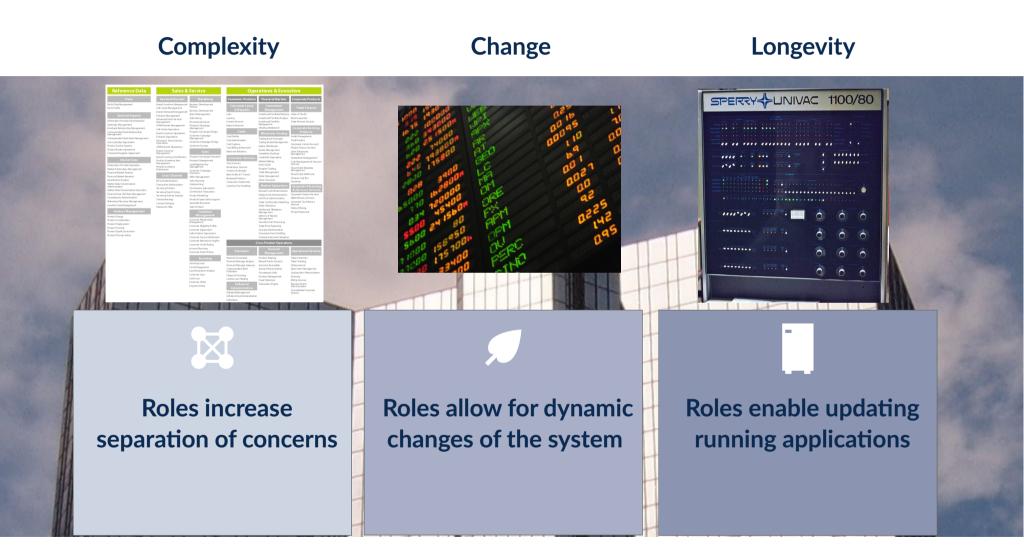


Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie

41. Role-Based (Meta-)Modeling

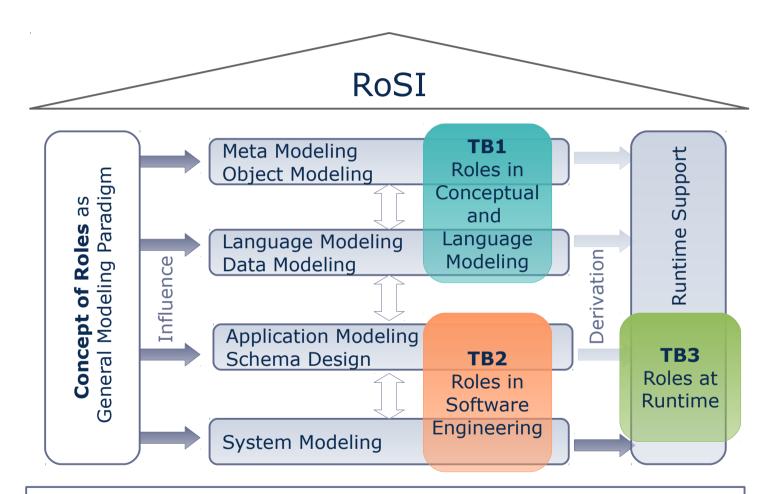

in the Research Training School on Role-oriented Software Infrastructures (RoSI)

- 1. A Primer on Roles
- 2. Role-based Modeling and Programming Languages
- 3. The Compartment Role Object Model (CROM)

Challenges of Software Systems

2 Model-Driven Software Development in Technical Spaces (MOST)

19 https://bian.org/assets/bian-standards/bian-service-landscape-3-0/

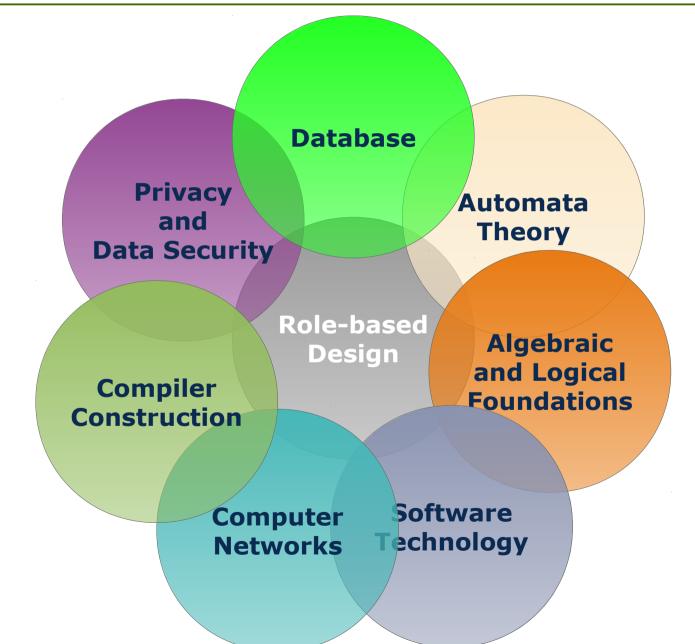

U.A

Katrina Tuliao (CC-SA 2.5) http://en.wikipedia.org/wiki/File:Frankfurt_Deutsche_Bank.jpg

The RoSI Research Training Group

Software Development for continuous-context-sensitive Systems

3 Model-Driven Software Development in Technical Spaces (MOST)


Foundation

Data Modeling, Logics, Programming Systems, Software Engineering

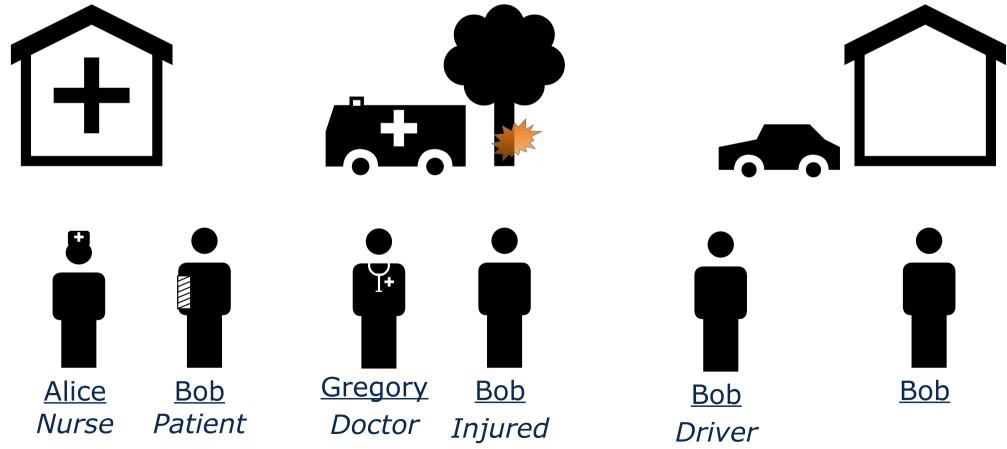
The RoSI Research Training Group Research Areas

