
 Model-Driven Software Development in Technical Spaces (MOST) © Prof. U. Aßmann

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie

3. – Pattern Languages in Technical Spaces
Tool, Automata, Material Methodology (TAM)

Prof. Dr. Uwe Aßmann

Technische Universität Dresden

Institut für Software- und
Multimediatechnik

http://st.inf.tu-
dresden.de/teaching/most

WS 17-0.3, 14.10.17

1) Taxonomy of applications, tools
and materials

2) TAM for Layering of Applications

3) Basic Functions of Tools

4) Graph-Fact-Isomorphism

2

 Model-Driven Software Development in Technical Spaces (MOST) © Prof. U. Aßmann

3.1 Tools, Workflows and Materials as Pattern
Language for Applications

 ©
 P

ro
f.

U
. A

ß
m

an
n

3 Model-Driven Software Development in Technical Spaces (MOST)

The Tools-Automaton-Material Metaphor

► Any application is built with tools, automata, and materials.

 ©
 P

ro
f.

U
. A

ß
m

an
n

4 Model-Driven Software Development in Technical Spaces (MOST)

A Tool or a Material?

► With tears in his eyes the violinist Aaron Rosand left his soul behind in a
London hotel suite last week.

► That is how he described the sale of the instrument he had played for more
than 50 years, the ex-Kochanski Guarneri del Gesù. The buyer was a Russian
billionaire whom Mr. Rosand declined to identify and who paid perhaps the
highest price ever for a violin: about $10 million.

► “I just felt as if I left part of my body behind,” Mr. Rosand said on Wednesday,
overflowing with metaphors for what the instrument meant to him. “It was my
voice. It was my career.”

► Daniel J. Wakin. New York Times Oct 21, 2009.
■ http://www.nytimes.com/2009/10/22/arts/music/22violin.html?_r=0

https://en.wikipedia.org/wiki/Aaron_Rosand

 ©
 P

ro
f.

U
. A

ß
m

an
n

5 Model-Driven Software Development in Technical Spaces (MOST)

Human Beings Use Tools

► SW-machine tools are the basis of all productivity and wealth

A Tool (Werkzeug) is a thing helping to do actions faster as by hand.
An IT-tool is a tool running on a computer.
A data tool is an IT-tool working with data.

A software tool is an IT-tool working on software.
A modeling tool is a software tool working on models.
An application contains several data or software tools.

A machine tool (Werkzeugmaschine) is a tool for production of other tools.

A software machine tool (Software-Werkzeugmaschine) is a software tool for
production of other software-tools.

A Tool (Werkzeug) is a thing helping to do actions faster as by hand.
An IT-tool is a tool running on a computer.
A data tool is an IT-tool working with data.

A software tool is an IT-tool working on software.
A modeling tool is a software tool working on models.
An application contains several data or software tools.

A machine tool (Werkzeugmaschine) is a tool for production of other tools.

A software machine tool (Software-Werkzeugmaschine) is a software tool for
production of other software-tools.

 ©
 P

ro
f.

U
. A

ß
m

an
n

6 Model-Driven Software Development in Technical Spaces (MOST)

“Tools and Material”-Metapher (TAM) for Programming
Applications

► Tool: A tool(-object) is an active software object that can be used to change
material

■ Tools can be used by humans (interactively, batch) or by other tools,
or by automata (workflows)

► Material: A material is a passive object which is handled by a tool
► Automaton (Workflow engine): An Automaton is an operational workflow

orchestrating together several tools
► The collaboration of Tools und Material is described by a collaboration

scheme (role model, Rollenmodell) (see Softwaretechnologie, DPF).

[Züllighoven, Heinz: Object-Oriented Construction Handbook; dpunkt.verlag 2005]

All applications consist of tool-objects in workflows working on material.
(Züllighoven principle)

All applications consist of tool-objects in workflows working on material.
(Züllighoven principle)

 ©
 P

ro
f.

U
. A

ß
m

an
n

7 Model-Driven Software Development in Technical Spaces (MOST)

Tool and Material – Metaphor can be Realized in Many
Designs of Tools

[Züllighoven, H.: Object-Oriented Construction Handbook; dpunkt.verlag Heidelberg 2005, S. 87]

Tool

Material

works on

Tool

Material

Tool
e. g. TextEditor

Material
e. g. Requirements

<<interface>>
Editable

Conceptual Pattern Design Pattern Construction

tool and material
collaboration

collaboration

 ©
 P

ro
f.

