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Original and Representing Model
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» Model mappings can be sequenced:
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A model is an abstraction of an
original [Stachowiak]

A direct model is an abstraction of a
reality

A system model is an abstraction of
a system

A world model is an abstraction of a
world

A domain model is an abstraction of
a domain of the world
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Specifier;
Implementer

[HesseMayr]
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Token Modeling
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> In Token modeling, some features of the objects in original domain O are forgotten,
but never the objects themselves

= Abstraction over features
= Leading to view-based modeling, aspect-oriented modeling

1:1 Object Mapping
O \ —
O /
O
@

>0

@)

| 4 @)

»OFO
o - >0
® [ —




Type Modeling
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> Intype modeling, sets of objects are abstracted
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Type Modeling
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> Clabjects (class-objects) are classes reified as representant objects on the metalevel.
= |nan object-oriented program, clabjects are objects that represent classes
of other objects.
> Russells Paradox “The set of all sets containing themselves as elements” forbids
infinitely many reifications
> <<instance-of>> is a composition of <<element-of>> with <<reified-to>>

<<reified-to>> _
<<class>> ,| <<class-object>>
Person Person
...... v <<metalevel>>
________________________________________________________________________ <<element-of>> e mEmTETT
- <<base level>>

John:Person
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The Smalltalk Metaclass
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> Smalltalk-80 was the first language to introduce metamodeling

> Itintroduced clabjects as class-objects and as metaclass.
» Changing the Smalltalk metaclass changes the semantics of all classes and all objects.

» |InJava,class Class is the metaclass, but it is immutable

<<collection>>
extent

<<collection>>
extent

<<reified-to>>
.

<<reified-to>>
o

John:Person
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Notation

Clabject Hierarchy

Component-Based Software Engineering (CBSE)

We write metaclasses with dashed lines, metametaclasses with dotted lines

<<instance-of>>

<<ijnstance-of>>

Class

4

pm———————

Class:ModellingConcept

A

<<instance-of>>

<<ijnstance-of>>

M 1 Car Car:Class
A y
<<instance-of>> <<instance-of>>
M 0 car1 car1:Car




Q1: IDE and Model-Driven Software Development
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»  MDSD systematically connects the customer's problems, the system's
requirements, testing, design, coding, and documentation and develops these

models in coordination

» MDSD relies on model mappings between requirements, test cases, design, and
code

> Integrated Development Environments (IDE) provide tools for all singular aspects,
as well as model mappings
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Q2: Tools in an Integrated
for MDSD

Development Environment (IDE)
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[ Requirements Tool ]

[ Coding Tool ] [ Testing Tool ]

[

[ Model mappings ] [ Model slicing ] [ Model composition ]
Reachability analysis (traceability) ] [ Attribute analysis
Reasoning Relational GRS TRS XML
engine engine engine engine engine
3
S — Detamodel
Repository

Design
Repository
(PIM, Arch)

Requirements
Repository . Repository

Test Case (M2)

Implementation
Repository
(PSI, Code)




The End
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