4 Model-Driven Software Development in Technical Spaces (MOST)

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie

41.1. A Primer on Roles

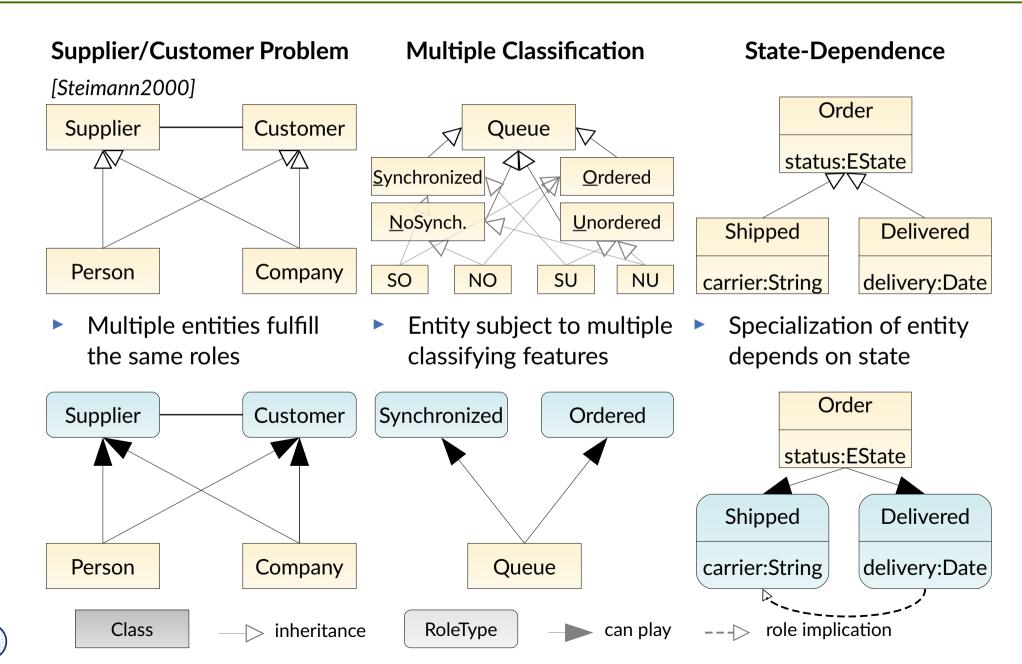
Prof. Dr. Uwe Aßmann Dr.-Ing. Thomas Kühn Technische Universität Dresden Institut für Software- und Multimediatechnik http://st.inf.tu-dresden.de /teaching/most Version 16-1.0, 11.12.17

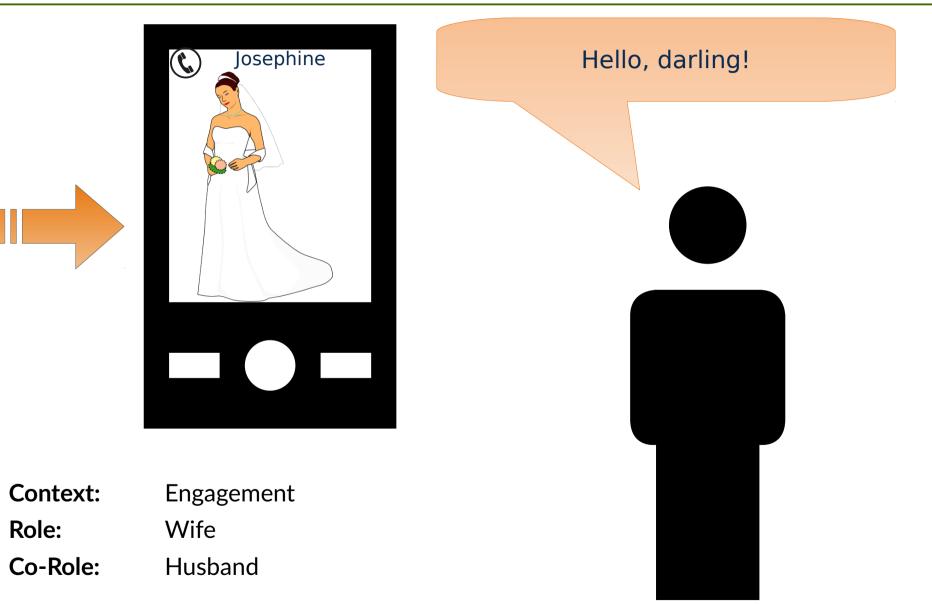

DRESDEN concept Exzellenz aus Wissenschaft und Kultur

Model-Driven Software Development in Technical Spaces (MOST) © Prof. U. Aßmann

A Primer on Roles Basic Roles

6 Model-Driven Software Development in Technical Spaces (MOST)


Entities play multiple Roles during their lifetime Examples: Driver, Doctor, Patient, Student, ...


A Primer on Roles Limitations of Object-Oriented Design

Model-Driven Software Development in Technical Spaces (MOST)

7

8 Model-Driven Software Development in Technical Spaces (MOST)

9 Model-Driven Software Development in Technical Spaces (MOST)

C Prof. U. Aßmann

Role:

10 Model-Driven Software Development in Technical Spaces (MOST)

C Prof. U. Aßmann

11 Model-Driven Software Development in Technical Spaces (MOST)

C Prof. U. Aßmann

A Primer on Roles Summary

12 Model-Driven Software Development in Technical Spaces (MOST)

- Role activation depends on context of both Caller and Called
- Roles can denote places in a relationship
- Each role is **bound** to context (instance)
- Contexts are hierarchically decomposable
 - May contain contexts, but
 - May overlap
- In the literature a context can be:
 - Relationship,
 - Process,
 - Social Individual,
 - Social Institution or
 - Ontology

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie

41.2. Roles in Modeling and Programming Languages

Prof. Dr. Uwe Aßmann Dr.-Ing. Thomas Kühn Technische Universität Dresden Institut für Software- und Multimediatechnik http://st.inf.tu-dresden.de /teaching/most Version 16-1.0, 11.12.17

[Steimann2000] On the Representation of Roles in Object-Oriented and Conceptual Modelling.