U
. A

ß
m

an
n

8 Model-Driven Software Development in Technical Spaces (MOST)

Full TAM Pattern Language Suggests an Architecture for
Application Integration

Riehle, D., Züllighoven, H.: Pattern Languages of Program Design; Reading, Massachusetts: Addison
 Wesley 1995, Chapter 2, S. 9-42

Material Administration

Environment (Overall System)

Tool Coordinator (Material Update Dispatcher)

Tool Composition Material Container

Constraints

Collaboration
Functional

Part Material

<<read-only>>
World
Model

<<read-only>>
System
Model

 ©
 P

ro
f.

U
. A

ß
m

an
n

9 Model-Driven Software Development in Technical Spaces (MOST)

TAM in the Metapyramid

► TAM is a pattern language to structure M0, M1, M2

Tool Metamodel

Process
Metamodel

Material
Metamodel

Tool Classes

Process Classes
Workflows

Material
Classes

Tool Objects

Process Objects
Workflow instances

Material
Objects

World/System
Metamodel

World/System
Classes

World/System
ObjectsM0

M1

M2

 ©
 P

ro
f.

U
. A

ß
m

an
n

10 Model-Driven Software Development in Technical Spaces (MOST)

 Graph-/Base Level

 Schema-/Meta-/Type Level

<<Material>>
Building

<<Material>>
Room

*1

Type Modeling for Application Types (with TAM Tags)

► On M1, also other sets of the application world can be used as types
► Classes can carry the TAM tags

HSZ

INF

HS 04

Audimax

E023

E008

<<instance_of>> <<schema_of>>

<<Tool>>
Robot

Chuck

Tiffany

Located-in

M0

M1

 ©
 P

ro
f.

U
. A

ß
m

an
n

11 Model-Driven Software Development in Technical Spaces (MOST)

Type Level

 Schema-/Meta-/Type Level

Class has
*1

Objects, their Clabjects in Models and Metamodels and TAM

<<schema_of>>

1 *

Metameta-Level

Concept Relation
*1

1 *

<<Material>>
Building

<<Material>>
Room

*1<<Tool>>
Robot

Located-in

MaterialTool

<<schema_of>>

M1

M2

M3

 ©
 P

ro
f.

U
. A

ß
m

an
n

12 Model-Driven Software Development in Technical Spaces (MOST)

Integrated Development Environment (IDE)
Software-Entwicklungsumgebungen (SEU)

► An IDE is a complex software machine tool (Software-Werkzeugmaschine) for
Computer aided Software Engineering (CASE)

► A MDSD-IDE (Meta-CASE) is an IDE for model-driven software development
supporting

■ Many languages (DSL, metamodels) in a technical space
■ Heterogeneous software development
■ Model management system
■ Macromodel

► Other terms
■ Integrated Computer Aided Software Engineering (I-CASE)
■ Integrated Software Factory (ISF)
■ Software Engineering Environment System (SEES)
■ Integrated Project Support Environment (IPSE)
■ Integrated Software Engineering Environment (ISEE)

Nagl. M.: Software-Entwicklungsumgebungen: Einordnung und zukünftige Entwicklungslinien;
Informatik-Spektrum 16(1993) H.5, S. 273-280

An integrated development environment (IDE, Software-
Entwicklungsumgebung, SEU) consists of a structured set of integrated tools
to support a team in software development.

An integrated development environment (IDE, Software-
Entwicklungsumgebung, SEU) consists of a structured set of integrated tools
to support a team in software development.

 ©
 P

ro
f.

U
. A

ß
m

an
n

13 Model-Driven Software Development in Technical Spaces (MOST)

MDSD Applications

► An MDSD application is also structured with TAM, but uses heterogeneous
models.

An Model-driven application consists of a structured set of integrated tools
working on a integrated set of materials (typed models), possibly in a world
model.

An Model-driven application consists of a structured set of integrated tools
working on a integrated set of materials (typed models), possibly in a world
model.

 ©
 P

ro
f.

U
. A

ß
m

an
n

14 Model-Driven Software Development in Technical Spaces (MOST)

Q1: IDE and Model-Driven Software Development

Needs

Product
Features

Software
Requirements

Test Design
User
Docs

Problem

The
Product
To Be
Built

Solution
Space

Problem
Space

► MDSD systematically connects the customer's problems, the system's
requirements, testing, design, coding, and documentation and develops these
models in coordination

► MDSD relies on model mappings between requirements, test cases, design, and
code

► IDE provide tools for all singular aspects, as well as model mappings

Code

Traceability

 ©
 P

ro
f.

