
Faculty of Computer Science Institute of Software and Multimedia Technology, Software Technology Group

WS2017/18 – Model-driven Software Development in Technical Spaces

Reference Attribute Grammars with JastAdd
Professor: Prof. Dr. Uwe Aßmann
Tutor: Dr.-Ing. Thomas Kühn

1 JastAdd

In this exercise, Reference Attribute Grammars (RAGs) and JastAdd, a Java implemen-
tation for RAGs [1] are introduced.
JastAdd is a tool that generates a Java implementation of a given RAG comprising of

a context-free grammar and a set of attribute definitions. In addition to common RAG
features like synthesized and inherited attributes, JastAdd supports some features that
are used in this exercise:

• Compiler/DSL features (lexer and parser generation)
• Rewrites
• Special attribute types (e.g., collection attributes)

A comprehensive overview of all features supported by JastAdd can be found in the
reference manual1.
In this exercise, a simple domain-specific language (DSL) for mathematical expressions

is defined and evaluated. JastAdd supports automatic, on-demand rewriting of syntax
trees of a grammar, which later is used to optimize mathematical expressions.

1.1 Task 1: Extension of Expression Language

Develop a RAG specification for a small expression language, that can evaluate simple
expressions. An initial specification comprising grammar (for addition, multiplication,
constant numbers and variables) and some attributes are given. The first task is to extend
the specification to support unary and binary minus, binary division and pretty-printing.
To achieve this, the following subtasks are needed:

• Unpack and run the gradle project. Read the README.
• Extend the DSL enabling new nonterminal types. Use DivExp, MinusExp and
UnaryMinusExp as their names.

– Extend the grammar specification (expressions.ast)
1http://jastadd.org/web/documentation/reference-manual.php

1

http://jastadd.org/web/documentation/reference-manual.php

– Extend the lexical analysis specification (expressions.flex)
– Extend the parser specification (expressions.parser)
– Extend the existing pretty-printing attribute syn String ASTNode.print();

to support the new nonterminals.

• Implement new attributes.

– A name resolution attribute syn Def Var.getDef();
– An evaluation attribute syn float Exp.eval();

1.2 Task 2: Rewrite to Optimize

Given a generated tree, perform two optimization: constant folding and multiplicative
annihilator detection.
In the first case, expressions comprising only constant values are rewritten to the

constant value they (always) evaluate to, e.g., (3 + 4) is rewritten to 7. Write the
following attribute and rewrite:

• syn boolean Exp.isConstantSubtree(); to find constant subtrees.
• rewrite Exp { when (isConstantSubtree()) to Number { ...} }

The second case will rewrite multiplications with zero, i.e., it will rewrite ((4 + a) * 0)
to 0. To complete the second task, the following attributes and rewrites are to be written:

• syn boolean MulExp.isMulWithZero();
• rewrite MulExp { when (isMulWithZero()) to Number { ...} }

Finally, test the result with a small example checking the AST before and after opti-
mization (using the attribute Print from Task 1.1).

1.3 Task 3: Code Analysis

The list of variables may contain names that are not used in the expression. Write a
collection attribute that finds these variable definitions.

• coll java.util.Set<Def> Root.unusedDefs() [new java.util.HashSet<Def>()]
with add root Root;

1.4 Submission of the results

All files in src/main/ are to be submitted.

1.5 Additional JastAdd Links

• JastAdd: http://jastadd.org
• Source: https://bitbucket.org/jastadd/jastadd2
• Manual: http://jastadd.org/web/documentation/reference-manual.php

2

http://jastadd.org
https://bitbucket.org/jastadd/jastadd2
http://jastadd.org/web/documentation/reference-manual.php

References

[1] Görel Hedin. Reference attributed grammars. Informatica (Slovenia), 24(3), 2000.
URL http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.108.8792&
rep=rep1&type=pdf.

3

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.108.8792&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.108.8792&rep=rep1&type=pdf

	JastAdd
	Task 1: Extension of Expression Language
	Task 2: Rewrite to Optimize
	Task 3: Code Analysis
	Submission of the results
	Additional JastAdd Links