Friedrich Steimann

Data & Knowledge Engineering, Elsevier, (2000)

[Kühn2014] A Metamodel Family for Role-based Modelling and Programming Languages

T. Kühn, M. Leuthäuser, S. Götz, C. Seidl, and U. Aßmann Software Language Engineering SLE'14, Springer (2014)

[Kühn2017] A Family of Role-Based Languages

T. Kühn

Dissertation, Technische Universität Dresden, Fakultät Informatik (2017)

References

15 Model-Driven Software Development in Technical Spaces (MOST)

[Bachman1977] The Role Concept in Data Models. Charles W. Bachman and Manilal Daya. VLDB (1977)

[Balzer2007] A Relational Model of Object Collaborations and its Use in Reasoning about Relationships. S. Balzer, T. Gross, and P. Eugster. *ECOOP*, vol. 4609 of LNCS (2007)

[Barbosa2012] Modeling and Programming with Roles: introducing JavaStage. F.S. Barbosa and A. Aguiar. *Tech.Rrep., Instituto Polit´cnico de Castelo Branco (2012)*

[Burmester2005] Model-Driven Development of Reconfigurable Mechatronic Systems with Mechatronic UML. S. Burmester, G. Holger, and M. Tichy. *Model Driven Architecture, Springer, 2005*

[Carrington2004] Using Integrated Metamodeling to Define OO Design Patterns with Object-Z and UML. S.-K. Kim and D. Carrington. 11th Asia-Pacific Software Engineering Conference, IEEE (2004)

[Dahchour2002] A Generic Role Model for Dynamic Objects. M. Dahchour et al. Advanced Information Systems Engineering, Springer (2002)

[Genovese2007] A meta-model for roles: Introducing sessions. V. Genovese. Roles' 07 (2007)

[Graversen2003] Implementation of a Role Language for Object-Specific Dynamic Separation of Concerns. K.B. Graversen and K. Østerbye. *AOSD03 Workshop* (2003)

[Halpin2005] ORM 2. T. A. Halpin. OTM Workshops, vol. 3762 of LNCS (2005)

[He2006]Rava: Designing a Java Extension with Dynamic Object Roles. Chengwan He, et al. 13th AnnualIEEE International Symposium and Workshop (2006)

[Hennicker2014] Foundations for Ensemble Modeling The HELENA Approach. R. Hennicker and A. Klarl. Specification, Algebra, and Software, Springer (2014)

[Kamina2009] Towards Safe and Flexible Object Adaptation. Tetsuo Kamina and Tetsuo Tamai. International Workshop on COP (2009)

[Kim2002] Using Role-Based Modeling Language (RBML) to Characterize Model Families. D.-K. Kim, R. France, S. Ghosh, and E. Song. Engineering of Complex Computer Systems, IEEE, 2002

[Liu2009] Information Networking Model. M. Liu and J. Hu. Conceptual Modeling - ER (2009)

[Reenskaug2009] The DCI Architecture: A New Vision of Object-oriented Programming. T. Reenskaug and J. O. Coplien. http://www.artima.com/articles/dci vision. Html (2009)

[Selçuk2004] JAWIRO: Enhancing Java with Roles. Y. E. Selçuk and N. Erdogan. Symposium on Computer and Information Sciences, Springer (2004)

[Silva2003] Taming Agents and Objects in Software Engineering. V. Da Silva, A. Garcia, A. Brandão, C. Chavez, C. Lucena, and P. Alencar. *Workshop on SE for Large-Scale MAS, Springer* (2003)

[Zhu2006] Role-Based Collaboration and its Kernel Mechanisms. H. Zhu and M. Zhou. *IEEE Transactions* 36(4) (2006)

Roles in Modeling and Programming Languages History

17 Model-Driven Software Development in Technical Spaces (MOST)

"All the world's a **stage**, and all the men and women merely **players**: they have their **exits** and their **entrances**; and one man in his time **plays many parts**, his acts being seven ages." – William Shakespeare

The Role Concept

- Relatively old, e.g. Bachman and Daya [Bachmann1977]
- Since then many different approaches emerged [Kühn2017]
- No common understanding (or formalism) for roles

Each approach can be classified along design decisions

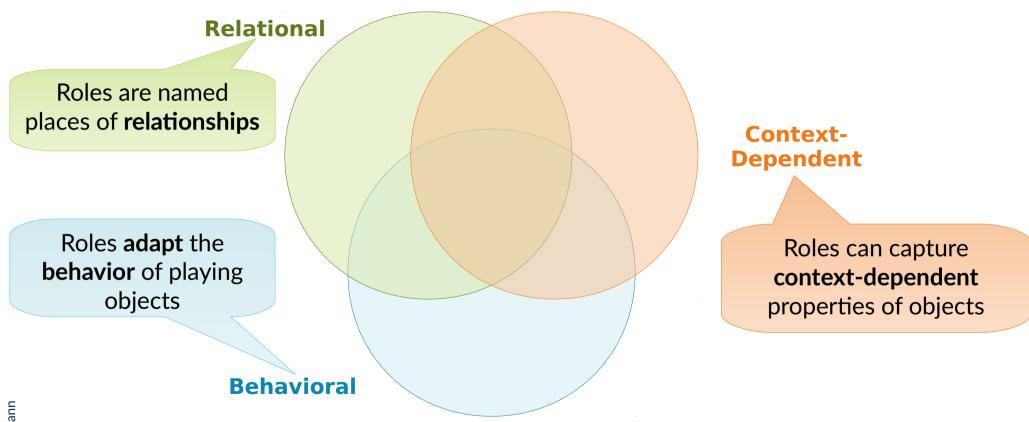
Roles in Modeling and Programming Languages Initial Classifying Features of Roles

