
Future-Proof Software-Systems [Part 4A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 1
Version 0.7

Future-Proof Software-Systems (FPSS)

h
ttp

s
:/

/
s
ta

tic
1
.s

q
u

a
re

s
p
a
c
e
.c

o
m

Part 4A: Architecting for Dependability

Lecture WS 2017/18: Prof. Dr. Frank J. Furrer

Future-Proof Software-Systems [Part 4A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 2

Our journey:


w

w
w

.1
2
3
rf.c

o
m

–
u

s
e
d

w
ith

p
e
rm

is
s
io

n

«Software
everywhere»

Managed Evolution
Strategy

Future-Proof
Software-Systems

Technial Debt
Architecture Erosion

Architecture

The Future-Proof Software-
Systems Engineer

Systems & Software
Engineering

Three devils of
Systems Engineering

Special Topics
Architecting for
Changeability

Architecting for
Dependability





 

 

Future-Proof Software-Systems [Part 4A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 3

h
ttp

:/
/
w

w
w

.g
e
tty

im
a
g
e
s
.c

h

Our objective is:

To build, evolve, and maintain

long-lived, mission-critical IT-systems

with a strong dependability,

an easy changeability,

and a high business value.

Remember

Future-Proof Software-Systems [Part 4A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 4

Part 4A:

1. Introduction

2. Dependability (Repetition)

3. Architecting for Dependability

4. Dependability Architecture Principles

• General Dependability Architecture Principles (Resilience)

Part 4B:
• Specific Dependability Architecture Principles (Examples)

Content

Future-Proof Software-Systems [Part 4A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 5

Introduction

Future-Proof Software-Systems [Part 4A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 6

Software Changeability

enables success in the competitive
business arena

h
ttp

:/
/
w

w
w

.c
lip

a
rts

h
e
e
p
.c

o
m

Software
Dependability

assures survival in the
hostile world

h
ttp

:/
/
w

w
w

.c
lip

a
rts

h
e
e
p
.c

o
m

Architecting for Dependability:
Part 4 (this part)

Architecting for Changeability:
Part 3 

Future-Proof Software-Systems [Part 4A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 7

February 15, 2015

Carbanak cyber gang:

Hackers in Eastern Europe are bleeding banks dry, stealing as much as $1 billion

from more than 100 financial institutions in a string of attacks that borrow heavily

from targeted attacks against sensitive government and industrial targets

https://threatpost.com

h
ttp

:/
/
im

g
.d

e
u

s
m

.c
o
m

Example:
Weak bank security (1/2)

Future-Proof Software-Systems [Part 4A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 8

Why is that possible?

 Significant risk for the world banking system

Years and years of neglecting dependability!

h
tt

p
s
:/

/
m

e
d
ia

-c
d
n

.t
ri

p
a
d
v
is

o
r.

c
o
m

Example: Weak bank security (2/2)

Future-Proof Software-Systems [Part 4A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 9

Hackers stole proprietary information from six U.S. and European energy

companies, including Exxon Mobil, Royal Dutch Shell, and BP.

Hackers targeted computerized topographical maps worth "millions of dollars"

that locate potential oil reserves.

The cyberespionage started in 2009 and went on for years (on-going!)

Example:
Industrial espionage (1/2)

h
ttp

:/
/
w

w
w

.is
h

n
.c

o
m

Future-Proof Software-Systems [Part 4A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 10

Why is that possible?

 Significant risk for the industrial development

Example: Industrial espionage (2/2)

Years and years of neglecting Dependability!

h
tt

p
s
:/

/
s
i.
w

s
j.
n

e
t

Future-Proof Software-Systems [Part 4A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 11

Example:
Infrastructure weakness (1/2)

In 2007, researchers at the Idaho National Lab conducted the Aurora test, in which a
virus manipulated the computer network systems that controlled diesel generators.
The controlled test resulted in an out-of-synchronism condition. Specifically, the out-of-
phase synchronism or out-of-phase condition which causes them to fail.

This test is significant because it demonstrated the ability for a computer virus to
manipulate grid systems and cause massive physical damage.

https://www.scientificamerican.com

h
ttp

:/
/
s
7
d
2
.s

c
e
n

e
7
.c

o
m

Future-Proof Software-Systems [Part 4A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 12

Example: Infrastructure weakness (2/2)

 Enormous risk for the power infrastructures of Nations

Why is that possible?

J
a
n

u
a
ry

0
8
,
2
0
1
6

Years and years of neglecting Dependability!

Future-Proof Software-Systems [Part 4A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 13

Example: IoT [Internet of Things] (1/2)

September 2016:
Hackers found 47 new vulnerabilities in 23 IoT devices at DEF CON

The results from this year's IoT hacking contest are in and it's not a pretty picture:

Smart door locks, padlocks, thermostats, refrigerators, wheelchairs and even solar panel
arrays were among the internet-of-things devices that fell to hackers during the IoT
Village held at the DEF CON security conference in August 2016.

h
ttp

:/
/
s
3
-a

p
-s

o
u

th
e
a
s
t-2

.a
m

a
zo

n
a
w

s
.c

o
m

Future-Proof Software-Systems [Part 4A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 14

Example: IoT [Internet of Things] (2/2)

 Unbelievable risk for our connected work and life

Why is that possible?

h
ttp

:/
/
w

w
w

.p
o
s
ts

a
v
e
r.c

o
m

After 20 years in the Security Game: Everything old, is new again

Future-Proof Software-Systems [Part 4A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 15

http://www.tagesspiegel.de/wirtschaft/softwareprobleme-ice-bremsen-zu-spaet/7435884.html

June 2013:

The delivery of the new ICE-Trains from SIEMENS to the Deutsche Bahn is massively delayed.

Reason: Real-Time performance problems in the train control software. The brake command

takes one second to travel through the software and start braking. With a full-stop command

from 250 km/h the train will stop 70 meters later because of the software latency.

h
ttp

s
:/

/
w

w
w

.k
s
ta

.d
e

Example:
ICE train real-time problem (1/2)

Future-Proof Software-Systems [Part 4A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 16

Example:
ICE train real-time problem (2/2)

h
tt

p
:/

/
d
e
a
c
a
d
e
m

ic
.c

o
m

The German train regulator
refused to accept the ICE trains

Massive delay and significant monetary
losses for both SIEMENS and Deutsche Bahn

Cause:
The dependability criterium «real-time
requirements» has not been adequately
addressed during software development !

Future-Proof Software-Systems [Part 4A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 17

Lessons learned:

h
ttp

:/
/
w

e
c
lip

a
rt.c

o
m

«Non-functional aspects (Dependability properties) win the game»

• Functional aspects are (in most cases) foremost in the stakeholder’s views

• Non-functional aspects are (in many cases) added as an afterthought

• Non-functional aspects are cross-cutting concerns – they affect the very core of
architecture and design

• Implementing/fixing non-functional aspects in a later phase – especially after
deployment – is a tremendously expensive and risky endeavour

• Not meeting the non-functional aspects is often the death of a product or service (and
possibly: of the company)

Future-Proof Software-Systems [Part 4A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 18

Lessons learned:

Non-functional aspects/properties are a central responsibility in all

phases of the software/system development process

h
tt

p
:/

/
m

is
s
is

s
a
u

g
a
k
id

s
.c

o
m

Future-Proof
Software-Systems

Future-Proof
Software-Systems

Future-Proof Software-Systems [Part 4A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 19

The world is a dangerous place for software

and is becoming more dangerous every year

h
tt

p
:/

/
w

w
w

.e
u

ro
p
e
a
n

c
le

a
n

in
g
jo

u
rn

a
l.
c
o
m

Future-Proof Software-Systems [Part 4A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 20

Where can we build dependability?

