
Faculty of Computer Science Institute of Software and Multimedia Technology, Software Technology Group

WS2017/18 – Model-driven Software Development in Technical Spaces

Model-to-Text Transformations
Professor: Prof. Dr. Uwe Aßmann
Tutor: Dr.-Ing. Thomas Kühn

1 Acceleo

The purpose of this exercise is to understand how to realize a model to text trans-
formation. In fact, this exercise focuses on template-based code generation utilizing
Acceleo1 [1]. In general, the task is to create three model-to-text transformators, to
generate valid Java source code from state machines and class diagrams, defined in the
previous exercise.

1.1 Task 1: Basic Code Generation

• Install and understand the Acceleo toolkit.2

• Write Acceleo templates to generate valid Java code from class diagrams, defined
in the previous exercise.

1.2 Task 2: Code Generation for State Machines

• Write Acceleo templates to generate valid Java code from state machine models,
defined in the previous exercise.

Hint: Use the state pattern to translate state machines into code.

1.3 Task 3: Complex Code Generation

• Combine both generators to generate valid Java code from the integrated DSL, i.e.,
combining class diagrams and state machines.

All three Acceleo projects must be handed in as *.zip archives on the day before the
next exercise.

1https://www.eclipse.org/acceleo/
2https://wiki.eclipse.org/Acceleo/Getting_Started

1

Listing 1: Example DSL Instance for Class Model+Statechart.
1 class Door {
2 boolean isOpen;
3 void doClose ();
4 void doOpen ();
5
6 void open();
7 void close();
8 void look();
9 void unlock ();

10
11 statechart Lifecycle {
12 state open;
13 state closed;
14 state locked;
15 transition open (close [isOpen] / doClose) closed;
16 transition closed (open [!isOpen] / doOpen) open;
17 transition closed (lock) locked;
18 transition locked (unlock) closed;
19 initial open;
20 }
21 }

1.4 Additional Information

• Acceleo,3 is a pragmatic implementation of the Object Management Group (OMG)
MOF Model-to-Text Language (MTL) standard.

• Acceleo Getting Started,4 is a basic tutorial on the use of Acceleo.

References

[1] Jonathan Musset, Étienne Juliot, Stéphane Lacrampe, William Piers, Cédric Brun,
Laurent Goubet, Yvan Lussaud, and Freddy Allilaire. Acceleo user guide. Acceleo, 2,
2006.

3https://www.eclipse.org/acceleo/
4https://wiki.eclipse.org/Acceleo/Getting_Started

2

Listing 2: Example Java Code Generated from Listing 1.
1 abstract class Door {
2 private boolean isOpen;
3 public abstract void doOpen ()
4 public abstract void doClose ()
5 public abstract Door open();
6 public abstract Door close ();
7 public abstract Door lock();
8 public Door unlock ();
9

10 public Door (boolean open){ isOpen=open; }
11 public void setOpen (boolean open) { isOpen = open; }
12 public boolean isOpen () { return isOpen; }
13
14 }
15
16 class OpenDoor extends Door {
17 // ...
18 }
19 // ...

3

	Acceleo
	Task 1: Basic Code Generation
	Task 2: Code Generation for State Machines
	Task 3: Complex Code Generation
	Additional Information