18 Model-Driven Software Development in Technical Spaces (MOST)						
		Feature	Metalevel			
	Behavioral	(1) Roles have properties and behaviors	(M1,M0)			
		(2) Roles depend on relationships	(M1,M0)			
		(3) An object may play different roles simultaneously	(M1,M0)			
		(4) An object may play the same role (type) several times	(MO)			
		(5) An object may acquire and abandon roles dynamically	(MO)			
		(6) Sequence of role acquisition and removal may be restricte	d (M1,M0)			
		(7) Unrelated objects can play the same role	(M1)			
		(8) Roles can play roles	(M1,M0)			
		(9) Roles can be transferred between objects	(MO)			
	Relational	(10)The state of an object can be role-specific	(MO)			
		(11)Features of an object can be role-specific	(M1)			
		(12)Roles restrict access	(MO)			
		(13)Different roles may share structure and behavior	(M1)			
		(14)An object and its roles share identity	(MO)			
		(15)An object and its roles have different identities	(MO)			
		– Friedrich Steimann [Steimann2000]				

Roles in Modeling and Programming Languages Additional Classifying Features of Roles

19 Model-Driven Software Development in Technical Spaces (MOST)

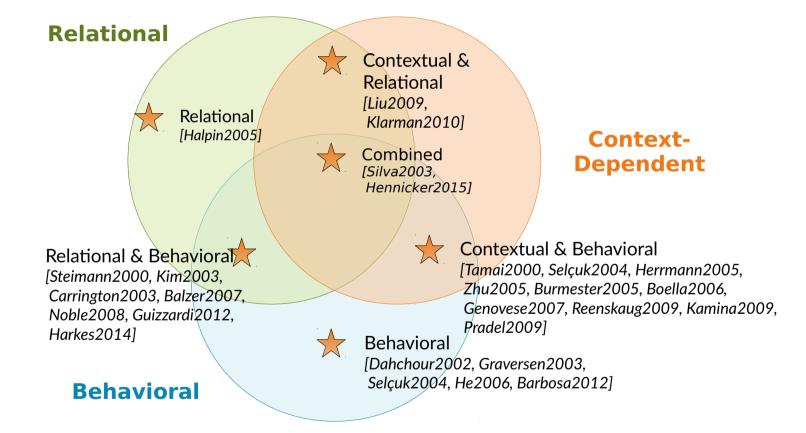
Feature	Metalevel
(16)Relationships between Roles can be constrained	(M1)
(17)There may be constraints between relationship	(M1)
(18)Roles can be grouped and constrained together	(M1)
(19)Roles depend on contexts	(M1,M0)
(20)Contexts have properties and behaviors	(M1,M0)
(21)A role can be part of several contexts	(M1,M0)
(22)Contexts may play roles like objects	(M1,M0)
(23)Contexts may play roles which are part of themselves	(M1,M0)
(24)Contexts can contain other contexts	(M1,M0)
(25)Different contexts may share structure and behavior	(M1)
(26)Contexts have their own identity	(M0)
(27)The number of roles occurring in a context can be constrain	ned (M1)
-	- Kühn et al. [Kühn2000]



C Prof. U. Aßmann

Roles in Modeling and Programming Languages Natures of Roles

Model-Driven Software Development in Technical Spaces (MOST)

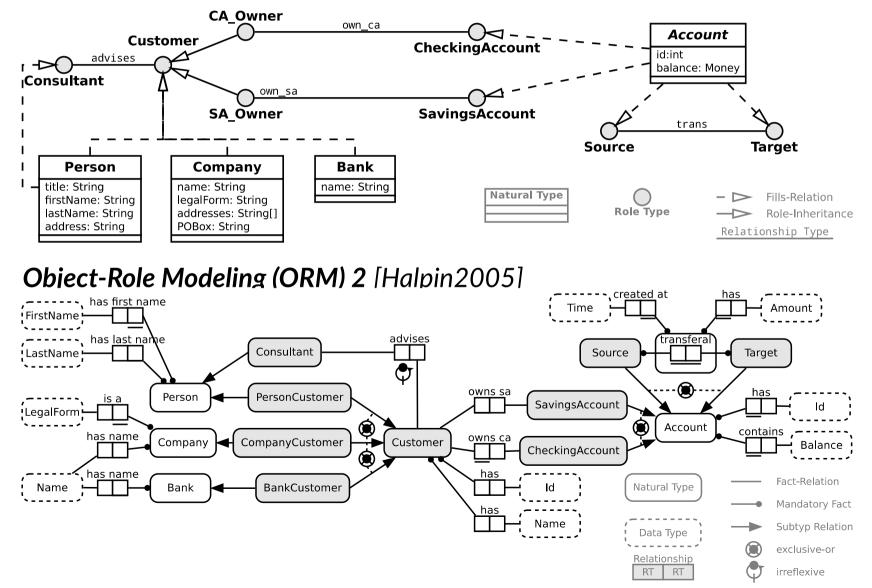


Roles in Modeling and Programming Languages Literature Survey [Kühn2014,Kühn2017]

21 Model-Driven Software Development in Technical Spaces (MOST)

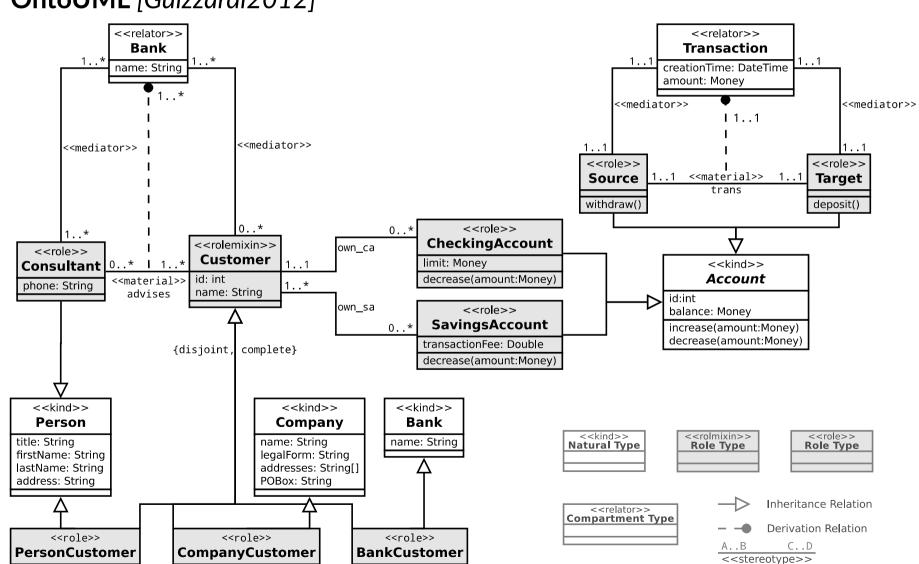
- Structured Literature Review of publications since 2000
- Published by the big four (i.e., Springer, IEEE, ACM, Science Direct)