On the side of the
disruption?

On the side of the
impact?

Future-Proof Software-Systems [Part 4A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 21

Where can we build dependability?

On the side of the
disruption?

On the side of the
impact?

Future-Proof Software-Systems [Part 4A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 22

We need:

Continuous & consistent hardening of the software-systems

In response to:

• New threats & attacks

• Disruptions in the environment

• Faults and errors (internal & external)

• Increased risks

• Raising hostility

h
ttp

:/
/
w

w
w

.tra
lp

h
iu

m
.n

e
t

Future-Proof Software-Systems [Part 4A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 23

Business
Value

Dependability

Business
Value

Changeability

Changeability Evolution Trajectory Dependability Evolution Trajectory

All projects in time  All projects in time 

Loss of
dependability

Gain of
Business value

Gain of
agility

Gain of
Business value

Pi
Pj

Continuous development of dependability leads to

a sustainable system (= path to future-proof SW)

Future-Proof Software-Systems [Part 4A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 24

Central questions:

• How do we define dependability?

• What is good dependability?

• Can we measure dependability?

• Which principles lead to good dependability?

h
ttp

s
:/

/
th

a
g
u

y
2
4
.file

s
.w

o
rd

p
re

s
s
.c

o
m

Future-Proof Software-Systems [Part 4A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 25

Resilience Example: Security (Entry protection)
h

tt
p
s
:/

/
zi

n
a
tu

ll
in

.f
il
e
s
.w

o
rd

p
re

s
s
.c

o
m

Is that good security?

Why not?

Missing: A Security Architecture!

Future-Proof Software-Systems [Part 4A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 26

Foundation of a dependable system

h
tt

p
:/

/
e
a
s
y
p
ie

.d
k

 VERTICAL ARCHITECTUREs (= STRUCTURE)

Future-Proof Software-Systems [Part 4A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 27

Information (Data)
Architecture
(Information & Data)

Technical
Architecture
(Technical
Infrastructure)

Integration
Architecture
(Cooperation
Mechanisms)

Applications
Architecture
(Functionality)

Business
Architecture
(Business Processes)

F
u

n
c
ti

o
n

a
l
A

rc
h

it
e
c
tu

re
s

Security
Architecture

(Defense)

Safety
Architecture

(Accidents)

Performance
Architecture

(Real-Time)

System
Management
Architecture

(Control)
e
tc

.

Elements of the
dependability architecture

Future-Proof Software-Systems [Part 4A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 28

Security
Architecture

(Defense)

Safety
Architecture

(Accidents)

Performance
Architecture

(Real-Time)

System
Management
Architecture

(Control)
e
tc

.

Parts of
Dependability
Architecture

How do we develop and evolve a reliable set

of vertical (dependability) architectures?

By using
proven resilience

architecture
principles

Future-Proof Software-Systems [Part 4A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 29

h
tt

p
:/

/
w

w
w

.m
a
ri

n
a
b
a
y
s
a
n

d
s
.c

o
m

General Resilience
Architecture Principles
(Overarching Principles)

Safety Principles

Security Principles

Integrity Principles

Availability Principles

… etc.

Dependability Architecture Principles

Future-Proof Software-Systems [Part 4A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 30

Dependability Architecture Principles

General Dependability
Architecture Principles
(Overarching Principles)

Safety Principles

Security Principles

Integrity Principles

Availability Principles

… etc.

Rich body of knowledge:

• Principles

• Patterns

• Frameworks

• Methodologies

Lecture:
8 fundamental principles

Lecture:
Important examples

Future-Proof Software-Systems [Part 4A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 31

Textbook Textbook

Rob de Bie, Bryan Bakker,Rene van den
Eertwegh, Peter Wijnhoven:
Finally... Reliable Software!: A practical
approach to design for reliability
CreateSpace Independent Publishing Platform,
2015. ISBN 978-1-4992-2666-9

John Knight:
Fundamentals of Dependable Computing for
Software Engineers
CRC Press (Francis & Taylor), USA, 2012. ISBN
978-1-439862551

Future-Proof Software-Systems [Part 4A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 32

Dependability: Repetition

Future-Proof Software-Systems [Part 4A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 33

Dependability expectations Dependability properties

Application DomainGeneral propertyResilience

Specific properties

• Safety

• Security

• Integrity

• Confidentiality

• Real-time capability

• …

Future-Proof Software-Systems [Part 4A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 34

Dependability

Resilience
Domain-specific

properties

Future-Proof Software-Systems [Part 4A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 35

“The software does what it should do,

… and does not what it should not do”

Dependable System

“Dependability” refers to the user’s ability to depend on a system in

its intended environment, with its intended use, as well as when

these assumptions are violated or external events cause disruptions.

Dependable
System

External incident

Internal incident

Impact
Consequences

Dependability expectations Dependability properties

Future-Proof Software-Systems [Part 4A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 36

Resilience is the capability of a system with specific characteristics

before, during and after a disruption

to absorb the disruption, recover to an acceptable level of performance,

and sustain that level for an acceptable period of time

http://www.incose.org/practice/techactivities/wg/rswg/

Incident System
& Environment




Future-Proof Software-Systems [Part 4A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 37

Application Domain Quality Property 1

(low)

2 3 4 5

(high)

Functionality x

Availability x

Security x

Safety x

Integrity x

Efficiency x

Performance x

Reliability x

Recoverability x

Traceability (& Forensics) x

Accountability x

Dependability Profile

For every domain or application a dependability profile is defined

Future-Proof Software-Systems [Part 4A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 38

System Quality Property Weight

0: irrelevant

10: highest importance

Primary Characteristics

1 Business Value 10

2 Changeability 10

Dependability:

3 Safety 9

4 Fault-Tolerance 9

5 Compliance to laws & regulations 9

6 Integrity (Sensor Data) 9

7 Availability 8

8 Security 7

9 Diagnosability 6

Secondary Characteristics

10 Resources (Memory, CPU, …) 8

11 Compliance to industry-standards 7

12 Usability (User Interfaces) 9

etc

Example:
Automotive Domain

Quality Property
Score Card

Future-Proof Software-Systems [Part 4A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 39

Example:
Automotive Domain

Quality Property
Score Card

System Quality Property Weight

0: irrelevant

10: highest importance

Primary Characteristics

1 Business Value 10

2 Changeability 10

Dependability:

3 Safety 9

4 Fault-Tolerance 9

5 Compliance to laws & regulations 9

6 Integrity (Sensor Data) 9

7 Availability 8

8 Security 7

9 Diagnosability 6

Secondary Characteristics

10 Resources (Memory, CPU, …) 8

11 Compliance to industry-standards 7

12 Usability (User Interfaces) 9

etc

Requirements:

Future-Proof Software-Systems [Part 4A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 40