U
. A

ß
m

an
n

15 Model-Driven Software Development in Technical Spaces (MOST)

Q2: Tool-Objects and Materials in an Integrated
Development Environment (IDE, SEU) for MDSD

Requirements
Repository

Design
Repository
(PIM, Arch)

Implementation
Repository
(PSI, Code)

Test Case
Repository

Requirements Tool Testing Tool

Metamodel
Repository

(M2)

Reasoning
engine

GRS
engine

TRS
engine

XML
engine

Relational
engine

Coding Tool

Reachability analysis (traceability) Attribute analysis

Model mappings Model slicing Model composition

Materials

Technical Tools

Application-Oriented Tools

 Model-Driven Software Development in Technical Spaces (MOST) © Prof. U. Aßmann

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie

3.3 Identification of Tools, Materials for Layering
of Applications

Special kinds of tools, workflows, materials

 ©
 P

ro
f.

U
. A

ß
m

an
n

17 Model-Driven Software Development in Technical Spaces (MOST)

Perspektive Model TAM: Separation of active and passive
Components

Tools-and-Materials [Züllighoven] is a
perspektive model with the following aspects:
1) Tools (active processes)
2) Ressources (allocatable)
3) Materials (passive data)
4) TAM-Collaboration
5) Workflows (Automata) coordinate Tools

● All program units, such as classes,
modules, components, packages can be
attributed with these aspects as
stereotypes

MaterialMaterial

Ressource

Application
Workflow

Application
Workflow

<<TAM>>
TAM-Collaboration

<<TAM>>
TAM-Collaboration

ToolTool

<<R>>

<<M>>

<<W>>

<<T>>

 ©
 P

ro
f.

U
. A

ß
m

an
n

18 Model-Driven Software Development in Technical Spaces (MOST)

Material-Classes and Interfaces

► Material objects (M0) are passive, e.g., are called from outside
► Material objects can be composite (Pattern Composite or Bureacracy)
► Materials have a CRUD-interface

Order

pack()
sumUp()

Order Item

int position
int price

singularPrice();
specialPrice();

<<material>>

Material

Material create();
read();
update();
delete();

 ©
 P

ro
f.

U
. A

ß
m

an
n

19 Model-Driven Software Development in Technical Spaces (MOST)

The Material Hierarchy

Material

Material create();
read();
update();
delete();

Artefact
(Editied by a Human)

Document

Code Model

Data

Free-Form Text

 ©
 P

ro
f.

U
. A

ß
m

an
n

20 Model-Driven Software Development in Technical Spaces (MOST)

Material-Classes and Interfaces

► Material Classes can appear as interfaces in Ports of UML-components

TaskOrder

 ©
 P

ro
f.

U
. A

ß
m

an
n

21 Model-Driven Software Development in Technical Spaces (MOST)

Tool-Classes and Interfaces

► Tool-objects are active, and have their own thread of control (process)

Order

pack()
reserve()
cancel();

<<tool>>

Tool

run();
stop();
restart();
destroy();

[Züllighoven]

 ©
 P

ro
f.

U
. A

ß
m

an
n

22 Model-Driven Software Development in Technical Spaces (MOST)

Resource-Interfaces

► Resource objects are Tool-Objects or Materials, which must be allocated before
use and freed after use

► Material resources are passive. Tool resources are active

Machine

acquire()
release()

<<ressource>>

Ressource

aquire();
release();

ToolResource

MaterialResource

Tool

<<material>>

Material

Material create();
read();
update();
delete();

 ©
 P

ro
f.

U
. A

ß
m

an
n

23 Model-Driven Software Development in Technical Spaces (MOST)

Tool-Classes and Interfaces

► Tool-objects have an interactive Teil (intTool, boundary) und einen
ausführenden, funktionalen Teil (funTool, control), der aus dem Command-
Pattern abgeleitet ist

► Interaktive Tools stecken hinter den Menüeinträgen

Buchung

durchfuehren()
reservieren()
stornieren();

<<tool>
>

Tool

run();
restart();
stop();
destroy();

intTool

runButtonPressed();
restartButtonPressed();
stopButtonPressed();
destroyButtonPressed();

funTool

Command

[Züllighoven]

 ©
 P

ro
f.