Research Field suffers from *fragmentation* and *discontinuity*


Roles in Modeling and Programming Languages Selected Relational Modeling Languages

22 Model-Driven Software Development in Technical Spaces (MOST)

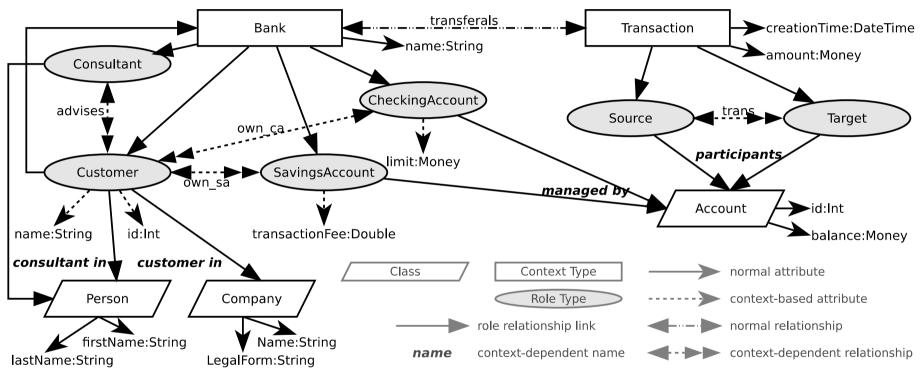
C Prof. U. Aßmann


S

LODWICK's UML Notation [Steimann2000]

Roles in Modeling and Programming Languages Selected Relational and Behavioral Modeling Languages

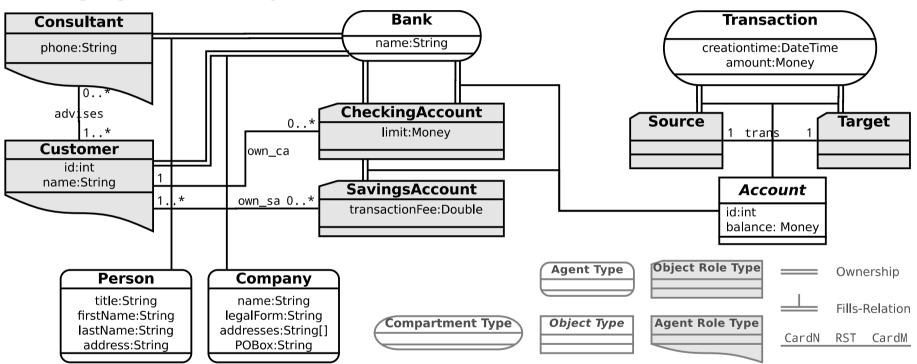
23 Model-Driven Software Development in Technical Spaces (MOST)


OntoUML [Guizzardi2012]

Roles in Modeling and Programming Languages Selected Contextual and Relational Modeling Languages

24 Model-Driven Software Development in Technical Spaces (MOST)

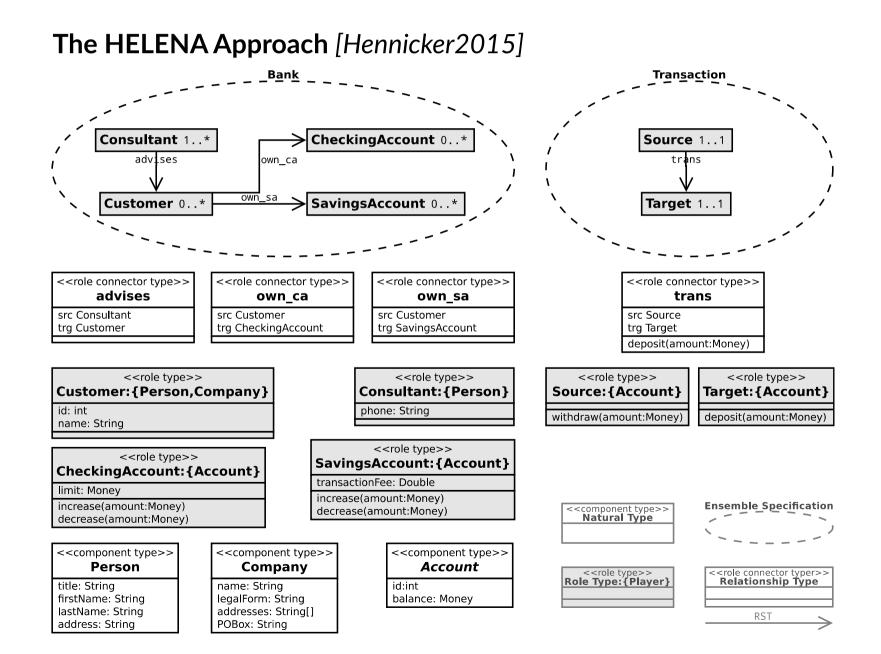
Information Network Model (INM) [Liu2009]



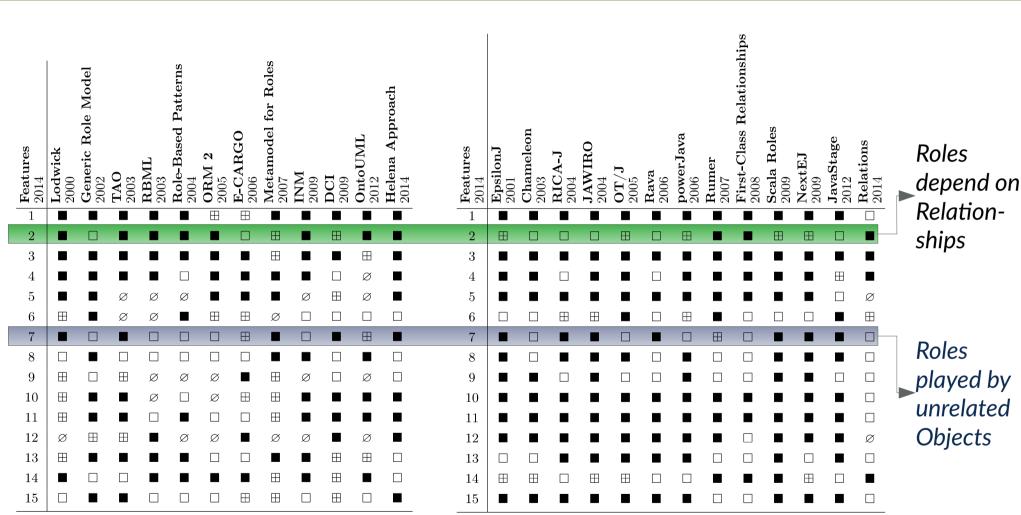
Roles in Modeling and Programming Languages Selected Combined Modeling Languages

