
 Prof. Dr. Frank J. Furrer - WS 2017/18 1

Summary of Lecture 15.11.2017

h
tt

p
:/

/
e
n

g
li
s
h

s
k
il
ls

.s
e

Future-Proof Software-Systems: Summary 15.11.2017



 Prof. Dr. Frank J. Furrer - WS 2017/18 2

Future-Proof Software-Systems: Summary 15.11.2017

h
tt

p
s
:/

/
w

w
w

.i
n

d
o
o
rt

re
n

d
.c

o
m

h
tt

p
:/

/
im

a
g
e
s
.f

o
to

c
o
m

m
u

n
it

y
.d

e

Functionality

Categorization

h
ttp

:/
/
b
lo

g
s
.te

ra
d
a
ta

.c
o
m

Data/Information

Categorization

Architecture
Framework

Documentation Models



Horizontal Architecture Layers

Vertical
Architecture

Layers

Business
Architecture

Application
Architecture

Information
Architecture

Integration
Architecture

Technical
Architecture

Hierarchy



Horizontal Architecture Layers

Vertical
Architecture

Layers

Business
Architecture

Application
Architecture

Information
Architecture

Integration
Architecture

Technical
Architecture

S
a
fe

ty

S
e
c
u

ri
ty

R
e
a
l-

T
im

e …

Hierarchy



Horizontal Architecture Layers

Vertical
Architecture

Layers

Business
Architecture

Application
Architecture

Information
Architecture

Integration
Architecture

Technical
Architecture

S
a
fe

ty

S
e
c
u

ri
ty

R
e
a
l-

T
im

e …

Hierarchy

SoS

Application Landscape

Application

Component

Sensor/Actuator



 Prof. Dr. Frank J. Furrer - WS 2017/18 6

Future-Proof Software-Systems: Summary 15.11.2017

Architecture principles are not directly
applicable to construct an architectural solution.

They need the future-proof software-systems engineer
to implement and enforce them.

Architecture Principles:

Fundamental insights – formulated as enforcable rules – how a good software-

system should be built [ «Eternal Truths»]



 Prof. Dr. Frank J. Furrer - WS 2017/18 7

Future-Proof Software-Systems: Summary 15.11.2017


N

A
TU

R
E

Architecture

Principles

=

Knowledge

Toolbox

of the

Systems Architect

A2

A1A3

A4

A5

A12



 Prof. Dr. Frank J. Furrer - WS 2017/18 8

Future-Proof Software-Systems: Summary 15.11.2017

Architecture Principle A1:
Architecture Layer Isolation

[1] Always use standardized, technology-independent, and product-independent
mechanisms for transfer of data and control between layers

[2] Never implement functionality from vertical layers in the horizontal layers
(especially no technical functionality in the applications)

A1

Justification: Any reliance on specific technologies or product features generates
dependencies which (massively) reduce changeability.

Architecture layers should be able to evolve in their own pace without impacting the
other layers by force.

Vertical functionality should not be implemented in the applications (but accessed via
services), otherwise changes impact the application landscape.



 Prof. Dr. Frank J. Furrer - WS 2017/18 9

Future-Proof Software-Systems: Summary 15.11.2017

h
ttp

:/
/
m

e
d
ia

.is
to

c
k
p
h

o
to

.c
o
m

Breaking Layers

Technical Architecture Layer
(Technical Infrastructure)

Integration Architecture Layer
(Cooperation Mechanisms)

Information (Data) Architecture Layer
(Information & Data)

Applications Architecture Layer
(Functionality)

Business Architecture Layer
(Business Processes)

Isolation

Isolation

Isolation

Isolation

Direct access – bypassing the
standardized, technology-
independent mechanisms

Result:
• Technology dependence
• Vendor lock-in
• No standards-compliance

A1



 Prof. Dr. Frank J. Furrer - WS 2017/18 10

Future-Proof Software-Systems: Summary 15.11.2017

Architecture Principle A2:

Partitioning, Encapsulation & Coupling

1. Partition the functionality and data into encapsulation units according to their cohesion
(thus minimizing dependencies)

2. Isolate the encapsulation units by strictly hiding any internal details. Allow access to
functionality and data only through stable, well specified interfaces governed by contracts

3. Minimize the impact of dependencies between the encapsulation units by using adequate
coupling mechanisms

A2

Justification: These 3 rules minimize the number and the impact of dependencies. The

resulting system therefore offers the least resistance to change, because any change affects

the smallest possible number of system elements. A low resistance to change corresponds to

high changeability.