U
. A

ß
m

an
n

24 Model-Driven Software Development in Technical Spaces (MOST)

Operator-Classes and Interfaces

► Operators (Technical Tools) on materials carry a technical functionality, which is
not specific to an application

■ Bsp.: Editor, Lister, Inspector, Browser, Encryptor, Compressor, Optimizer
► Operators are directly associated with Material

■ They may be part of an algebra on materials

OrderEditor

edit()
editInXML()
editAsTreeWidget();

<<tool>>

Operator
Technical Tool

intTool

editButtonPressed();
doubleKlickOnText();

[Züllighoven]

funTool

 ©
 P

ro
f.

U
. A

ß
m

an
n

25 Model-Driven Software Development in Technical Spaces (MOST)

Slave-Classes and Interfaces

► Slave-Objects are very specific tools. They are passive, run in batch mode, and
return control (Design pattern “Master-Slave”)

CarReservationSystem

reserveCar()

<<slave>>

Slave

work();

Command

<<Master>>
WebClient

 ©
 P

ro
f.

U
. A

ß
m

an
n

26 Model-Driven Software Development in Technical Spaces (MOST)

Workflow-Engine-Classes and Interfaces

► Workflow-Engines are special tools, automata objects organizing a workflow.
■ Workflow-engines interpret the workflow

► Workflow-Engines call other tools
► Their workflows are specified by a behavioral language (action diagrams,

statechart, BPMN)

<<workflow engine>>
SalaryPayment

calculateSalary()
paySalary()

Workflow Engine

work();

Interpreter

<<client>>
WebClient

Tool

Workflow

ActionDiagram

 ©
 P

ro
f.

U
. A

ß
m

an
n

27 Model-Driven Software Development in Technical Spaces (MOST)

M0 Layers and TAM-Classification

► Die TAM-classification enables to position objects in the layer cake of the
application (M0 layer cake)

 ©
 P

ro
f.

U
. A

ß
m

an
n

28 Model-Driven Software Development in Technical Spaces (MOST)

Application logic
(business logic)

Q3: M0-Layer Cake

Database Layer (repository)

Graphical user
interface (GUI)

Controller

<<intTool>

<<control>>

<<data>>

Context model

Application Tools

Top-level Architecture

Architecture

Other
systems

<<material>>
Material Layer (memory)Data

Repository

<<tool ressource>>
<<funTool>>

<<workflow engine>>

Platform Frameworks

<<funTool>>

<<funTool>>

Technical Tools <<technical Tool>>

 Model-Driven Software Development in Technical Spaces (MOST) © Prof. U. Aßmann

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie

3.3 Basic Functions of Software Tools

 ©
 P

ro
f.

U
. A

ß
m

an
n

30 Model-Driven Software Development in Technical Spaces (MOST)

Tools on Different Kinds of Materials (Artefacts)

► Code-centered tools:

■ Software are programs with documentation and test architecture

► Document-centered tools

■ Are needed for software

► Model-centered Tools

■ Basic for MDSD IDE

 ©
 P

ro
f.

U
. A

ß
m

an
n

31 Model-Driven Software Development in Technical Spaces (MOST)

Aspects of Materials (Documents, Models, Code)

Structure (A)
(logical view)

Content (C)

Layout (D)
(layout view)

Context-free Structure (ctf)

context-sensitive Structure (cts)
(static semantics, well-formedness,

Wohlgeformtheit)

Behavior
(Dynamic Semantics) (B)

► Structure: log. Units
■ Context-free: Hierarchic structure
■ Links: cross links, references
■ context-sensitive structure mit consistency conditions for well-

formedness (static semantics)
► Semantics: Programme besitzen eine Bedeutung (dynamische Semantik,

Verhalten)
► Content: Text, Grafics, images, videos
► Layout: Placement

 ©
 P

ro
f.

U
. A

ß
m

an
n

32 Model-Driven Software Development in Technical Spaces (MOST)

Tools check consistency rules on materials by semantic analysis (context analysis
of material constraints) in the material container:

■ Layout rules forbid loose or ugly layouts
■ Name analysis finds the meaning of names
■ Links are set correctly
■ Range checks (Bereichsprüfungen) check validity of ranges of values
■ Structuring of data structures (see ST-II)

. Azyclicity, layering, Reducibility

. Strongly connected components
■ Vorbidden combinations

Well-Formedness of Materials (Models, Documents, Code)

An artefact is well-formed, if it fulfils context-
sensitive constraints (integrity rules, consistency

rules).

An artefact is well-formed, if it fulfils context-
sensitive constraints (integrity rules, consistency

rules).