25 Model-Driven Software Development in Technical Spaces (MOST)

Taming Agents and Objects (TAO) [Silva2003]



Roles in Modeling and Programming Languages Selected Combined Modeling Languages


26 Model-Driven Software Development in Technical Spaces (MOST)

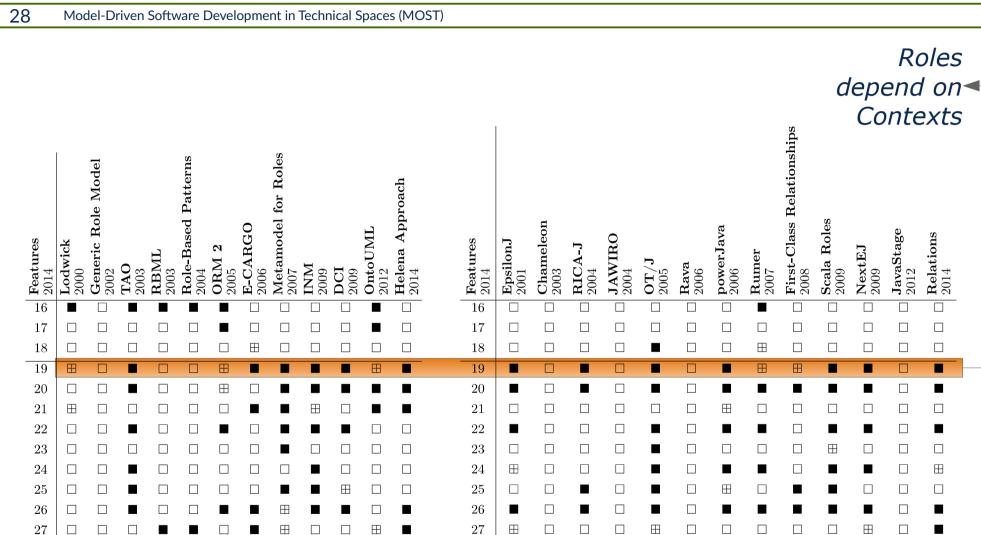
© Prof. U. Aßmann

S

Roles in Modeling and Programming Languages Comparison (1)

 \blacksquare : yes, \boxplus : possible, \Box : no, \emptyset : not applicable

Role-Based Modeling Languages


Model-Driven Software Development in Technical Spaces (MOST)

 $\blacksquare:$ yes, $\boxplus:$ possible, $\Box:$ no, $\varnothing:$ not applicable

Role-Based Programming Languages

27

Roles in Modeling and Programming Languages Comparison (2)

 \blacksquare : yes, \boxplus : possible, \Box : no, \emptyset : not applicable

Role-Based Modeling Languages

 \blacksquare : yes, \boxplus : possible, \Box : no, \emptyset : not applicable

Roles

Relations 2014

 \mathbb{H}

 \square

 \square

Role-Based Programming Languages

Roles in Modeling and Programming Languages Summary

29 Model-Driven Software Development in Technical Spaces (MOST)

- Discontinuity and fragmentation of research field
- Insufficient formal foundation for role-based languages
- No language supports all features of roles and modeling constraints
- Only few languages provide tool support, most rely on UML stereotypes
- No family of role-based language for all language variants

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie

41.3. The Compartment Role Object Model (CROM)

Prof. Dr. Uwe Aßmann Dr.-Ing. Thomas Kühn Technische Universität Dresden Institut für Software- und Multimediatechnik http://st.inf.tu-dresden.de /teaching/most Version 16-1.0, 11.12.17

Model-Driven Software Development in Technical Spaces (MOST) © Prof. U. Aßmann

Literature

31 Model-Driven Software Development in Technical Spaces (MOST)

[Kühn2015] A Combined Formal Model for Relational Context-Dependent Roles

 T. Kühn, S. Böhme, S. Götz and U. Aßmann
 Software Language Engineering *SLE*'15, *ACM* (2015)

[Kühn2016] FRaMED: Full-Fledge Role Modeling Editor (Tool Demo)

T. Kühn, K. Bierzynski, S. Richly, and U. Aßmann Software Language Engineering *SLE'16*, *ACM* (2016)

C Prof. U. Aßmann

References

32 Model-Driven Software Development in Technical Spaces (MOST)

[Leuthäuser2015] Enabling View-based Programming with SCROLL: Using Roles and Dynamic Dispatch for Establishing View-based Programming. Max Leuthäuser and Uwe Aßmann. MORSE/VAO '15, ACM (2015)

[Jäkel2016] Towards a Contextual Database. T. Jäkel, T. Kühn, H. Voigt, and W. Lehner. ADBIS (2016)

[Böhme2017] Reasoning on Context-Dependent Domain Models. S Böhme, T. Kühn.Proceedings of the JIST (2017)

The Compartment Role Object Model (CROM) Design Goals

33 Model-Driven Software Development in Technical Spaces (MOST)

Design a role-based modeling language for RoSI

- Incorporate all natures of roles and model constraints
- Develop a graphical role-based modeling language
- Provide a formal foundation for the modeling language
- Offer readily applicable tools for modeling and code generation
- Support both formal and automatic verification of role models

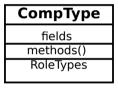
The Compartment Role Object Model (CROM) **Graphical Notation**

34

Model-Driven Software Development in Technical Spaces (MOST)

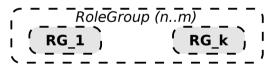
Natural Types

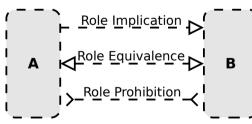
Entities


fields

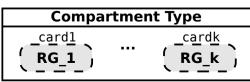
methods()

Data Types

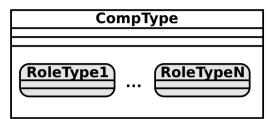

Compartment Types



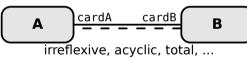
Local Role Constraints


Role Groups

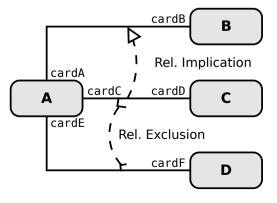
Role Constraints



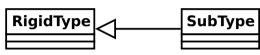
Occurence Constraints

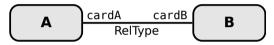

Relations

Participation (participates-Relation)



