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Future-Proof Software-Systems [Part 3C]

Agile Method:

DEFINITIONS

LL]

An agile method is a software development method that is people-focused,
communications-oriented, flexible, speedy, lean, responsive, and learning.

Qumer & Sellers, 2007
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In 2001, a group of 17 programming
gurus got together and developed the
“Agile Manifesto”
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Agile Methods < Future-Proof Software-Systems ??

\ ~ _G\

Agile methods\are

to efficien
software production

e pathway Agile methods are

effective

e
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The Agile Manifesto
— a statement of values

Individuals and

: : Process and tools
Interactions

Comprehensive

Working software documentation

Customer

collaboration ontract negotiation

Responding to

Following a plan
change ? 9ap
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What followed ?

Agilists

http:/ /www.trucker.de

Traditionalists

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18
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Some history: 1980 ... 2000:

Waterfall development process

https://french.kwizig.com

Continuausly p
improving
process
Predictable
process
Standard,
consistent
process
Dizciplined
process

Capability Maturity Model Integration
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http:/ /www.signavio.com

Initial
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... The software engineering process became seriously overloaded and slow
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Consequence:

... (very) heavy & slow

inyangmother.com

development processes

... Frustrated users

and customers
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«We need something radically new»: Agile Methods

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18
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... soon, new lightweight SW development processes came up:

Scrum

XP (Extreme Programming)

W00 U0dN0d() L, XXEWOIPAY MMM/ /1Y

AUP, or Agile Unified Process

RAD (Rapid Application Development)

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 10
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Agile! # Changeability

Set of development Measurable property of
methodologies to shorten the a software-system to respond
SW-development cycle to new requirements:

e In adequate time (TtM)
 With reasonable cost (DevC)

Agilists | - > |Traditionalists

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 11
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Agile! Future-Proof
Methods Software
\_/' ®

Agile texts defy a simple judgment:

= you may find in one paragraph a
brilliant insight,

= in the next paragraph a harmless
platitude,

= and in the one after some freakish
advice guaranteed to damage your
software process and products

Bertrand Meyer, 2014, ISBN 978-3-319-05154-3
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What is the situation today ?

Agilists| - » | Traditionalists

http://i.huffpost.com

There is still serious mistrust
... but even enterprise architects are now

learning from agilists © Prof. Dr. Frank J. Furrr: FPSS - WS 17/18 13
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Agile Methody:

Effect on Future-Proof Software:

wod awinsweaIp ' squnyl/ /:sdnyg

Conclusions:

1. The agile canon misses the foundation of future-proof software (e.g.
requirements gathering, formal modeling, architecture development &
maintenance, system optimization)

2. Agile methods bring benefits to the work of small programming teams (< 25)

3. Some agile ideas are useful in improving processes also for very large
information systems («Disciplined Agile Delivery»

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 14
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— Recommendations

Architecture Recommendations for Agile Methods

1. Never compromise the foundation of future-proof software-systems, i.e. architecture,
models etc. for the sake of «agile»

2. Assure in the development process that — despite agile methods — no technical debt is
accumulated

3. Compensate architecture erosion/divergence as soon as possible

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 15
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Bertrand Meyer:

Textbook —

Agile! — The Good, the Hype and the Ugly
Springer-Verlag, Germany, 2014. ISBN 978-3-

3190-51543

Mark W. Lines, Scott Ambler:

Textbook —

Disciplined Agile Delivery — A Practitioner's
Guide to Agile Software Delivery in the

Enterprise

Prentice Hall Inc. (IBM Press), USA, 2012. ISBN

978-0-132-81013-5

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18
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Domain Sof

CWAre |

Engineering
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«Software design is a constant battle with complexity»
Eric Evans, 2015

If we don’t manage it well
— Divergence

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18
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http:/ /www.sutherlandweston.com

DEFINITIONS

A

Divergence =
Mismatch between Business Needs and IT-Implementation

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 19
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Example: Swing

http://de.clipartlogo.com

Desired Customer ‘ IT
Product («Business») Product

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 20
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Requirements =) Specifications )
How the customer || HOw the business How the project
explained it consultant leader understood
described it it

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 21
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Implementation
How the analyst ||How the How the project
designed it programmers was documented
implemented it

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 22
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m) Deployment ) Operation

http://projectcartoon.com/create/

When the project

i What the customer
was delivered

really wanted

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 23



G niversivaT Future-Proof Software-Systems [Part 3C]

DRESDEN

What is the reason?

