TECHNISCHE
@ UNIVERSITAT
DRESDEN

Fakultat Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie

Part O - MOST
1. Modeling

Prof. Dr. rer. nat. Uwe AlRmann

Institut fur Software- und
Multimediatechnik

Lehrstuhl Softwaretechnologie
Fakultat fur Informatik

Technische Universitat Dresden o
http://st.inf.tu-dresden.de/teaching/most ‘\)"
. %
Version 17'01, 28.09.17 DRESDEN
ccccc pt

uuuuuuuuu

Model-Driven Software Development in Technical Spaces (MOST) © Prof. U. ABmann

http://st.inf.tu-dresden.de/teaching/most

Literature

2

Model-Driven Software Development in Technical Spaces (MOST)

@ © Prof. U. ABmann

» Obligatory:
= [HesseMayr] Wolfgang Hesse and Heinrich C. Mayr. Modellierung in der
Softwaretechnik: eine Bestandsaufnahme. Informatik Spektrum, 31(5):377-

393, 2008.

» References:
= Stachowiak, Herbert. Allgemeine Modelltheorie. Springer, Wien, 1973

Original and Representing Model

3 Model-Driven Software Development in Technical Spaces (MOST)

|s-described-by
Mapping

Bew?sent//

Original

Modeled
properties

Image

Non-modeled ,preterite”
properties

Additional ,,abundant*
properties

> [HesseMayr, Stachowiak]

» Model mappings can be sequenced:

- i C i

@ © Prof. U. ABmann

4

Model-Driven Software Development in Technical Spaces (MOST)

@ © Prof. U. ABmann

A model is an abstraction of an
original [Stachowiak]

A direct model is an abstraction of a
reality

A system model is an abstraction of
a system

A world model is an abstraction of a
world

A domain model is an abstraction of
a domain of the world

5 Model-Driven Software Development in Technical Spaces (MOST) https://openclipart.org/detail/205983/mount-kilimanjaro

Descriptive Prescriptive

Modeller Modeler;
Specifier;
Implementer

[HesseMayr]

@ © Prof. U. ABmann

Token Modeling

6

Model-Driven Software Development in Technical Spaces (MOST)

@ © Prof. U. ABmann

> In Token modeling, some features of the objects in original domain O are forgotten,
but never the objects themselves

= Abstraction over features
= Leading to view-based modeling, aspect-oriented modeling

1:1 Object Mapping
O \ —
O /
O
@

>0

@)

| 4 @)

»OFO
o - >0
® [—

Type Modeling

8

Model-Driven Software Development in Technical Spaces (MOST)

@ © Prof. U. ABmann

> Intype modeling, sets of objects are abstracted

N:m<n Mapping

O O

0 0O

Type Modeling

9 Model-Driven Software Development in Technical Spaces (MOST)

> Clabjects (class-objects) are classes reified as representant objects on the metalevel.
= |nan object-oriented program, clabjects are objects that represent classes
of other objects.
> Russells Paradox “The set of all sets containing themselves as elements” forbids
infinitely many reifications
> <<instance-of>> is a composition of <<element-of>> with <<reified-to>>

<<reified-to>> _
<<class>> ,| <<class-object>>
Person Person
...... v <<metalevel>>
__ <<element-of>> e mEmTETT
- <<base level>>

John:Person

© Prof. U. ABmann

=

The Smalltalk Metaclass

10

Model-Driven Software Development in Technical Spaces (MOST)

> Smalltalk-80 was the first language to introduce metamodeling

> Itintroduced clabjects as class-objects and as metaclass.
» Changing the Smalltalk metaclass changes the semantics of all classes and all objects.

» |InJava,class Class is the metaclass, but it is immutable

<<collection>>
extent

<<collection>>
extent

<<reified-to>>
.

<<reified-to>>
o

John:Person

@ © Prof. U. ABmann

<<Class>>
Person

-
-
-
-
.
-
-
-
-
-
-
-
-
PR
-

-
-
-
-
-
PR
-

<<Metaclass>>
Class

.
.
-

.
-
.”
-

Notation

Clabject Hierarchy

Component-Based Software Engineering (CBSE)

We write metaclasses with dashed lines, metametaclasses with dotted lines

<<instance-of>>

<<ijnstance-of>>

Class

4

pm———————

Class:ModellingConcept

A

<<instance-of>>

<<ijnstance-of>>

M 1 Car Car:Class
A y
<<instance-of>> <<instance-of>>
M 0 car1 car1:Car

Q1: IDE and Model-Driven Software Development

13 Model-Driven Software Development in Technical Spaces (MOST)

» MDSD systematically connects the customer's problems, the system's
requirements, testing, design, coding, and documentation and develops these

models in coordination

» MDSD relies on model mappings between requirements, test cases, design, and
code

> Integrated Development Environments (IDE) provide tools for all singular aspects,
as well as model mappings

Problem .

Space Solution
Space
% O _CID'
Customer Needs @ T N\
Problem - A AN The
) Z. el
fo 2 T . Product
Software “ _Cl)_ To _Be
Requirements S /N Built O
K] I.‘\’, . T ~ ~~~ \‘ —I_
] = b ‘\ /\

@ © Prof. U. ABmann
S~
o
(7/]
<9
< ;
0
(o]
/=
O <1
g =
(1)
/
Oc
O n -
O O
(/)]

Q2: Tools in an Integrated
for MDSD

Development Environment (IDE)

14

Model-Driven Software Development in Technical Spaces (MOST)

@ © Prof. U. ABmann

[Requirements Tool]

[Coding Tool] [Testing Tool]

[

[Model mappings] [Model slicing] [Model composition]
Reachability analysis (traceability)] [Attribute analysis
Reasoning Relational GRS TRS XML
engine engine engine engine engine
3
S — Detamodel
Repository

Design
Repository
(PIM, Arch)

Requirements
Repository . Repository

Test Case (M2)

Implementation
Repository
(PSI, Code)

The End

15

Model-Driven Software Development in Technical Spaces (MOST)

@ © Prof. U. ABmann

	7. Werkzeuge zur Anforderungsanalyse
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 8
	Slide 9
	Slide 10
	Slide 12
	Introduction to Requirements Management
	Slide 14
	Slide 15