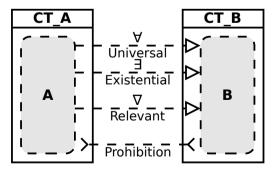
Relationship Constraints

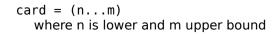

Intra-Relationship Constraints


Inter-Relationship Constraints

Rigid Type Inheritance

Binary Relationship

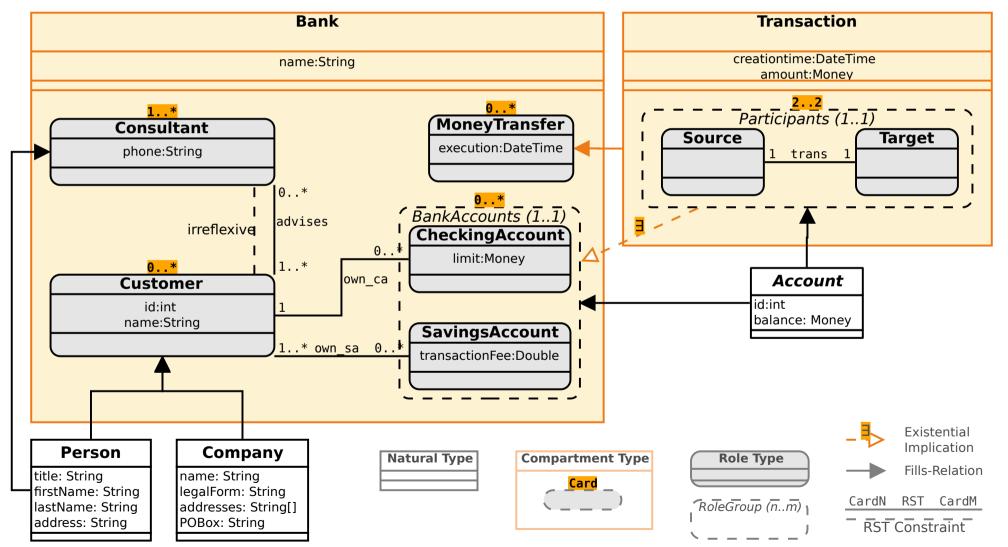

Fulfilment (fills-Relation)



Global Role Constraints

Global Implications / Prohibition

C Prof. U. Aßmann



The Compartment Role Object Model (CROM) Graphical Notation

35

Model-Driven Software Development in Technical Spaces (MOST)

Example: Banking Application

© Prof. U. Aßmann

The Compartment Role Object Model (CROM) Graphical Notation

36 Model-Driven Software Development in Technical Spaces (MOST)

Context

- Prescriptive (Bottom Up)
- Have (so far) no identity
- Have no intrinsic behavior
- Indefinite lifetime
- Can not play roles
- Has no existential part

Compartments

- Descriptive (Top Down)
- Instances carry identity (Feature 26)
- Have behavior and state (*Feature 19*)
- Have a defined lifetime
- Can play roles
- Has roles as parts (Feature 20)

Compartment Types

- Denote an objectified collaboration between participants
- Declare a class of compartments (instances) with
 - Properties, behavior, role types, and relationships
- Represent processes, teams, institutions, or "context" [Kühn2014]

37 Model-Driven Software Development in Technical Spaces (MOST)

Ontological Foundation

Distinction of concepts by meta-properties:

- **Rigidity** [Steimann2000, Guizzardi2005]
 - Type is *rigid*, if its instances have this type until they die
- Foundedness (Dependence) [Steimann2000, Guizzardi2005]
 - Type is *founded*, if its instances depend on existence of other instances
- Identity [Guizzardi2005]
 - Whether identity of an instance is *unique*, *derived* or *composed* from others

Concept	Rigid	Founded	Identity	Example
Natural Types	yes	no	unique	Person, Company
Data Types	yes	no	derived	Money
Role Types	no¹	yes	derived	Consultant, Customer
Compartment Types	yes	yes	unique	Bank, Transaction
Relationship Types	yes	yes	composite	advises, owns

¹) Actual classified as **anti-rigid** by Guizzardi et.al. [Guizzardi2005]

38

Model-Driven Software Development in Technical Spaces (MOST)

🗏 Туре 🗏 RigidType Inheritance Δ filler Д Δ Δ DataInheritance DataType super 1 🖵 serializable : EBoolean 🗧 Constraint sub constraints. 0 * 🗧 NaturalType AturalInheritance super 1 Fulfillment sub CompartmentInherita.. CompartmentType fulfillments super 1 0..* Part parts 1 whole 🖵 lower : EInt 0..* sub 🖵 upper : Elnt 1 filled 1..* AntiRigidType AbstractRole contains l first role RoleConstraint 1 RoleInheritance RoleType Lsecond super 1 sub ref A A AД holder 1 relationships 0..* RoleImplication RoleGroup Place Relationship <<enumeration>> AbstractRoleRef 1 first 🖀 Direction 🖵 lower : EInt direction : Direction 🖵 lower : EInt 🖵 upper : Elnt 🖵 upper : Elnt - Undirected RoleEquivalence 1 second FirstToSecond SecondToFirst Δ first ∱second RoleGroupElement RoleProhibition relation 1..* 1 0... elements IntraRelationshipConstraint InterRelationshipConstraint ΔΔΔ / \ 77 E Cyclic Total Irreflexive RelationshipConstraint RelationshipImplication

CROM EMOF (Ecore) Metamodel²

2) https://github.com/Eden-06/CROM

S

39 Model-Driven Software Development in Technical Spaces (MOST)

Formal Model

Definition (Compartment Role Object Model)

 $\mathcal{M} = (NT, RT, CT, RST, \text{fills, parts, rel})$ is a Compartment Role Object Model (CROM) with:

- NT, RT, CT, and RST are mutual disjoint sets
- fills $\subseteq T \times CT \times RT$ is a relation (with $T \coloneqq NT \cup CT$) and
- rel : $RST \times CT \rightarrow (RT \times RT)$ is a partial function.