 ©
 P

ro
f.

U
. A

ß
m

an
n

33 Model-Driven Software Development in Technical Spaces (MOST)

Tools are Deterministic Functions

Processing
+

Validation

Tool (tool)

Artefakt/
Document/

Model

Artefakt/
Document/

Model

Input (I) Output (O)

Data base (DB)
Repository

tool: I x DB DB x O→

► Tools analyze an input and produce an analytic model as output
► Tools transform an input to an output

 ©
 P

ro
f.

U
. A

ß
m

an
n

34 Model-Driven Software Development in Technical Spaces (MOST)

Q4: Logic View of Tool Architecture

User Interface (tool – interactive part)

Tool – functional part

Metamodell of artefacts
in repository

Repository

Import

Export

Interactive call of tools

After: [Bal-II, S. 604]

Validation - Consistency checking

Interactive Call of Functions
Layouting

Controller

Functionality

Structuring and Wellformedness Rules

Materials

Wellformedness Checking

Connection to other tools

 ©
 P

ro
f.

U
. A

ß
m

an
n

35 Model-Driven Software Development in Technical Spaces (MOST)

Artefact Types

► Free text
■ Word documents, requirement specifications, user stories, comments

► Models
■ Textual models

. Canvases (forms)

. Trees and ordered trees (terms)
 S-Expressions (Lisp, Scheme)
 Link trees (XML-trees, JSON-trees)
 Feature terms

. Ontologies
■ Diagrammatic models, usually specific graphs

. Analysis documents and design specifications (UML-diagrams),
Petri-Nets, statecharts

► Graphics: Visualizations in 2-D or 3-D
► Tables: Relations, test case tables
► Code: e.g., Pseudocode, code templates, source code

after: Denert, E.: Dokumentenorientierte Software-Entwicklung; Informatik-Spektrum 16(1993) H. 3, S. 159 - 164

 Model-Driven Software Development in Technical Spaces (MOST) © Prof. U. Aßmann

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie

3.3.2 The Graph-Fact-Isomorphism

 ©
 P

ro
f.

U
. A

ß
m

an
n

37 Model-Driven Software Development in Technical Spaces (MOST)

The Graph-Fact-Isomorphism

► Every Graph can be represented as a fact base of a logic inference engine
(reasoner)

► Every fact base (with material) can be interpreted as Graph
– binary: Graph
– n-ary: Hypergraph

► Therefore, logic inferencers and graph transformation tools can be used on the
same data and artefacts

► Materials can be seen as facts of a reasoner or graphs of a modeling
environment

► Metamodeling uses both kinds of technologies

 ©
 P

ro
f.

U
. A

ß
m

an
n

38 Model-Driven Software Development in Technical Spaces (MOST)

Graph tools Tree tools

Logic based
tools

Interpretation as facts

Special
Tools

Trees and
graphs in memory

Persistent trees and graphs

IDE with Logic-based and Graph-based Tools

 ©
 P

ro
f.

U
. A

ß
m

an
n

41 Model-Driven Software Development in Technical Spaces (MOST)

The End

► Explain the consequences of the Züllighoven principle for the construction of
heterogeneous applications

► Why does the TAM pattern language cross the metapyramid?
► Which concepts belong to a process metamodel in contrast to a tool or material

metamodel?
► Why is static semantics divided into context-free structure and context-

sensitive wellformedness conditions?
► Why is it possible to store a model in a database or an inferencer?

	Software-Entwicklungswerkzeuge
	1.0 Taxonomie von Werkzeugen und Software-Entwicklungs- umgebungen(SEU)
	Folie 3
	Folie 4
	Folie 5
	Tool und Material-Metapher
	Tool Konkretisierungs-Muster
	Patterns for Tool Integration
	Folie 9
	Folie 10
	Folie 11
	Weitere Begriffe für den Verbund von Software-Entwicklungswerkzeugen
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19
	Folie 20
	Folie 21
	Folie 22
	Folie 23
	Folie 24
	Folie 25
	Folie 26
	Folie 27
	Folie 28
	1.1 Aufbau und prinzipielle Funktion von Software-Entwicklungswerkzeugen
	Werkzeugfunktionen
	Aufbau von Dokumenten (in Anlehnung an SGML, XML, ODA/ODIF, EDI u. a.)
	Folie 32
	Folie 33
	Werkzeug - Wirkungsschema
	Dokumente der Softwareentwicklung
	Folie 36
	Folie 37
	Folie 38
	Folie 41

