

n
e
e
d
s
/re

c
e
iv

e
s

in
itia

te
s/re

s
u
lts

fro
m

o
w

n
s/co

n
tro

ls

FinancialInstrument
eBO

is
c
o
m

m
itte

d
to

embodies

in
c
lu

d
e
s/sp

e
cifie

s

Transfers/
transforms

EconomicResource
eBO

Document/Report
eBO

TermCondition
eBO

Refinement

Example:
Top-Level
Domain Model
for a Financial
Institution

Future-Proof Software-Systems [Part 3C]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 50

Partner
dBO

Contact
dBO

Servicing
dBO

AdressingInstruction
dBO

Address
dBO

VariousData
dBO

Compliance
dBO

Instruction
dBO

Segmentation
dBO

PartnerPartnerContext
dBO

PartnerDossierContext
dBO

Party
eBO

Agreement
eBOEnterprise

Level

Domain
Level

Dossier
dBO

PartnerAgreement
dBO

refinement refinement

PartnerGroup
dBO

Refinement

Hierarchy:

2nd Level

Future-Proof Software-Systems [Part 3C]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 51

Ubiquitious Language [UL] =

The Ubiquitous Language is a shared language between the
business and the development teams

The Ubiquitous Language comes from the business, and is
enriched by the development team

A major reason for failure of software
projects is a failure of people = the
failure to communicate

h
tt

p
:/

/
b
lo

g
s
.m

s
d
n

.c
o
m

www.thinkddd.com

Future-Proof Software-Systems [Part 3C]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 52

Formalization

highlow

«Boxes & Lines»
Text

Ontologies

h
ttp

s
:/

/
c
im

x
.w

o
rd

p
re

s
s
.c

o
m

IT OrganizationCustomer/Business
h

tt
p
:/

/
c
li
p
a
rt

ze
b
ra

z.
c
o
m

UL

Ubiquitous
Language

Domain
Experts

Software
Teams

UML, SysMLBoxes & Lines
with semantics

Future-Proof Software-Systems [Part 3C]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 53

How is an Ubiquitous Language developed?

High Level Domain Entities (Enterprise Level)
Domain Concept Description Operations

Organization Entity Legal Entity for
executing business

 Create the entity

 Internal organization of the entity

 Agreements with other parties

 Creation of financial products

 Collaborate with other parties

 Create reports

 …

Operation Value-transferring
activity with
adherence to legal &
regulatory
requirements

 Define parties

 Oblige parties

 Check legal & regulatory requirements

 Execute operation

 Document & archive operation

 …

etc.

etc.

… very often a good start is a textual table

Concepts

Definition

Operations

Future-Proof Software-Systems [Part 3C]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 54

Fowler/Parsons 2011

Domain Specific Language =

A computer programming language of limited
expressiveness focused on a particular domain.

The domain focus is what makes a limited language
worthwhile.

h
tt

p
:/

/
b
lo

g
.a

s
h

a
.o

rg

Future-Proof Software-Systems [Part 3C]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 55

Formalization

highlow

«Boxes & Lines»
Text

Ontologies
DSL’s

UML, SysMLBoxes & Lines
with semantics

Textual
Table

DSL

Code

Future-Proof Software-Systems [Part 3C]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 56

DSE "light"

Implementing Domain-Specific Engineering (DSE) in a company

is a very demanding task

h
tt

p
:/

/
w

w
w

.a
im

in
g
.i
n

h
ttp

:/
/
i1

-n
e
w

s
.s

o
ftp

e
d
ia

-s
ta

tic
.c

o
m

Use the business terminology in your code:

• Business objects  classes

• Business operations  services/methods

• Business terms  Variables

Future-Proof Software-Systems [Part 3C]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 57

Architecture Recommendations for Domain Software Engineering (DSE)

1. Gracefully build up an Ubiquituous Language between Business/Customer and IT
(Implementer)

2. Define a consistent and complete domain model (hierarchical because of the size)

3. Push the formalization as far as possible (without losing the business/customer)

4. Use the terminology from the domain model/ubiquitous language in the code

5. Keep the domain model and the code implementation strictly synchronized at all times

Recommendations

Future-Proof Software-Systems [Part 3C]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 58

Textbook Textbook

Eric J. Evans :
Domain-Driven Design – Tackling Complexity
in the Heart of Software
Addison Wesley Inc., USA, 2003. ISBN 978-0-
321-12521-7

Scott Millett, Nick Tune:
Patterns, Principles, and Practices of Domain-
Driven Design
Wrox, 2015. ISBN 978-1-1187-1470-6

Future-Proof Software-Systems [Part 3C]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 59

Legacy System Migration/Modernization

Future-Proof Software-Systems [Part 3C]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 60

What is a legacy system ?