Definition (Compartment Role Object Instance)

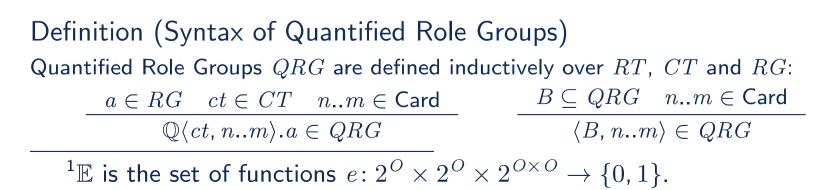
i = (N, R, C, type, plays, links) is a Compartment Role Object Instance (CROI) of a well-formed CROM M with:

- N, R, and C are mutual disjoint sets
- type : $(N \to NT) \cup (R \to RT) \cup (C \to CT)$ is a labeling function,
- plays $\subseteq O \times C \times R$ a relation (with $O \coloneqq N \cup C$), and
- links : $RST \times C \rightarrow 2^{R \times R}$ is a total function.

40 Model-Driven Software Development in Technical Spaces (MOST)

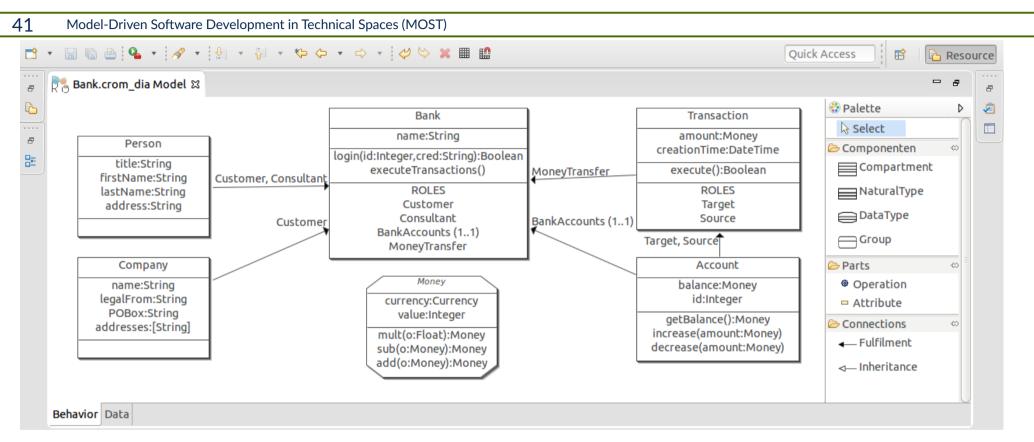
Constraint Model

Definition (Constraint Model)


 $\mathcal{C} = (\text{rolec}, \text{card}, \text{intra}, \text{inter}, \text{grolec})$ is a Constraint Model over \mathcal{M} with:¹

- rolec: $CT \rightarrow 2^{\mathsf{Card} \times RG}$, and
- card: $RST \times CT \rightarrow (Card \times Card)$ are partial functions, as well as
- intra $\subseteq RST \times CT \times \mathbb{E}$ and
- inter $\subseteq RST \times CT \times IRC \times RST$ (with IRC := $\{ \trianglelefteq, \otimes \}$) are relations.
- Additionally, grolec $\subseteq QRG$ is a finite set of quantified role groups.

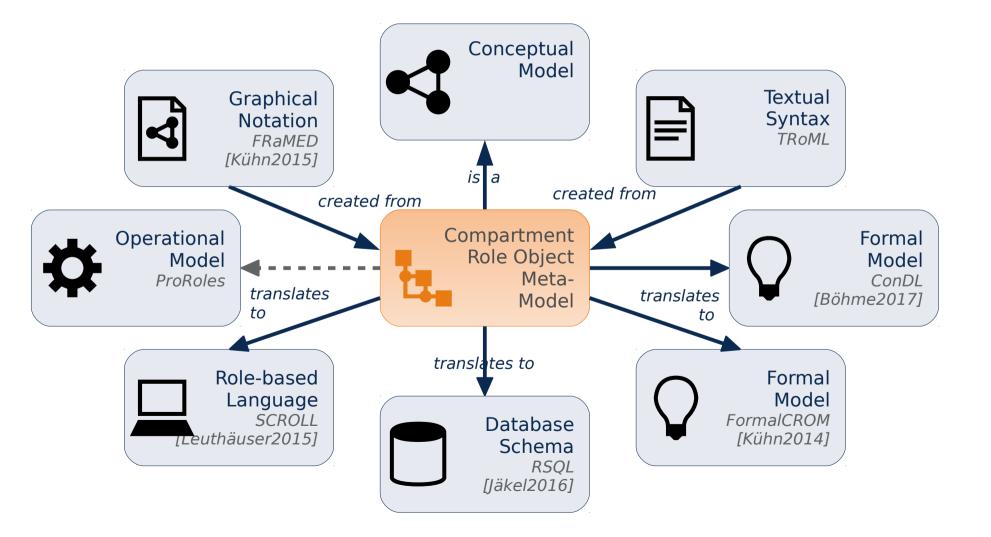
Definition (Syntax of Role Groups)


Role Groups RG are defined inductively over RT:

$rt \in RT$	$B \subseteq RG$ $nm \in Card$
$rt \in RG$	$(B, nm) \in RG$

The Compartment Role Object Model (CROM) Tool Support

Full-fledged Role Modeling Editor (FRaMED)³


- Fully model-driven Eclispe-based editor based on:
 - Eclipse Modeling Framework (EMF), Graphical Editing Framework (GEF), Epsilon (ETL)
- Separation of *Graphical Model* (GORM) and *Semantic Model* (CROM)

The Compartment Role Object Model (CROM) Tool Support

42 Model-Driven Software Development in Technical Spaces (MOST)

Additional tools supported by FRaMED

📙 🕲 Prof. U. Aßmann

The Compartment Role Object Model (CROM) Conclusion

43 Model-Driven Software Development in Technical Spaces (MOST)

- Incorporating all natures of roles and various modeling constraints
- Modeling language (formal CROM) fulfilled 22 (19) features of roles
- Introduce common graphical notation for role-based modeling languages
- CRO(meta-)Model provides its abstract syntax
- FRaMED as eclipse-based editor for modeling and code generation
- Propose CROM as formal foundation for roles

Still no common role-based modeling language supporting all language variants

The End

44 Model-Driven Software Development in Technical Spaces (MOST)

- Why is it hard to unify the role concept?
- Why are compartments necessary to group roles in metamodels?
- What was crucial for providing tool support for RoSI?

C Prof. U. Aßmann