Dependability

Foundation: General (Overarching) Resilience Architecture Principles

S
a

fe
ty

A
rc

h
it

e
ct

u
re

P
ri

n
ci

p
le

s

S
e

cu
ri

ty
A

rc
h

it
e

ct
u

re
P

ri
n

ci
p

le
s

A
v

a
il
a

b
il
it

y
A

rc
h

it
e

ct
u

re
P

ri
n

ci
p

le
s

P
e

rf
o

rm
a

n
ce

A
rc

h
it

e
ct

u
re

P
ri

n
ci

p
le

s

Dependability
Architecture(s) Domain-

Specific
Properties

Future-Proof Software-Systems [Part 4A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 41

Architecting for Dependability

Future-Proof Software-Systems [Part 4A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 42

Architecting for Dependability:

Defining and implementing an IT-structure providing the

optimum defense against incidents,

based on a risk management methodology

Dependability Engineer:

Responsible for the resilience

engineering process in a company

h
tt

p
s
:/

/
w

w
w

.n
p
m

js
.c

o
m

Future-Proof Software-Systems [Part 4A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 43

Dependability Building Process
(»Architecting for Dependability»)

Resilience Architecture
Principles

Dependable
Architecture

Application-specific
Architecture Principles

h
tt

p
s
:/

/
w

w
w

.c
o
n

ti
n

u
it

y
s
a
.c

o
m

Risk Management Process

h
ttp

s
:/

/
w

w
w

.n
p
m

js
.c

o
m

• Safety Engineer
• Security Engineeer
• Certification Team
• …

Future-Proof Software-Systems [Part 4A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 44

System




Impact

Incident

all possible incidents

Incident

Incident

Incident

Incident

Incident

Incident

Incident

Incident

Risk-Management

Future-Proof Software-Systems [Part 4A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 45

System 


Impact

Incident

all possible incidents

Incident

Incident

Incident

Incident

Countermeasures

Incident

Incident

Incident

Incident

Identified Incidents
 Risk Analysis:

• Threats
• Probability

• Impact
• Mitigation

Risk-Management

Future-Proof Software-Systems [Part 4A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 46

Incident

Incident

Incident

Incident

Incident

Incident

Incident

Incident

Incident

Identified Incidents
 Risk Analysis:

• Threats
• Probability

• Impact
• Mitigation

Unidentified Incidents

Risk-Management

Future-Proof Software-Systems [Part 4A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 47

System

Incident

all possible incidents

Incident

Incident

Incident

Incident

Incident

Incident

Incident

Incident

Specific
Countermeasures
( Risk Analysis)



Architectural
Countermeasures

(Principles)



Adaptive
Behaviour

(«Autonomic
Computing»)



targetted

adaptive,
self-defense

general (restricted)

Future-Proof Software-Systems [Part 4A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 48

Specific
Countermeasures
( Risk Analysis)



Architectural
Countermeasures

(Principles)



Adaptive
Behaviour

(«Autonomic
Computing»)



Resilient Code

Resilient Architecture

Resilient System

Future-Proof Software-Systems [Part 4A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 49

Risk Management

Future-Proof Software-Systems [Part 4A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 50

But what if the problem

• is not fully defined

• or the environment is
uncertain?

But what if situations

• are too complex to be
predicted

• or the environment is
changing dynamically?

Autonomic ComputingAutonomic Computing

Adaptive
approach Incident

Incident

Unidentified Incidents

Future-Proof Software-Systems [Part 4A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 51

Vision

= Specific approach to

the engineering of

software systems

A type of computing model in which the system is self-

healing, self-configured, self-protected and self-managed

 self-* properties

h
ttp

:/
/
fly

lib
.c

o
m

Future-Proof Software-Systems [Part 4A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 52

 2020 2010

System

Safety Case

Disruptive Incidents
1. Xxx
2. Yyy
3. Zzz

predictpredict adaptadapt

System

In
c
id

e
n
t

?

Self-
Protecting

System

t

Complexity

t

Tractability

Future-Proof Software-Systems [Part 4A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 53

How can we achieve high dependability in a technical system?

Score-card
approach

Risk-based
approach

Adaptive
approach

Use of a risk-
management
methodology

Specify the domain-
specific

dependability
properties

Use self-* capabilities
[Autonomic Computing]

Future-Proof Software-Systems [Part 4A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 54

 Dependability Engineering

… an interesting research & applications field

Future-Proof Software-Systems [Part 4A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 55

Dependability

Resilience
Domain-specific

properties

Future-Proof Software-Systems [Part 4A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 56

Resilience

Future-Proof Software-Systems [Part 4A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 57

h
tt

p
s
:/

/
s
o
u

n
d
c
lo

u
d
.c

o
m

Crash


t
Degraded operation

t
Recovery

t
Malfunction



Resilience: Reaction

h
tt

p
:/

/
k
a
n

to
.s

tr
ip

e
s
.c

o
m

Immunity


NOT acceptable

Acceptable in
some cases

Acceptable in
some cases

NOT acceptable

Desirable

Incident

Future-Proof Software-Systems [Part 4A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 58
t

before during after

In
c
id

e
n
t

h
tt

p
:/

/
w

w
w

.c
li
p
a
rt

p
a
n

d
a
.c

o
m

h
tt

p
s
:/

/
s
o
u

n
d
c
lo

u
d
.c

o
m

h
tt

p
:/

/
k
a
n

to
.s

tr
ip

e
s
.c

o
m

h
ttp

:/
/
w

w
w

.fo
to

s
e
a
rc

h
.c

o
m

3 phases of resilience:

Future-Proof Software-Systems [Part 4A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 59

Resilience (from the definition):

• Before – Allows anticipation and corrective action to be considered

• During – How the system survives the impact of the disruption

• After – How the system recovers from the disruption

Resiliency objectives (Profile)

Risk & hazard analysis

Resilient architecture

Full planning

Careful Engineering

Safe development (Process)

Recovery procedures

Scenario testing

…

Operating procedures
Monitoring
Logging/Audit trail
Recovery mechanisms
…

Mode(s) of operation
(Forensic) Analysis
Diagnosis
Repair procedures
Improvements
…

How can we achieve resilience in a technical system?

Future-Proof Software-Systems [Part 4A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 60

The four cornerstones of resilience

responding
[actual]

knowing
what to do

H
o
ll
n

a
g
e
l,

2
0
1
1
,

IS
B

N
9
7
8
-1

-4
7
2
4
-2

0
7
4
-9

monitoring
[critical]

knowing
what to look

for

learning
[factual]

knowing
what has
happened

anticipating
[potential]

knowing
what to
expect

t

before during after

adjust

adjust

Future-Proof Software-Systems [Part 4A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 61

Resilience Patterns

Patterns are the finest-granular form of knowledge

to convey valuable, proven information

about resilient architecture/designs

Future-Proof Software-Systems [Part 4A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 62

 R1: Policies

 R2: Vertical Architectures

 R3: Fault Containment Regions

 R4: Single Points of Failure

 R5: Multiple Lines of Defense

 R6: Fail-Safe States

 R7: Graceful Degradation

 R8: Dependable Foundation (Infrastructure)

 R9: Monitoring

General (Overarching) Architecture Principles for Resilience

Future-Proof Software-Systems [Part 4A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 63

General Resilience

Architecture Principles

Policies

R1

Future-Proof Software-Systems [Part 4A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 64

h
tt

p
:/

/
w

w
w

.d
if
fe

re
n

c
e
b
e
tw

e
e
n

.i
n

fo

Policy:

The set of basic principles and associated guidelines, formulated

and enforced by the governing body of an organization, to direct

and limit its actions in pursuit of long-term goals

http://www.businessdictionary.com/definition/policy.html

Future-Proof Software-Systems [Part 4A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 65