Failed Communications!

http://mayrsom.com

« Different vocabulary between business and IT
» Lots of implicit knowledge and assumptions

e No common model

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18
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Failed Communications!

Eric Evans, 2003

wWoo wosIAew/ /:dg

How can we significantly improve the communications

between business and IT ?

— Domain Software Engineering

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 25
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Domain-Driven Design [DDD]
Domain Engineering [DE]
Domain-Specific Languages [DSL]
Domain Language Engineering [D
Domain-Specific Modeling [DSM]

Domain

Software
LE] Engineering
|IDSE]

The start:

Excellent Summary:

Abel Avram, Floyd Marinescu:
Domain-Driven Design - Quickly

C4Media Inc., USA, 2006.

ISBN 978-1-4116-0925-9

Download:
http://www.infoq.com/minibooks/domain-

Seminal

driven-design-quickly

Work 2003

[last accessed: 2.12.2015]

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18
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http://blogs.msdn.com

DEFINITIONS

L]

Domain Software Engineering [DSE] =
an architectural methodology
for evolving a software system

that closely aligns to business domains

Important note:

All architecture principles remain strictly valid in DSE

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 27
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Why does communications between business and IT increase

the complexity ?

Error-prone
Time-consuming
the «business world» and the «IT world» Annoying

Because it needs a translation between

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 28
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Essential complexity Accidental Complexity

... 1s the inherent complexity ... 1s introduced by our

of the system to be built. development activities or by
Essential complexity for a Con§traints from our

given problem cannot be environment.

reduced. This is unnecessary and can
It can only be lessened by be reduced or eliminated.
simplifying the requirements

for the system extension. — Development methodology!

Combat
accidental
complexity

http:/ /www.sherweb.com

Manage essential complexity

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 29
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Pomain Logic Complexitq Legacy code base :
Lomplexit\.{
z
e
&
©

Complexity

blurred lines

Complexity form
technical solution

W00 sSaIdpIom XD/ /sdg
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ion |
Frustration | Divergence -

Mismatch between:

Business Needs < [T-Implementation

Accidental Complexity

N

Essential Complexity

N

' DSE |

Misunderstandings
<€ >

Lack of Precision
<€ >

.com

IdpIom Xwin/ /sdnyg

http://clipartzebraz

Semantic Differences
<€ >

TWI0J'SSa.

Customer/Business Needs IT Implementation

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18
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DSE

IT Implementation

Customer/Business Needs

o)
Which are the key elements of DSE (Domain Software Engineering?)

wod'ssaIdpIom xXuo / /:sdny

1. Understanding the Business/Application Domain in terms of the business
(= Domain Model)

2. Use of an ubiquitous language
(Business < IT alignment)

3. Software: Implementation of Business Domain concepts
(Concepts = Business objects = Programm objects)

Universale Ausdrucksform

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18
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: Domain DSE Concepts

§ Software , T .

: .  Business/Application Domain
5 Engineering

E (DSE) « Bounded Context

e Domain Model

 Anticorruption Layer

Business/Application Domain =

DEFINITIONS

(L]

A Domain is a Sphere of Knowledge, Influence or Activity.

A Domain lives within a Bounded Context.

A Domain represents a well-defined Part of the Real World.

A Domain encapsulates a Domain Model.

www.thinkddd.com

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 33
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http://blogs.msdn.com

DEFINITIONS

(L]

Business/Application Domain =
A Domain is a Sphere of Knowledge, Influence or Activity.
A Domain lives within a Bounded Context.

A Domain represents a well-defined Part of the Real World.

A Domain encapsulates a Domain Model.

www.thinkddd.com

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 34
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s:/ /thoughtsfromthisflower.wordpress.co

DEFINITIONS

L]

Bounded Context =
The Bounded Context is the Boundary of a Model.