 Prof. Dr. Frank J. Furrer - WS 2017/18 11

Future-Proof Software-Systems: Summary 15.11.2017

A2

Decision criteria for good partitioning

Primary Rule:
• Respect cohesion
• Avoid redundancy

Partitions



 Prof. Dr. Frank J. Furrer - WS 2017/18 12

Future-Proof Software-Systems: Summary 15.11.2017

Encapsulation:

• The inner workings of the encapsulation units are hidden from the outside

• All accesses are only allowed through well-specified (formally defined) interfaces

A2

h
ttp

:/
/
s
c
h

o
rs

c
h

.e
fi.fh

-n
u

e
rn

b
e
rg

.d
e

F
F

F
F

F

F

F

F

FF

F F

IF
IF

IF

IF

IF

IF



 Prof. Dr. Frank J. Furrer - WS 2017/18 13

Future-Proof Software-Systems: Summary 15.11.2017

A2 Coupling:

• Avoid all dependencies which are not essential

• Couple as loosely as possible

• Govern by interfaces/contracts

F

F

F

F

F

F

F

F

F

F

Coupling:
Transfer of information or control

IF

IF

IF

IF



 Prof. Dr. Frank J. Furrer - WS 2017/18 14

Future-Proof Software-Systems: Summary 15.11.2017

Architecture Principle A3:

Conceptual Integrity

1. Define all the concepts, the full terminology and models (including their relationships and
relevant properties) precisely (whenever possible formally)

2. Draw the boundary of the system in which the definitions apply

3. Consistently and consequently use the definitions in all areas of the system

4. Strictly enforce the correct use of the definitions

5. When cooperating with systems outside the boundary, match the concepts and the
terminology between all systems and interfaces

A3

Justification: Misunderstandings between stakeholders lead to unsatisfactory IT-systems

with divergence in many areas. Misunderstandings of all sorts must therefore be eliminated in

all phases of systems engineering



 Prof. Dr. Frank J. Furrer - WS 2017/18 15

Future-Proof Software-Systems: Summary 15.11.2017

A3

Software-System

Wheel rotation sensor

Book

Car

Velocity

Rotation rate

Gravitation constant

Stopping distance

Stock price

Software-Systems
must be based

on well-defined, universally accepted
concepts



Users

 Prof. Dr. Frank J. Furrer - WS 2017/18 16

Future-Proof Software-Systems: Summary 15.11.2017

Creating, maintaining, and enforcing conceptual integrity is mandatory in IT systems

How can we ensure conceptual integrity?

… with a solid model foundation • Taxonomy
• Ontology
• Domain model
• Business object model

Systems developpers

Legal system

Partners

A3



 Prof. Dr. Frank J. Furrer - WS 2017/18 17

Future-Proof Software-Systems: Summary 15.11.2017

Architecture Principle A4:

Redundancy

1. There is only exactly one source for the functionality and for the data (both during
development time and during run-time)

2. All redundant copies must be content-wise and time-wise synchronized (thus
avoiding divergence)

3. The creation of unmanaged redundancy is not allowed under any circumstances.
Existing unmanaged redundancy must be identified and eliminated in due course

4. Managed redundancy is allowed if there is a good (documented) reason

A4

Justification: Any unmanaged redundancy may cause divergence and thus severely
impact quality properties of the system’s output. Any unmanaged redundancy will
negatively impact the maintenance and evolution of the system



 Prof. Dr. Frank J. Furrer - WS 2017/18 18

Future-Proof Software-Systems: Summary 15.11.2017

A4

Managed
redundancy

Unmanaged
redundancy

Known and
wanted

Yes

(if valid reason)

NO!

Unknown or
unwanted

? NO!

Allow only managed redundancy

(= known, justified, controlled, synchronized redundancy)

in functionality and data

Redundancy in an IT-system is – in most cases – poison for the

structure and for many quality properties of an IT-system

The redundancy-ghost
• You don’t hear it
• You don’t see it

• But you feel the damage



 Prof. Dr. Frank J. Furrer - WS 2017/18 19

Future-Proof Software-Systems: Summary 15.11.2017

Architecture Principle A5:

Interoperability

1. Precisely (formally) specify syntax and semantics in all interoperations

2. Whenever possible use formal contracts for the definition of interfaces

3. Whenever possible adopt and enforce accepted interoperability industry
standards

A5

Justification: Successful, unambigous interoperability is a key factor in today‘s

distributed systems. Interoperabilty failures have severe consequences and are difficult

to pinpoint. Formal contracts isolate the parts of the system.



 Prof. Dr. Frank J. Furrer - WS 2017/18 20

Future-Proof Software-Systems: Summary 15.11.2017

A5

System
Part
A

System
Part
B

One of the most essential capabilities
of collaborating systems is interoperability

Technical Interoperability

Syntactic Interoperability

Semantic Interoperability

Applications InteroperabilityInteroperability must be assured on 4 levels:

Definition: Interoperability is the capability to
exchange and make use of information and control

Interoperability
Levels



 Prof. Dr. Frank J. Furrer - WS 2017/18 21

Future-Proof Software-Systems: Summary 15.11.2017

… by specifying interfaces

How can we assure interoperability?

System
Part
A

System
Part
B

I
n
t
e
r
f
a
c
e

I
n
t
e
r
f
a
c
e

• Technology alignment
• Syntax alignment
• Semantic alignment
• Model alignment

Interface Contract
Service Contract

Interface Contract
Service Contract

… and formally describe
their behaviour, properties,
attributes etc. in contracts

A5