Defines the targets, direction
and restraints of all activities of
the organization

Infrastructure
Policy

Business
Policy

Intellectual
Property

Policy
…

Future-Proof Software-Systems [Part 4A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 66

Good policies guide the course of a company in all relevant

areas towards sustainable success

h
tt

p
:/

/
w

w
w

.l
ig

h
th

o
u

s
e
c
o
u

n
s
e
li
n

g
o
m

a
h

a
.c

o
m

Good policies are a great help for the people implementing

company objectives, especially infrastructure projects

Future-Proof Software-Systems [Part 4A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 67

Security
Frameworks

Security
Methodology

SECURITY
Policy

Policy Implementation:

Security
Standards

Future-Proof Software-Systems [Part 4A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 68

Example:

ISO27001

Information Security

Framework
http://www.iso.org/iso/iso27001

Future-Proof Software-Systems [Part 4A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 69

https://www.commoncriteriaportal.org/files/ccfiles/CEMV3.1R4.pdf

Example:

CC – Common Criteria

Common Criteria for
Information Technology
Security Evaluation (CC), and
the companion Common
Methodology for Information
Technology Security
Evaluation (CEM)

Future-Proof Software-Systems [Part 4A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 70

Resilience Architecture Principle R1:

Policies

1. Develop and enforce good, comprehensive, consistent policies for the infrastructure of
the company or organization

2. Support the policies by carefully selected standards, methodologies and frameworks

3. Keep all policies and supporting material up-to-date and adapted to the changing
environment

4. Consequently apply the policies to the evolution of the infrastructure (enforcement)

R1

Justification: Technical infrastructure has become so complex and important that it needs
to be governed by a consistent set of policies – otherwise the resulting divergence is a massive
risk for the company

Future-Proof Software-Systems [Part 4A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 71

Textbook Textbook

Thomas R. Peltier:
Information Security Policies and
Procedures: A Practitioner's Reference
Taylor & Francis Ltd, USA, 2nd edition, 2004.
ISBN 978-0-8493-1958-7

Auroop Ratan Ganguly, Stephen E. Flynn, Udit
Bhatia:
Critical Infrastructures Resilience: Policy and
Engineering Principles
Productivity Press, 2018. ISBN 978-1-4987-5863-5

Future-Proof Software-Systems [Part 4A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 72

General Resilience

Architecture Principles

Vertical
Architectures

R2

Technical
Architecture

Integration
Architecture

Information
Architecture

Application
Architecture

Horizontal Architecture Layers

Vertical
Architecture

Layers

Business
Architecture

Hierarchy

Horizontal Architecture Layers

Vertical
Architecture

Layers

Business
Architecture

Application
Architecture

Information
Architecture

Integration
Architecture

Technical
Architecture

S
a
fe

ty

S
e
c
u

ri
ty

R
e
a
l-

T
im

e …

Hierarchy

Horizontal Architecture Layers

Vertical
Architecture

Layers

Business
Architecture

Application
Architecture

Information
Architecture

Integration
Architecture

Technical
Architecture

S
a
fe

ty

S
e
c
u

ri
ty

R
e
a
l-

T
im

e …

Hierarchy

SoS

Application Landscape

Application

Component

Sensor/Actuator

Business
Architecture

Application
Architecture

Information
Architecture

Integration
Architecture

Technical
Architecture

S
a
fe

ty

S
e
c
u

ri
ty

R
e
a
l-

T
im

e …

SoS

Application Landscape

Application

Component

Sensor/Actuator

Cell X

Safety Concern
in the

Application
Software

Cell X

Cell Y

Real-Time
Concern in the
Information
Architecture

Cell Y

Future-Proof Software-Systems [Part 4A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 77

Architecture Framework Cells =

Allow assignment, structuring, and separating of the functionality and of the quality

properties of IT-systems to enable partitioning and life-cycle management.

Cell X = Safety Concern in the Application Software

 Formulation of Powerful Set of Architecture Principles,

e.g.:

NEVER implement security functionality in the applications

software

… but only allow calls to the security functionality

h
ttp

s
:/

/
w

w
w

.n
p
m

js
.c

o
m

«Canon of Orthogonality»

Future-Proof Software-Systems [Part 4A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 78

Security
Architecture

(Defense)

Safety
Architecture

(Accidents)

Performance
Architecture

(Real-Time)

System
Management
Architecture

(Control)

e
tc

.
Parts of Resilience
Architecture

Security architecture
 Protection of IT Assets

Safety architecture
 Protection of people and property

Real-Time architecture
 Assurance of hard timing properties

+ …

Future-Proof Software-Systems [Part 4A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 79

VA
Framework

VA
Methodology

VA
Standards

Vertical
Architecture

(VA)
Policy

• Security
• Safety
• Availability
• …

VA
Patterns

Indispensable
foundation
of
dependable
systems

Future-Proof Software-Systems [Part 4A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 80

Consistency of Vertical Architectures

Vertical
Architecture

(VA)
Policy

Vertical
Architecture

(VA)
Policy

Vertical
Architecture

(VA)
Policy

Vertical
Architecture

(VA)
Policy

…

Safety Security Availability etc.

Semantic consistency

Coverage consistency

Functional consistency

Models!

Future-Proof Software-Systems [Part 4A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 81

Example: Authentication/Authorization Architecture (Security)

A
u

th
e
n

ti
c
a
ti

o
n

(D
ig

it
a
l
Id

e
n

ti
ty

)
A

u
th

o
ri

za
ti

o
n

(A
c
c
e
s
s

C
o
n

tr
o
l)

Protection Asset
(Customer Information)

UserName

Password

#Cert

❶ 3-element identification

❷ Forced PW Changes (3 months)

Secure Registration Process❸

❹ Regular Audits

❺ Assignment to a Role

Access Control

❻ Strict, time-limited access control

❼ Access rights based on least privilege

Secure Rights Management❽

Future-Proof Software-Systems [Part 4A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 82

h
tt

p
s
:/

/
u

p
lo

a
d
.w

ik
im

e
d
ia

.o
rg

The quality and consistency of the vertical architectures determines the

dependability of the system

h
tt

p
s
:/

/
w

w
w

.l
a
n

e
te

rr
a
le

v
e
r.

c
o
m

However, … this represents a large amount of very difficult work

Future-Proof Software-Systems [Part 4A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 83

high

low

Criticality
• Loss of life, property
• Reputation Damage
• Legal consequences
• …

VA effort

Future-Proof Software-Systems [Part 4A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 84

Criticality
• Loss of life, property
• Reputation Damage
• Legal consequences
• …

VA effort

high

low

Answer:

 Risk-based approach

High risk: High VA-effort

Low risk: Low VA-effort

Future-Proof Software-Systems [Part 4A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 85

Resilience Architecture Principle R2:

Vertical Architectures

1. The dependability of the system is directly dependent on the quality of the vertical
architectures (and the quality of their implementation)

2. Match the quality of the vertical architectures to the risk/damage potential of your
application (Caution: be on the safe side)

3. Continuously maintain/evolve your vertical architectures in sync with changing
environments and requirements

R2

Justification: Vertical architectures are at the core of dependability. A great bandwith in
quality of vertical architectures exists. If the quality is too low, your systems/applications
may be at risk.