When you have multiple Models you should define
Bounded Contexts.

To map between Bounded Contexts you use a Context
Map.

www.thinkddd.com © Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 35
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http:/ /cliparts.co/meeting-pictures

DEFINITIONS

L]

Domain Model =

A Domain Model is a representation of the Entities,
Relationships and their Properties in your Domain

The Domain Model should be recognizable and
understandable by the business and IT

The domain model has sufficient essential details

v thinkddd.com © Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 36
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DEFINITIONS

L]

Anticorruption Layer =

An Anti-Corruption Layer is a method to isolate two domains
or systems, allowing systems to be integrated without
knowledge of each other

An Anti-Corruption Layer presents a Facade to both
systems, defined in terms of their specific models

Anti-Corruption Layers maintain the integrity of differing
systems and models

www.thinkddd.com
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DSE -

Definitions:
Summary Bounded Contex «B» +\'

~

Domain «B»

Bounded Contex «A» \

/ Business/Application Domain «Am

<<enumerations:

BookCategory IT Implementation ((A»

http://clipartzebraz.com

Library . oMystery
ghame : String gScienceFiction
¢Biography
0= +hooks
+writers . Book
Writer +author +hooks | etitle @ String
ghame : String $pages ©int . .
1 0.7 | gcategory : BookCategory Antlcorl 1 |pt10n

Layer

Domain Model «A»

\_ /
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Example: Business/Application Domain

http:/ /www.skyguide.ch

Domain = Flight Monitoring

Context:
Thousands of planes are in the air all over the planet. The flight
monitoring systems track every flight and avoid mid-air collisions

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18
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https://www.flightradar24.com

Future-Proof Software-Systems [Part 3C]

Boundary = Contractual Responsibility within the European System

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18
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Example: Bounded Context
e AR 2L S M

L i%,ﬂr'%{;-”%% ';1

https:/ /www.flightradar24.com

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 41
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Example:
Flight Monitoring Domain Model

... Development of the Domain Model
= Search & Definition of Key Concepts

Departure }

[ Aircraft H Route
Destination ]

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 42
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Example:
Flight Monitoring Domain Model

{ Aircraft H Route H Fix J

[ 3D-Point J

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 43
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Example:
Flight Monitoring Domain Model

[ Aircraft H Flight Plan H Route

[ 3D-Point }

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 44
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Example:
Flight Monitoring Domain Model

. A
{ Aircraft H Flight Plan }—-» Route
- J

v

4 N\
Fix

[ 3D-Point

Real- T1me )
Tracklng

C0111s1on A
Avoidance
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Example:
Concept «Time»

Anticorruption Layer
 Domain concepts
 Models

 Implementation

Get{ti me}

“22: 09: 01 \ ‘E287A1985\
*

System «A» System «B»

DCF — E287A19B5

JUUL

e Reference: DCF77
e Resolution: 1 sec
 Operation: continuous

Reference: quartz impulses
Resolution: 1 msec
Operation: counter
Nulled at power-up

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18
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Domain Model =

Reminder: A Domain Model is a representation of the Entities,
Relationships and their Properties in your Domain

Rel at i onshi ps

Entity:
Entity: Properti es:
Properti es:
Entity:
Properti es:
Entity: .. Entity:

Properti es: \ Properti es:

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 47
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Problem:
Model-Explosion.

= Size of the
models grows!

4

Build
hierarchical
models

http://knowhow.visual-paradigm.com

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 48
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eBO obligates/entitles eBO eBO Refinement
2 o3 2
p— [~
& manages aggregates g 2 2 § § §
2 ® S 2 s |3 =
2 gz & ! = 3
2 =g %8 ° z |2 2
g = AgreementPortfolio zs g > & |s 2
< =
S eBO %%
= = Request
eBO _
3
s
offers specifies 2
g
= Product | contains  [FH TermCondition | |2 g
(standard) =) ]
eBO eBO g
5 .
g Example:
Top-Level
B rules for E)
g .
3 . Domain Model
S = Operation = EconomicResource . .
§ g eBO Transfers/ 0 fOI‘ a Flnal’lCIal
o 2 transforms
z Instituti
3 nstitution
[0)
8
& produces embodies
=4 Financiallnstrument
eBO
= Document/Report
eBO
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. = Party = Agreement
Enterprise = Refinement =
Level 4
i refinement
Domain
= PartnerPartnerContext
Level 450
=PartnerDossierContext
= Segmentation 980
dBo \ / \
= Partner = Dossier =  PartnerAgreement
= PartnerGroup N s 50 50
dBO
= Instruction /
dBO
= Address
dBO
E= Adressinginstruction = Compliance | B VariousData