… „a system built yesterday“

- and still in use today

h
tt

p
:/

/
w

w
w

.1
2
3
rf

.c
o
m

Liability

h
ttp

:/
/
w

w
w

.n
zz.c

h
/
a
k
tu

e
ll

Asset

… 25 years

Future-Proof Software-Systems [Part 3C]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 61

Obsolete computer system which is still in use,

because its data can not be changed to newer or standard
formats,

its application programs can not be upgraded,

or its development/execution platform can not be
changed

Legacy System:

"can not" = with an unreasonable effort (money, time & people)

Future-Proof Software-Systems [Part 3C]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 62

h
tt

p
:/

/
w

w
w

.1
2
3
rf

.c
o
m

Liability

h
ttp

:/
/
w

w
w

.n
zz.c

h
/
a
k
tu

e
ll

Asset

bad:

• very low changeability
(= high resistance to change)

• weak resilience

• eroded architecture

• badly or not documented

• obsolete technology (HW & SW)

• large technical debt

• lost knowledge (people left)

• difficult integration context

good:

• invaluable implicit knowledge of the
domain and the business processes

• stable operation (mature)

• good solutions/algorithms

• often: suprisingly good code

Future-Proof Software-Systems [Part 3C]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 63

Functionality
& Data

Legacy Software-System
High resistance to change for new

business requirements (low changeability)

Technology pressure

New architecture paradigms

Knowledge shortage

Replace Migrate

Weak resilience (attacks, faults, …)

Operational Risk Minimizing the risk of operational faults

Fit-for-Future Technical Debt?

Cost/Time Total Effort

Additional Constraints e.g. Certification

Decision
Criteria:

Why must
we
modernize
legacy
systems ?

Future-Proof Software-Systems [Part 3C]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 64

Relational
Database

DB Schemas

Relational
Database

DB Schemas

Relational
Database

DB Schemas

Technology
Disruption

Hierarchical
Database

Structure
Description

Application
Application

Application

ApplicationApplication

Application

Application

Legacy
System
Cause

Future-Proof Software-Systems [Part 3C]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 65

Legacy system modernization strategies

New
Requirements

The evolution becomes unmanageable (low architecture quality)

Future-Proof Software-Systems [Part 3C]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 66

Legacy system modernization strategies

New
Requirements

Modernization/Transformation

Replacing:
Completely new development starting from systems requirements

Re-Architecting:
Transforming to new architecture paradigm

Re-Engineering:
Transforming to new technology (new infrastructure or software technology)

Re-Factoring:
Improving existing code (no functionality change)

 may require reverse engineering – if no or insufficient information (code/doc)

Future-Proof Software-Systems [Part 3C]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 67

Example: Code
Reverse-Engineering:

h
tt

p
:/

/
c
2
.c

o
m

/
c
g
i/

w
ik

i?
M

a
c
h

in
e
C

o
d
e

Executable machine code:

8020 78
8021 A9 80
8023 8D 15 03
8026 A9 2D
8028 8D 14 03
802B 58
802C 60
802D EE 20 D0
8030 4C 31 EA

h
tt

p
:/

/
ro

y
c
e
b
it

s
.b

lo
g
s
p
o
t.

c
h

COBOL
Compiler

Source
Code

DocDocDocDoc

Future-Proof Software-Systems [Part 3C]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 68

Example: Code
Reverse-
Engineering:

Assembly language code:

Start: .org $8020
SEI
LDA #$80
STA $0315
LDA #$2D
STA $0314
CLI
RTS
INC $D020
JMP $EA31

De-
Assembler

h
tt

p
:/

/
c
2
.c

o
m

/
c
g
i/

w
ik

i?
M

a
c
h

in
e
C

o
d
e

Executable machine code:

8020 78
8021 A9 80
8023 8D 15 03
8026 A9 2D
8028 8D 14 03
802B 58
802C 60
802D EE 20 D0
8030 4C 31 EA

Tool
support

Tool
support

Future-Proof Software-Systems [Part 3C]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 69

Type of Migration Current State Target State

Replacing
 Completely new

development starting
from systems
requirements

Operational software. Cost, time
and risk for a migration to high

Software has completely been
rewritten, starting from the initial
requirements

Re-Architecting
 Transforming to new

architecture paradigm
(Considerable functional
change)

Operational software.
Architecture paradigm has
changed

[e.g. monolithic architecture 
service-oriented architecture]

Software runs under the new
architecture paradigm

Re-Engineering
 Transforming to new

technology base, e.g.
new infrastructure or
software technology
(limited functional
change)

Operational code running on an
outdated execution platform or
using an obsolete software
technology

Code runs on the modern
execution platform or uses
modern software technology

Re-Factoring
 Improving existing code

(no functionality change)

Operational code, deficiencies in
the program implementation

Improved code (quality criteria)

Reverse Engineering
 No or insufficient

information (code + doc)

Operational code, massive lack
of documentation, of knowledge
and of source code

System is sufficiently understood
and documented to start
migration

Legacy system modernization techniques

Future-Proof Software-Systems [Part 3C]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 70

Example: COBOL/CORBA  JAVA/Web-Services Migration + Security

Legacy Application
 Programming Language: COBOL

 Interaction: CORBA

Migrated Application
 Programming Language: JAVA
 Interaction: Web-Services

A
p
p
lic

a
tio

n
M

o
d
e
rn

iza
tio

n

M
ig

ra
tio

n
P
ro

c
e
s
s

C
O

B
O

L


J
A

V
A

Step 1: Refactor Code
COBOL  JAVA
[Functionality unchanged]

C
O

R
B

A


W
e
b
-

S
e
rv

ic
e
s

Step 2: Re-Architect
CORBA  Web-Servs
[Functionality unchanged]

S
e
c
u

rity
E

n
h

a
n

c
e
m

e
n

ts
(#

C
e
rts

)

Step 3: Extend
Functionality
[Enhance Security by #Certs]

Tool
support

Tool
support

Future-Proof Software-Systems [Part 3C]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 71

Legacy SW-System Modernization

Code,
Programs

Applications

Data
Data

Data
Data

Replacing
 Re-Architecting
 Re-Engineering
 Re-Factoring
 Reverse Engineering

Replacing
 Re-Architecting
 Re-Engineering
 Re-Factoring
 Reverse Engineering

Future-Proof Software-Systems [Part 3C]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 72

Data
Data

Data
Data

 Replacing
 Re-Architecting
 Re-Engineering
 Re-Factoring
 Reverse Engineering

Legacy SW-System Modernization

Data
Data

Database
Modernization

Objectives:

 Redundancy elimination

 Syntactic/semantic integrity

 Database technology (relational)

 Access performance

 Transactional integrity

 Modeling

Future-Proof Software-Systems [Part 3C]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 73

Can we avoid the production
of «Legacy software»

h
tt

p
:/

/
w

w
w

.r
a
k
e
n

a
p
p
.c

o
m

… NO! – only make the legacy easier

Software life

t

external
factors Technology

Disruption

Architecture
Paradigm
Change

Tooling
advance

People
change

Doc
Lossinternal

factors

Technical
Debt

Delayed
Re-Architecting,

Refactoring

Principles
Violation

Future-Proof Software-Systems [Part 3C]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 74

Can we avoid the production
of «Legacy software»

h
tt

p
:/

/
w

w
w

.r
a
k
e
n

a
p
p
.c

o
m

… NO! – only make the legacy easier

Solution:
Continuous Rearchitecting/Refactoring

Managed Evolution Strategy

Future-Proof Software-Systems [Part 3C]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 75

Build new functionality

Business
Requirements

Project

Managed Evolution Strategy

Refactor

Architecture
Requirements

Each project

improves

architectural

quality

(changeability,

dependability)

Future-Proof Software-Systems [Part 3C]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 76

S
o
ftw

a
re

life

t

C
o
n

tin
u

o
s

R
e
fa

c
to

rin
g

internal
factors

Technical
Debt

Principles
Violation

Doc
Loss

Managed Evolution

external
factors

Technology
Disruption

Architecture
Paradigm
Change

Tooling
advance

R
e
a
rc

h
ite

c
tin

g
P
ro

g
ra

m

R
e
a
rc

h
ite

c
tin

g
P
ro

g
ra

m

Future-Proof Software-Systems [Part 3C]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 77

Architecture Recommendations for Legacy System Modernization

1. Unambigously specify the boundary of the system (Code & Data) to be
migrated/modernized

2. Clearly assess the state of the legacy system (code, data, documentation, value)

3. Precisely define the migration/modernization goals (for code & data)

4. Choose a migration/modernization strategy based on risk, fit-for-future, cost & time and
quality attributes (e.g. certification or validation etc.)