Future-Proof Software-Systems [Part 4A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 86

Textbook Textbook

Jan Killmeyer:
Information Security Architecture: An
Integrated Approach To Security in The
Organization
Auerbach Publishers Inc., USA, 2nd edition 2006.
ISBN 978-0-849-31549-7

Edward Griffor (Editor):
Handbook of System Safety and Security:
Cyber Risk and Risk Management, Cyber
Security, Threat Analysis, Functional Safety,
Software Systems, and Cyber Physical
Systems
Syngress Media, USA, 2016. ISBN 978-0-128-
03773-7

Future-Proof Software-Systems [Part 4A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 87

General Resilience

Architecture Principles

Fault Containment Regions

R3

Future-Proof Software-Systems [Part 4A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 88

h
tt

p
:/

/
e
m

s
1
2
le

a
d
.c

o
m

Fault
Incident

Error
Failure
Malfunction

h
ttp

:/
/
w

w
w

.a
u

to
-re

p
a
ir-h

e
lp

.c
o
m

h
ttp

:/
/
p
b
-a

tto
rn

e
y
s
.c

o
mAccident

Faults and incidents

are inevitable in

today’s complex

systems

… they are the

normal case

Future-Proof Software-Systems [Part 4A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 89

System Part

Incident

Fault ERROR
• Unintended state
• Undesired behaviour

A fault or incident is the cause of an error in the
system part (“Input”)

Failure

A failure is an event that occurs when the
delivered service deviates from correct service

Future-Proof Software-Systems [Part 4A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 90

System Part A

The consequences of a fault – the ensuing error – can propagate either by an
erroneous message or by an erroneous output action of the faulty part

System Part B

ERROR

System Part C

ERROR

Fault

Incident

ERROR

Fault Propagation

Future-Proof Software-Systems [Part 4A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 91

Fault propagation can consecutively affect system parts ( Domino effect)

The result may be severe malfunctions or the loss of the system

Initial
fault

Fault propagation

Fault propagation is difficult to predict

Future-Proof Software-Systems [Part 4A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 92

System Part A

System Part B

ERROR

System Part C

ERROR

Fault

Incident

ERROR

Build error propagation boundaries around each system part

Fault Containment Region

Future-Proof Software-Systems [Part 4A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 93

Fault
Containment
Region

System Part A

ERROR

Fault

Incident

Fault tolerant systems are often built around the concept of fault containment
regions (FCRs).

The primary goal of a FCR is to limit the effects of a fault and prevent the
propagation of errors from one region of the system to another.

A FCR is a subsystem that will operate correctly regardless of any arbitrary fault
outside the region.

FCRs may be physically separated, electrically isolated, and have independent
power supplies.

https://shemesh.larc.nasa.gov/fm/papers/Butler-TM-2008-215108-Primer-FT.pdf

Future-Proof Software-Systems [Part 4A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 94

h
tt

p
:/

/
w

w
w

.d
a
s
e
rs

te
.d

e

Example: Watertight Ship Compartments

h
ttp

:/
/
w

w
w

.d
ie

s
e
ld

u
c
k
.in

fo

Water inrush is
contained to few
compartments

due to
bulkheads

 The «fault» cannot propagate

Incident = Hull Damage

Future-Proof Software-Systems [Part 4A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 95

System Part A

ERROR

Fault

Incident

Failure System Part B

Typology of Failures:

• Temporal domain (too early, too late, not at all)

• Value domain (incorrect or out of range values)

• Content domain (wrong, faked or unallowed content)

Future-Proof Software-Systems [Part 4A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 96

System Part A

ERROR

Fault

Incident

Failure System Part B

A failure can only be detected:

• If the observed behaviour of a component can be judged in
relation to the intended behaviour

• If the system contains some form of redundant information
about the intended behaviour

Failure Detection

Failure detection

? ?

Future-Proof Software-Systems [Part 4A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 97

Failure Handling

System Part A

ERROR

Fault

Incident

Failure System Part B

Failure Detection

• Temporal domain (too early, too late, not at all)

• Value domain (incorrect or out of range values)

• Content domain (wrong, faked or unallowed content)

Tables
Calculations

 difficult

Future-Proof Software-Systems [Part 4A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 98

Failure Handling

System Part A

ERROR

Fault

Incident

Failure System Part B

Failure Detection

Reaction?

• Recovery (Fault tolerance)

• Degraded operation

• Safe state

• [Malfunction or Crash]

t
Recovery

t
Degraded operation

Future-Proof Software-Systems [Part 4A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 99

h
tt

p
:/

/
w

w
w

.t
o
m

o
rr

o
w

s
te

c
h

n
ic

ia
n

.c
o
m

B
ra

k
e

C
o
n

tr
o
l

Example: Car ABS (1/2)

Electronic Stability Program (ESP, ABS))

wheel
rotation
rate

Future-Proof Software-Systems [Part 4A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 100

Example: Car ABS (2/2)

Time[ms]

Acquisition
Interval

S
e
n
s
o
r

F
R

S
e
n
s
o
r

F
L

S
e
n
s
o
r

B
R

S
e
n
s
o
r

B
L

B
ra

k
e

C
o
n

tr
o
l

Impact
Interval

Computing
Intervall

wrong value

late or no valueFa
u

lt  Interpolation/Extrapolation

Reference time base

Fault detection

Fa
u

lt
H

a
n

d
li
n

g

WAIT: 5 intervals

Disable ABS

Fault
Containment

Region

Future-Proof Software-Systems [Part 4A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 101

• DETECT erroneous output of system A

• Inhibit transfer to system B

• Failure handling in system B

• Corrective action in system A ( human)

Constructing Fault Containment:

System Part A

ERROR

Fault

Incident

Failure System Part B

Future-Proof Software-Systems [Part 4A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 102

System Part A

ERROR

Fault

Incident

Failure System Part B

Type Detection Failure Handling Required Info

Temporal fault (too
early, too late, not at
all)

Timing frame (global
clock) & timing
model

Repeat (N x)
Redundancy
Fail safe state

Time reference

Value fault (incorrect
or out of range
values)

Interface contract
violation

Repeat (N x)
Algorithms
Fail safe state

Formal contract

Content fault (wrong,
faked or unallowed
content)

Integrity protection
(e.g. # certs)

Repeat request
Redundancy
Fail safe state

Model

Future-Proof Software-Systems [Part 4A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 103

Faulty

behaviour

Correct

behaviour
Decision

Constructing Fault Containment:

System Part A

ERROR

Fault

Incident

Failure System Part B

Reality Model

Future-Proof Software-Systems [Part 4A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 104

Example: Temporal Failures (Time-Triggered Architecture TTA)

Node A Node B Node C Node ..