dBO

=

Servicing

dBO

=

Contact

dBO

dBO

dBO

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18
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A major reason for failure of software
projects is a failure of people = the
failure to communicate

http://blogs.msdn.com

VA

DEFINITIONS
oy
Ubiquitious Language [UL] = N\

The Ubiquitous Language is a shared language between the
business and the development teams

The Ubiquitous Language comes from the business, and is
enriched by the development team

www.thinkddd.com

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 51
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Customer/Business UL IT Organization

W00 SSaIdpIom XD/ /sdg

http://clipartzebraz.com

Software
Teams

Domain
Experts

Formal i zati on
i —

| ow hi gh

«Boxes & Lines» | Boxes & Lines || UML, SysML | | Ontologies
Text with semantics

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 52
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How is an Ubiquitous Language developed?

... very often a good start is a textual table

High Level Domain Entities (Enterprise Level)
Domain Concept ,Descuptwnﬁ Operations

Organization Entity || Legal Entity for e (Create the entity
executing business e Internal organization of the entity
. e Agreements with other parties
Definition e Creation of financial products
e (Collaborate with other parties
e (Create reports
\ [
Operation Value-transferring K Define parties
activity with e Oblige parties
Concepts adherence to legal & e Check legal & regulatory requirements
regulatory e Execute operation
requirements i i .
e Document & archive operation Operatlons
[
— /
etc.
etc.

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 53
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DEFINITIONS

an

Domain Specific Language =

A computer programming language of limited
expressiveness focused on a particular domain.

The domain focus is what makes a limited language
worthwhile.

Fowler /Parsons 2011

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 54
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! DSL
Textual _,%_, N -

Table \—L
[ Code }

Fornmal i zati on

i —

| ow hi gh

«Boxes & Lines» | Boxes & Lines || UML, SysML | | Ontologies
Text with semantics DSL’s

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 55
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Implementing Domain-Specific Engineering (DSE) in a company

is a very demanding task

-/ /www.aiming.in

DSE "light"

Use the business terminology in your code:
 Business objects — classes
 Business operations — services/methods
 Business terms — Variables

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18
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— Recommendations

Architecture Recommendations for Domain Software Engineering (DSE)

1. Gracefully build up an Ubiquituous Language between Business/Customer and IT
(Implementer)

2. Define a consistent and complete domain model (hierarchical because of the size)
3. Push the formalization as far as possible (without losing the business/customer)
4. Use the terminology from the domain model/ubiquitous language in the code

S. Keep the domain model and the code implementation strictly synchronized at all times

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 57
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Textbook — Textbook —

Eric J. Evans :
Domain-Driven Design - Tackling Complexity Scott Millett, Nick Tune:
in the Heart of Software Patterns, Principles, and Practices of Domain-

Addison Wesley Inc., USA, 2003. ISBN 978-0- Driven Design
321-12521-7 Wrox, 2015. ISBN 978-1-1187-1470-6

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 58
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Legacy System Migration/Modernization
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What is a legacy system ?

. »a system built yesterday*“ ...25 years

- and still in use today

http:/ /www.123rf.com

9

® o ®
Liability Asset
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Legacy System:

DEFINITIONS

Obsolete computer system which is still in use, L

because its data can not be changed to newer or standard
formats,

its application programs can not be upgraded,

or its development/execution platform can not be

changed /

© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 61
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http:/ /www.123rf.com

ToTS[e /o 2ZU MMM/ /-

Liability Asset
@ ®
bad:

» very low changeability

(= high resistance to change) good.:
* weak resilience « invaluable implicit knowledge of the
e eroded architecture domain and the business processes
e badly or not documented * stable operation (mature)
e obsolete technology (HW & SW) * good solutions/algorithms
» large technical debt * often: suprisingly good code

* lost knowledge (people left)

« difficult integration context
© Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 62
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High resistance to change for new
business requirements (low changeability) Legacy Software-System

Weak resilience (attacks, faults, ...)