5. Select optimum tool support [Note: Many excellent tools available, search www]

Recommendations

Future-Proof Software-Systems [Part 3C]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 78

Textbook Textbook

Robert C. Seacord, Daniel Plakosh, Grace A.
Lewis:
Modernizing Legacy Systems - Software
Technologies, Engineering Processes, and
Business Practices
Addison-Wesley Professional, USA, 2003. ISBN
978-0-321-11884-4

William M. Ulrich:
Legacy Systems – Transformation Strategies
Prentice Hall Inc., USA, 2002. ISBN 978-0-130-
44927-6

Future-Proof Software-Systems [Part 3C]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 79

Software Product Lines

Future-Proof Software-Systems [Part 3C]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 80

[Clements02]

h
ttp

:/
/
w

w
w

.a
h

u
b
a
u

x
.c

o
m

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 81

Example:
Product line in
automotive
development

h
tt

p
:/

/
w

w
w

.a
u

to
-m

o
to

r-
u

n
d
-s

p
o
rt

.d
e
/

VW Jetta VW PassatVW Golf

Future-Proof Software-Systems [Part 3C]

Future-Proof Software-Systems [Part 3C]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 82

Product Line
Conception

Market

Company
Strategy

SW

Model
Model

Model

Software
artefacts

[explicitly planned,
massive reuse]

Doc
Doc
Doc

Production
[Assembly]

Product
Decisions

SW Product Line Development

DocDocDocDoc

Products

h
tt

p
:/

/
b
lo

g
.e

n
e
rd

y
n

a
m

ic
s
.c

o
m

Future-Proof Software-Systems [Part 3C]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 83

h
tt

p
:/

/g
ra

n
d

yo
u

th
.o

rg

SW Product Line Development

Feature Model
Wave 1:
• X
• Y
Wave 2:
• Z
• R
…

Product Line
Conception

Market

Company
Strategy

F

F

F

F

F

F

Product Line
Architecture

Future-Proof Software-Systems [Part 3C]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 84

Economics of Product Line Development:

1 2 3 4 5 6 … # of different
systems built

Total
effort
[€, t]

Single
systems
approach

Product
line
approach

Initial effort:
● Prod line def

● Variability
● ↑ Quality

Great advantage in
cost, time-to-market
and quality

Future-Proof Software-Systems [Part 3C]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 85

Software Product Lines:

Effect on Future-Proof Software:

 Product lines make use of planned, massive reuse

 The product line approach promises significant advantages
in development cost, time-to-market and quality of the
products = strong amplifier for agility)

 Product line engineering requires specific organizational
structures and a new software development process

 The product line approach is a mature, proven technology
which leads to considerable competitive advantages for
companies

Superbly planned
and executed

managed redundancy

Future-Proof Software-Systems [Part 3C]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 86

Software Product Lines

1. Product lines make use of planned, massive reuse

2. The product line approach promises significant advantages in development cost,
time-to-market and quality of the products = strong amplifier for agility)

3. Product line engineering requires specific organizational structures and a new
software development process

4. The product line approach is a mature, proven technology which leads to
considerable competitive advantages for companies

Recommendations

Future-Proof Software-Systems [Part 3C]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 87

Textbook Textbook

Paul Clements, Linda Northrop:
Software Product Lines – Practices and
Patterns
Addison Wesley Inc., USA, 2015. ISBN 978-0-
134-42408-8

Klaus Pohl, Gunter Bockle, Frank J. Linden:
Software Product Line Engineering –
Foundations, Principles and Techniques
Springer-Verlag, Berlin, 2010. ISBN 978-3-642-
06364-0

Future-Proof Software-Systems [Part 3C]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 88

Part 3 D