Master Clock:
Clock Synchronization Algorithm

The messages are transported in exactly defined and assigned
time slots, based on precise clock synchronization in all nodes

Future-Proof Software-Systems [Part 4A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 105

Resilience Architecture Principle R3:

Fault Containment Regions

1. Partition the system into fault containment regions

2. Build error propagation boundaries around each system part ( Interfaces)

3. Provide sufficient redundant information about the intended behavior of the system
parts (components)

R3

Justification: A fault or incident causing an error or disruption in one part (component) of the
system should not propagate to other parts of the system and thus cause a sequence of errors
and failures

Future-Proof Software-Systems [Part 4A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 106

Textbook Textbook

Hermann Kopetz:
Real-Time Systems: Design Principles for
Distributed Embedded Applications
Springer-Verlag, Germany, 2nd edition, 2011.
ISBN 978-1-441-98236-0

Elena Dubrova
Fault-Tolerant Design
Springer-Verlag, Germany, 2013. ISBN 978-1-
461-42112-2

Future-Proof Software-Systems [Part 4A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 107

General Resilience

Architecture Principles

Single Points of Failure

R4

Future-Proof Software-Systems [Part 4A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 108

A single point of failure (SPOF)

is a part of a system that,

if it fails,

will stop the entire system from working

Future-Proof Software-Systems [Part 4A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 109

Example: Computer Network

Single
Point
of
Failure
(SPOF)

Future-Proof Software-Systems [Part 4A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 110

Information (Data)
Architecture
(Information & Data)

Technical
Architecture
(Technical
Infrastructure)

Integration
Architecture
(Cooperation
Mechanisms)

Applications
Architecture
(Functionality)

Business
Architecture
(Business Processes)

Security
Architecture

(Defense)

Safety
Architecture

(Accidents)

Performance
Architecture

(Real-Time)

System
Management
Architecture

(Control)

e
tc

.

Single Points of Failure
can occur in any layer of

the architecture stack
(horizontal or vertical)

Future-Proof Software-Systems [Part 4A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 111

Single Points of Failure (SPOF) are a high risk for dependabillity

Single Points of Failure (SPOF) are eliminated by:

a) Intelligent architecture/design

b) Introduction of redundancy

h
tt

p
:/

/
fa

v
im

.c
o
m

Single Points of Failure (SPOF)

may be well hidden in a system

and sometimes difficult to find

Future-Proof Software-Systems [Part 4A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 112

Example: Computer Network

Redundancy
eliminates
SPOF

Future-Proof Software-Systems [Part 4A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 113

Resilience Architecture Principle R4:

Single Points of Failure

1. Identify possible single points of failure early in the architecture/design process (Note:
single points of failure can occur on all levels of the architecture stack)

2. Eliminate single points of failure, e.g. by introducing redundancy

R4

Justification: Any single point of failure is a great risk for a dependable system. They must
therefore be avoided

Future-Proof Software-Systems [Part 4A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 114

Textbook Textbook

Rolf Isermann
Fault-Diagnosis Systems: An Introduction
from Fault Detection to Fault Tolerance
Springer-Verlag, Germany, 2006. ISBN 978-3-
540-24112-6

Michael Butler, Cliff Jones, Alexander
Romanovsky, Elena Troubitsyna (Editors):
Rigorous Development of Complex Fault-
Tolerant Systems
Springer Berlin, Heidelberg, 2008. ISBN 978-3-
540-48265-9

Future-Proof Software-Systems [Part 4A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 115

General Resilience

Architecture Principles

Multiple Lines of Defense

R5

Future-Proof Software-Systems [Part 4A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 116

Multiple lines of defense represents the use of multiple

computer techniques to help mitigate the risk of one

component of the defense being compromised or circumvented

Threat

1st line of
defense

2nd line of
defense

3rd line of
defense

Protection
asset

Future-Proof Software-Systems [Part 4A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 117

Example: South-East Louisiana Coast Hurricane Flood Protection

h
tt

p
:/

/
w

w
w

.p
ri

.o
rg



Future-Proof Software-Systems [Part 4A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 118

Threats
• Safety

• Security
• Availability

• …

Multiple Lines of Defense Strategy

http://www.thinkingbusinessblog.com

2
n

d
lin

e
o
f

d
e
fe

n
s
e

1
s
t
lin

e
o
f

d
e
fe

n
s
e

Future-Proof Software-Systems [Part 4A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 119

h
tt

p
:/

/
s
w

e
e
tc

li
p
a
rt

.c
o
m

Step 4: Bank asks for signature

Example: Security in Fund Transfer

h
tt

p
:/

/
s
w

e
e
tc

li
p
a
rt

.c
o
m

Step 1: Login

Step 2: Input Transfer Order

?
Step 3: Bank Checks
receiving account

3rd line of defense

1st line of defense

2nd line of defense

Future-Proof Software-Systems [Part 4A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 120

Resilience Architecture Principle R5:

Multiple Lines of Defense

1. For each threat and incident implement multiple, independent lines of defense

2. For each line of defense use different methods, techniques and technologies

R5

Justification: If a line of defense is overcome as a consequence of an incident, the second
(third, …) line of defense may mitigate the impact of the incident

Future-Proof Software-Systems [Part 4A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 121

Textbook Textbook

Klaus Schmidt:
High Availability and Disaster Recovery:
Concepts, Design, Implementation
Springer-Verlag, Germany, 2006. ISBN 978-3-
540-24460-8

Zachary Taylor, Subramanyam Ranganathan:
Designing High Availability Systems: DFSS
and Classical Reliability Techniques with
Practical Real Life Examples
Wiley-IEEE Press, USA, 2013. ISBN 978-1-118-
55112-7

Future-Proof Software-Systems [Part 4A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 122

General Resilience

Architecture Principles

Fail-Safe States

R6

Fail-safe means that a system will not endanger lives

or property when it fails.

It will go into a fail-safe state and stop working.h
tt

p
s
:/

/
m

e
d
ia

.l
ic

d
n

.c
o
m

Future-Proof Software-Systems [Part 4A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 123

A fail-safe system does not mean that failure is impossible or improbable – but

that the system’s design and implementation prevent unsafe consequences of

the failure

“As engineers we sometimes find designing equipment to be

well-built is much easier than designing it to fail predictably”

Peter Herena, 2011

h
tt

p
s
:/

/
im

g
.c

li
p
a
rt

x
tr

a
s
.c

o
m

Future-Proof Software-Systems [Part 4A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 124

Fail-safe means that a system will not endanger lives or property when it fails

What is the fail-safe state for?:

Fail-Safety is a
Property of the
End-Product

Future-Proof Software-Systems [Part 4A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 125

Systems as State-Machines

h
tt

p
:/

/
w

w
w

.u
m

l-
d
ia

g
ra

m
s
.o

rg

The operation of the system is a sequence of states.

A state change is triggered by an event.

State

Transition

Event

State-Chart
Diagram

Future-Proof Software-Systems [Part 4A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 126

h
tt

p
s
:/

/
w

w
w

.n
p
m

js
.c

o
m

Safe State

Safe
State

Which is a safe state?

How can we find a safe state?

Safe
State

Transitions
to fail-safe

state

Difficult
Engineering Task

h
ttp

s
:/

/
im

g
.c

lip
a
rtx

tra
s
.c

o
m

Future-Proof Software-Systems [Part 4A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 127

Safe State

STOP while avoiding an accident
 Human intervention

NO safe state necessary (uncritical)

NO safe state (critical)

Safe-states only for subsystems
Revert to human intervention

Future-Proof Software-Systems [Part 4A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 128

h
tt

p
:/

/
w

w
w

.t
h

e
g
u

a
rd

ia
n

.c
o
m

A train signalling system controls the lights and switches to

assure an accident-free train traffic

Safe State – Example 1: Train Signalling System (1/2)

Future-Proof Software-Systems [Part 4A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 129

h
tt

p
:/

/
w

w
w

.r
a
il
ly

n
e
w

s
.c

o
m

Safe State – Example 1: Train Signalling System (2/2)

Which is the safe state for this system?Safe
State

h
tt

p
:/

/
w

w
w

.c
lk

e
r.

c
o
m

Immediately STOP all traffic
 Human Operation

Affected
Area

Future-Proof Software-Systems [Part 4A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 130