Technology pressure

Why M New architecture paradigms

weE
Knowledge shortage

modernize

NV VAV

systems ? Replace Migrate
Operational Risk Minimizing the risk of operational faults
Decision Fit-for-Future Technical Debt?
Criteria: Cost/Time Total Effort
Additional Constraints | e.g. Certification
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Legacy system modernization strategies

New -
Requi renent s

The evolution becomes unmanageable (low architecture quality)
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Legacy system modernization strategies
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Modernization /Transformation

Replacing:
Completely new development starting from systems requirements

Re-Architecting:
Transforming to new architecture paradigm

Re-Engineering:
Transforming to new technology (new infrastructure or software technology)

Re-Factoring:
Improving existing code (no functionality change)

_____________________________________________________________________________________________________________________________________

_____________________________________________________________________________________________________________________________________
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Example: Code
Reverse-Engineering:

http:/ /roycebits.blogspot.ch

Compiler

!

Executable machine code:

ze .| coBOL |«

8020 78

8021 A9 80
8023 8D 15 03
8026 A9 2D
8028 8D 14 03
802B 58

802C 60

802D EE 20 DO
8030 4C 31 EA

http://c2.com/cgi/wiki?MachineCode
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Example: Code @ [ | Tool
Reverse- < support
Engineering: M
Sz
i ; 41?QQOQIJ~
i \ {peej‘e
Assembly language code:
Executable machine code:
) Start: .org $8020
< 8020 78 SEI
; 8021 A9 80 LDA #$80
: 8023 8D 15 03 De- STA $0315
E 8026 A9 2D Assembler LDA #$2D
j 8028 8D 14 03 STA $0314
] 802B 58 CLI
2 802C 60 RTS
802D EE 20 DO Tool | NC $D020
8030 4C 31 EA support JMP $EA31
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Legacy system modernization techniques

Type of Migration

Current State

Target State

Replacing

=  Completely new
development starting
from systems
requirements

Operational software. Cost, time
and risk for a migration to high

Software has completely been
rewritten, starting from the initial
requirements

Re-Architecting

»  Transforming to new
architecture paradigm
(Considerable functional
change)

Operational software.
Architecture paradigm has
changed

[e.g. monolithic architecture =
service-oriented architecture]

Software runs under the new
architecture paradigm

Re-Engineering

»  Transforming to new
technology base, e.g.
new infrastructure or
software technology
(limited functional
change)

Operational code running on an
outdated execution platform or
using an obsolete software
technology

Code runs on the modern
execution platform or uses
modern software technology

Re-Factoring

*» Improving existing code
(no functionality change)

Operational code, deficiencies in
the program implementation

Improved code (quality criteria)

Reverse Engineering

* No or insufficient
information (code + doc)

Operational code, massive lack
of documentation, of knowledge
and of source code

System is sufficiently understood
and documented to start
migration
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Example: COBOL/CORBA = JAVA/Web-Services Migration + Security

/
Step xtend
Fun nality
[Enh ecurity by #CertsF

_/

Legacy Application Tool
» Programming Language: COBOL support
» Interaction: CORBA \
J, Q \/
S = Step 1: Refactor Code
S e COBOL — JAVA
\/ [Functionality unchanged] g
X
20 , : 2
3 =9 Step 2: Re-Architect | =
558 CORBA — Web-Servs || B
S [Functiona/ky unchanged] :?
/ &
@
»
»

N

(s3120 #)
SjuQWIROUBYUY
A1Inoag

Migrated Application
» Programming Language: JAVA \/ Tool
» Interaction: Web-Services support
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Code,

Programs
Applications ||
\/
> Replacing > Replacing
» Re-Architecting » Re-Architecting
» Re-Engineering » Re-Engineering
» Re-Factoring » Re-Factoring