Safe State – Example 2: Transaction Rollback (1/2)

h
tt

p
:/

/
s
w

e
e
tc

li
p
a
rt

.c
o
m

h
ttp

:/
/
w

w
w

.fo
to

s
e
a
rc

h
.c

o
.k

r
 ?

nok

Aborted Transaction: Which is the Safe State?
Safe
State

«Unknown
recipient»



Inconsistent databases

Transaction
can not be
completed

Future-Proof Software-Systems [Part 4A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 131

Safe State – Example 2: Transaction Rollback (2/2)

Rollback
Safe
State

h
tt

p
:/

/
s
w

e
e
tc

li
p
a
rt

.c
o
m

h
ttp

:/
/
w

w
w

.fo
to

s
e
a
rc

h
.c

o
.k

r

?

nok

Rollback

Rollback

unknown
recipient

Safe State: All databases are correct and consistent

 

Transaction
is aborted

Future-Proof Software-Systems [Part 4A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 132

CS
A

CS
E

CS
D

CS
I

CS
H

CS
G

CS
F

CS
C

CS
B

CS
N

CS
MCS

L

CS
K

Most applications = Systems-of-systems (SoS)
h

tt
p
:/

/
w

w
w

.f
li
g
h

t.
o
rg

Constituent system failure

Partial Fail-Safe State

Future-Proof Software-Systems [Part 4A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 133

Resilience Architecture Principle R6:

Fail-Safe States

1. Execute a careful hazard analysis of your full system to identify all (= goal) critical or
harmful states

2. Document all paths to the critical or harmful states in a formal way, such as state
chart diagrams

3. Model your application (or the software part of it) as a finite state machine

4. Define fail-safe state(s)

5. Implement reliable paths from all nodes to the fail safe state(s)

R6

Justification: If a failed system can transition into a fail-save state, then damage, loss of life
or property or other negative consequences may be avoidable (or minimized)

Future-Proof Software-Systems [Part 4A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 134

Textbook Textbook

Michael Allocco:
Safety Analyses of Complex Systems:
Considerations of Software, Firmware,
Hardware, Human, and the Environment
John Wiley & Sons, USA, 2010. ISBN 978-0-470-
58770-6

Clifton A. Ericson
Hazard Analysis Techniques for System
Safety
John Wiley & Sons, USA, 2nd edition, 2015. ISBN
978-1-118-94038-9

Future-Proof Software-Systems [Part 4A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 135

General Resilience

Architecture Principles

Graceful Degradation

R7

Future-Proof Software-Systems [Part 4A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 136

h
tt

p
s
:/

/
w

w
w

.e
v
a
n

ta
g
e
-t

e
c
h

n
o
lo

g
y
.c

o
m

Degraded Mode of Operation:

Drive slowly and carefully

Graceful Degradation:

Property of a system to continue operation at some reduced level of functionality,

performance or dependability after one or several of its components failed

Future-Proof Software-Systems [Part 4A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 137

Example: Degraded airworthiness after engine failure

h
tt

p
:/

/
w

w
w

.f
li
g
h

t.
o
rg

• Stop right engine

• Engine fire-extinguisher kills the fire

• Degraded operation: Fly with one engine

• Safe-State: Safe landing at nearest airport

Future-Proof Software-Systems [Part 4A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 138

Graceful Degradation = Specific to Resilience Properties

Example: Availability

Availability

100 %

50 %

Component
Failures

Tolerable Failures Impacting Failures
System
Failure

Graceful
Degradation

Loss of
system

Future-Proof Software-Systems [Part 4A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 139

Example: Graceful Degradation in Automatic Teller Machines

http://www.vendingroutesforsale.net

h
ttp

s
:/

/
g
ith

u
b
.c

o
m

?

ok

Degraded Operation: Limit cash dispensing to 100 Є per day

Dependability property
impacted: Security

Daily
withdrawals
stored on the

card

Future-Proof Software-Systems [Part 4A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 140

FF

F

F

F

F

F

FF

F

F

F
F

F
F

F

F

F

F

F
F

reduced level of
functionality
or
dependability

Fault Tolerance:
succesful redundancy

Graceful Degradation = Fault Tolerance Engineering

Future-Proof Software-Systems [Part 4A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 141

Graceful Degradation = Fault Tolerance Engineering

Fault tolerance: Providing functionality or service

that are consistent with its specification in spite of faults

h
tt

p
s
:/

/
w

w
w

.b
a
lt

im
o
re

a
ir

c
o
il
.c

o
m

 Addition of planned redundancy to our systems

Future-Proof Software-Systems [Part 4A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 142

Resilience Architecture Principle R7:

Graceful Degradation

1. Investigate the possibility for graceful degradation in your planned system (=

Business task)

2. Architect and implement proven graceful degradation technologies (for specific

resilience properties, such as availability, performance, safety, security, …)

3. Compensate component failures by carefully planned redundancy

R7

Justification: The value of many systems is significantly improved if after a failure of a
component the system operates in a (planned) degraded mode instead of stopping service

Future-Proof Software-Systems [Part 4A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 143

Textbook Textbook

Kjell Jørgen Hole:
Anti-fragile ICT Systems
Springer-Verlag, Germany, 2016. ISBN 978-3-
319-30068-9

Elena Dubrova:
Fault-Tolerant Design
Springer-Verlag, Germany, 2013. ISBN 978-1-
461-42112-2

Future-Proof Software-Systems [Part 4A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 144

General Resilience

Architecture Principles

Dependable Foundation
(Infrastructure)

R8

Future-Proof Software-Systems [Part 4A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 145

Execution Infrastructure: System Software

Execution Infrastructure: System Hardware

APPLICATIONS

S
y
s
te

m
S

ta
c
k

Future-Proof Software-Systems [Part 4A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 146

Technical Infrastructure

1960

Technical
Infrastructure

Application
Software

1980

Technical
Infrastructure

Application
Software

Infrastructure
Services

2000

Technical
Infrastructure

Application
Software

Infrastructure
Services

Commodities
Sourcing

2020

Technical
Infrastructure

Application
Software

Infrastructure
Services

Commodities
Sourcing T

e
c
h

n
ic

a
l
In

fr
a
s
tr

u
c
tu

re
g
ro

w
s

Future-Proof Software-Systems [Part 4A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 147

Use a resilience infrastructure as part of a reliable foundation for dependable

software-systems

Resilience Infrastructure:

Set of proven resilience technologies and services supporting the dependability

properties (availability, security, performance, …) of software systems

Note 1: Remember «Industry Standards»  Do NOT get boxed in by vendor-specific features

Note 2: Only use proven technology and isolate it via services

Future-Proof Software-Systems [Part 4A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 148

Execution Infrastructure: System Software

Execution Infrastructure: System Hardware

APPLICATIONS

Future-Proof Software-Systems [Part 4A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 149

Architecting a Resilience Infrastructure:

 Defining the specifications

 Selecting the vendors

 Integrating into the existing company/product infrastructure

 Maintenance (Updates, Patches)

Dependability Engineer Roles:

• Security Engineer

• Safety Engineer

• Availability/Performance Engineer

• … (all required resilience properties)

h
tt

p
s
:/

/
w

w
w

.n
p
m

js
.c

o
m

Future-Proof Software-Systems [Part 4A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 150

Example: Load Balancing

Internet

Server Farm

Load BalancersDependability Properties:
• Performance
• Availability

Future-Proof Software-Systems [Part 4A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 151

Example: Role-Based Access Control (RBAC)

Technical
Infrastructure

Application
Software

Infrastructure
Services

Commodities
Sourcing

Role DB Rights DB

h
ttp

:/
/
w

w
w

.fo
to

s
e
a
rc

h
.c

o
.k

r

DB
Mgmt

RBAC Product

h
ttp

:/
/
s
w

e
e
tc

lip
a
rt.c

o
m

Application
User

Access
Access
Request

Access
Permission

Execution Infrastructure

Future-Proof Software-Systems [Part 4A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 152

Resilience Architecture Principle R8:

Dependable Foundation (Infrastructure)

1. Use a resilience infrastructure as part of a dependable foundation for resilient software-

systems

2. Only use proven resilience technologies and services supporting the resilience properties

(availability, security, performance, …)

3. Whenever possible use industry-standard based resilience techniques (Avoid vendor lock-

in)

R8

Justification: An implementation of proven resilience techniques in the form of industry-
standard products forms a valuable, trustable resilience foundation

Future-Proof Software-Systems [Part 4A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 153

Textbook Textbook

Betsy Beyer, Chris Jones, Jennifer Petoff, Niall
Richard Murphy:
Site Reliability Engineering: How Google Runs
Production Systems
O'Reilly UK Ltd., 2016. ISBN 978-1-491-92912-4

Sjaak Laan:
IT Infrastructure Architecture -
Infrastructure Building Blocks and Concepts
Lulu.com, 3rd edition, 2017. ISBN 978-1-326-
91297-0

Future-Proof Software-Systems [Part 4A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 154

General Resilience

Architecture Principles

Monitoring

R9

Future-Proof Software-Systems [Part 4A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 155

Run-Time Infrastructure [Execution Platform]

Application

Application Application

Application

Application

Application

h
tt

p
:/

/
w

w
w

.m
c
le

a
n

it
.c

a

Operating Parameter Monitoring

Monitoring h
ttp

:/
/
w

w
w

.d
ig

ic
o
r.c

o
m

.a
u

Interface/Service Monitoring

Future-Proof Software-Systems [Part 4A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 156

Monitoring

h
tt

p
:/

/
w

w
w

.m
c
le

a
n

it
.c

a

Operating Parameter Monitoring

An IT system monitor is a hardware and software

component used to measure resource

consumption and performance in a computer

system.

h
tt

p
s
:/

/
ra

w
.g

it
h

u
b
u

s
e
rc

o
n

te
n

t.
c
o
m

Any anomaly in operating parameters

(load, response time, …) is automatically

detected and an alarm is triggered

 Automatic or human intervention

Future-Proof Software-Systems [Part 4A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 157

MonitoringMonitoring

h
tt

p
:/

/
w

w
w

.d
ig

ic
o
r.

c
o
m

.a
u

Interface/Service Monitoring

Interface/service monitoring is a continuous,

real-time activity which assures that:

• An application accepts only syntactically and

semantically correct information,

• The interface/service contract conditions are

met by the delivering party,

The receiving application cannot be crashed,

damaged or mislead by accidental or malicious

information.

h
tt

p
s
:/

/
w

w
w

.n
e
th

o
s
ti

n
g
.c

o
m

Malware
Checker

h
ttp

:/
/
w

w
w

.p
s
d
g
ra

p
h

ic
s
.c

o
m

Future-Proof Software-Systems [Part 4A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 158

MonitoringMonitoring

h
tt

p
:/

/
w

w
w

.d
ig

ic
o
r.

c
o
m

.a
u

Interface/Service Monitoring

Content Filtering

Syntax/Semantic Checking

h
tt

p
s
:/

/
c
d
n

.s
a
fe

.c
o
m

Entry/Port
Checking

h
ttp

s
:/

/
w

w
w

.e
le

k
tro

n
ik

-k
o
m

p
e
n

d
iu

m
.d

e
h

ttp
s
:/

/
w

w
w

.s
e
p
a
s
to

p
.e

u

Standards
Conformance
Checking

Future-Proof Software-Systems [Part 4A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 159

Example: Fault Propagation Avoidance

System Part A

System Part B

ERROR

System Part C

ERROR

Fault

Incident

ERROR

M
o
n

ito
rin

g

Monitoring

Future-Proof Software-Systems [Part 4A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 160

IT-System

Applica-
tions

Interfaces
Services

Run-Time
Infra-

structure

Data Storage
Data

Collection
Data

Analysis

Reporting Alerting

Rules
Metrics
Models

Future-Proof Software-Systems [Part 4A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 161

Alerting

Monitoring

Human
Intervention

Automatic
Intervention

Future-Proof Software-Systems [Part 4A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 162

What should be monitored ?

h
tt

p
s
:/

/
th

u
m

b
s
.d

re
a
m

s
ti

m
e
.c

o
m

Infrastructure: Operational Parameters

Interfaces/Services: Timing, Syntax & Semantics

Network: Operational Parameters

Configuration: Changes

T
e
c
h

n
ic

a
l
In

fo
rm

a
tio

n

Service Level Agreements: Operational Parameters

Dependability Properties: Activity & Parameters

Applications: Operational Parameters

Business KPI’s: Statistics

B
u

s
in

e
s
s

In
fo

rm
a
tio

n

Future-Proof Software-Systems [Part 4A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 163

What should be monitored ?

Technical Information

Business Information

Objectives:
• Early problem warning
• System defense
• System optimization
• System intelligence information
• Failure tracing
 Assure the non-functional requirements

h
ttp

s
:/

/
w

w
w

.is
to

c
k
p
h

o
to

.c
o
m

Objectives:
• Customer satisfaction
• Financial optimization
• Contract (SLA) supervision
• Audit/Compliance
• Business intelligence information
•  Assure the functional requirements

h
ttp

s
:/

/
w

w
w

.jo
b
d
ia

g
n

o
s
is

.c
o
m

Future-Proof Software-Systems [Part 4A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 164

Resilience Architecture Principle R9:

Monitoring

1. Define the objectives of monitoring, both for technical monitoring and the business

monitoring

2. Carefully specify the metrics, analytics, results, and alerts to be extracted from

monitoring

3. Define the processes for data analysis, including incident/emergency response

4. Specify the actions following alerts – whenever fully automated responses

5. Recommendation: Use commercial monitoring tools whenever possible

R9

Justification:

• Technical monitoring is a strong weapon for assuring the non-functional properties of the
system and for defending the system against incidents

• Business monitoring strongly contributes to customer satisfaction

Future-Proof Software-Systems [Part 4A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 165

Textbook Textbook

Mike Julian:
Practical Monitoring: Effective Strategies for
the Real World
O'Reilly UK Ltd., 2017. ISBN 978-1-491-95735-6

David Josephsen:
Nagios: Building Enterprise-Grade Monitoring
Infrastructures for Systems and Networks
Prentice Hall Inc., USA, 2nd edition, 2013. ISBN
978-0-133-13573-2

Future-Proof Software-Systems [Part 4A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 166

Dependability

Resilience
Domain-specific

properties

9 general
resilience principles

 Principles for specific
dependability properties

 SECURITY
 SAFETY
 Real-Time Capability

Future-Proof Software-Systems [Part 4A]

 Prof. Dr. Frank J. Furrer: FPSS - WS 17/18 167

Part 4A