» Reverse Engineering » Reverse Engineering
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Legacy SW-System Modernization

m———, >
[ Database
“ Modernization

Objectives:
> Replacing » Redundancy elimination
> Re-Architecting = Syntactic/semantic integrity
» Re-Engineering = Database technology (relational)

» Re-Factoring

> , » Access performance
» Reverse Engineering

» Transactional integrity
= Modeling
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Can we avoid the production
of «Legacy software»

... NO! — only make the legacy easier

http:/ /www.rakenapp.com

=l Technical Principles Delayed

internal Debt Violation Re—Archltegtlng,

f — Refactoring

actors

Software life

external it

factors Technology g e o © Tooling People

. ) Paradigm
Disruption advance change

Change
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Can we avoid the production
of «Legacy software»

... NO! — only make the legacy easier

Solution:
Continuous Rearchitecting/Refactoring

Managed Evolution Strategy

=
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Managed Evolution Strategy

Business
Requirements
Architecture
l l Requirements
Build new functionality Refactor Each project
\ improves
Y ) architectural
Project quality

(changeability,
dependability)
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Managed Evolution N
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~ Recommendations

Architecture Recommendations for Legacy System Modernization

1. Unambigously specify the boundary of the system (Code & Data) to be
migrated /modernized

2. Clearly assess the state of the legacy system (code, data, documentation, value)
3. Precisely define the migration/modernization goals (for code & data)

4. Choose a migration/modernization strategy based on risk, fit-for-future, cost & time and
quality attributes (e.g. certification or validation etc.)

S. Select optimum tool support [Note: Many excellent tools available, search www]
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Textbook —

Robert C. Seacord, Daniel Plakosh, Grace A.
Lewis:

Modernizing Legacy Systems - Software
Technologies, Engineering Processes, and
Business Practices

Addison-Wesley Professional, USA, 2003. ISBN
978-0-321-11884-4

Textbook —

William M. Ulrich:

Legacy Systems - Transformation Strategies
Prentice Hall Inc., USA, 2002. ISBN 978-0-130-
44927-6
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Software Product Lines
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Example: C]

Product line in 3
automotive
development
;

VW Jetta VW Golf VW Passat
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SW Product Line Development

Market Software Product
artefacts Decisions
l [explicitly planned,
massive reuse]
Product Line o it
Conception l
I Doc ‘
Comban 7 Production .
Stra?eg\yy [Assembly] .
g SW
E Doc
§ 1| | Model
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SW Product Line Development

Feat ur e Mbdel
Wave 1:

» Product Line
Conception

Product Line
Architecture

Market

l

|

Company

|-
5’7

Strategy
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Economics of Product Line Development:

Single
Total Great advantage in systems
effort cost, timé—to—market approach
[€, t] and quality
Product
line
approach
Initial effort:
e Prod line def
e Variability
e 1 Quality I I I I I I
1 2 3 4 5 6 # of different

systems built
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Softwawe Product Line Superbly planned

and executed

managed redundancy
/

~

v Product lines make use of planned, massive reuse

Effect on Future-Proof Softw

v' The product line approach promises significant advantages
in development cost, time-to-market and quality of the
products = strong amplifier for agility)

v Product line engineering requires specific organizational
structures and a new software development process

v The product line approach is a mature, proven technology
which leads to considerable competitive advantages for
companies
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— Recommendations

Software Product Lines
1. Product lines make use of planned, massive reuse

2. The product line approach promises significant advantages in development cost,
time-to-market and quality of the products = strong amplifier for agility)

3. Product line engineering requires specific organizational structures and a new
software development process

4. The product line approach is a mature, proven technology which leads to
considerable competitive advantages for companies
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Paul Clements, Linda Northrop:
Patterns

134-42408-8

Textbook —

Software Product Lines — Practices and

Addison Wesley Inc., USA, 2015. ISBN 978-0-

Textbook —

Klaus Pohl, Gunter Bockle, Frank J. Linden:
Software Product Line Engineering -
Foundations, Principles and Techniques
Springer-Verlag, Berlin, 2010. ISBN 978-3-642-
06364-0
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