
 Model-Driven Software Development in Technical Spaces (MOST) © Prof. U. Aßmann

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie

12. An Overview of Technical Spaces

Prof. Dr. rer. nat. Uwe Aßmann

Institut für Software- und
Multimediatechnik

Lehrstuhl Softwaretechnologie

Fakultät für Informatik

Technische Universität Dresden

http://st.inf.tu-dresden.de/teaching/most

Version 17-0.5, 23.10.17

1) Technical spaces

2) Model Management

3) Model Analysis

4) Mega- and Macromodels

5) Pattern Languages

6) Bridging Technical Spaces

http://st.inf.tu-dresden.de/teaching/most

 Model-Driven Software Development in Technical Spaces (MOST) © Prof. U. Aßmann

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie

12.1 Technological & Technical Spaces

 ©
 P

ro
f.

U
. A

ß
m

an
n

3 Model-Driven Software Development in Technical Spaces (MOST)

Technological Spaces

► It is often associated to a given user community with shared know-how, educational
support, common literature and even workshop and conference regular meetings.

■ Ex. compiler community, database community, semantic web community,
automotive community

■ [Technological Spaces: an Initial Appraisal. Ivan Kurtev, Jean Bézivin,
Mehmet Aksit. CoopIS, DOA’2002 Federated Conferences, Industrial Track.
(2002) http://citeseerx.ist.psu.edu/viewdoc/download?
doi=10.1.1.109.332&rep=rep1&type=pdf]

A technological space is a working context with a set of associated
concepts, body of knowledge, tools, required skills, and possibilities.

A technological space is a working context with a set of associated
concepts, body of knowledge, tools, required skills, and possibilities.

 ©
 P

ro
f.

U
. A

ß
m

an
n

4 Model-Driven Software Development in Technical Spaces (MOST)

Technical Spaces

► [Model-based Technology Integration with the Technical Space Concept. Jean Bezivin
and Ivan Kurtev. Metainformatics Symposium, 2005.]

■ http://citeseerx.ist.psu.edu/viewdoc/download?
doi=10.1.1.106.1366&rep=rep1&type=pdf

► Ingredients of a Technical Space (Technikraum):
■ A metapyramid (or metahierarchy) with data (tools, workfows, and

materials on M0), Code and models (M1), languages (M2), and
metalanguages (M3)

■ A model management unit (model algebra or model composition system)
■ A macromodel

► Be aware: A technological space may contain several technical spaces:
■ Compiler community: Grammarware, Tree-Ware, Graph-Ware
■ Database community: Relational database model, csv-tables, XML
■ Business software: Reports in TextWare, TableWare

A technical space is a metamodeling framework (in a technological space)
with a metapyramid (metahierarchy), accompanied by a set of tools that
operate on the models definable within the framework.

A technical space is a metamodeling framework (in a technological space)
with a metapyramid (metahierarchy), accompanied by a set of tools that
operate on the models definable within the framework.

 ©
 P

ro
f.

U
. A

ß
m

an
n

5 Model-Driven Software Development in Technical Spaces (MOST)

The Trick of the Metapyramid

► Level-independence: Tools on level M[n-1] can work on M[n]

► Tools can be lifted from the object to the class to the metaclass level to the
metametaclass level:

► Object-manipulating tools on M0 work for clabjects in models on M1
■ Graph-manipulating tools on M0 for models on M1

► Class-manipulating tools on M1 work for clabjects in metamodels on M2
■ Model-manipulating tools on M1 work for metamodels on M2

► Metaclass-manipulating tools on M2 work for clabjects in metamodels on M3
■ Metamodel-manipulating tools on M2 work for metametamodels on M3

Observation:
In the metapyramid of a technical space, tools can be applied on every level.

Observation:
In the metapyramid of a technical space, tools can be applied on every level.

 ©
 P

ro
f.

U
. A

ß
m

an
n

6 Model-Driven Software Development in Technical Spaces (MOST)

Q10: The House of a Technical Space

Mega- and MacromodelsMega- and Macromodels

Method EngineeringMethod Engineering

Model Management
Mapping, Transformation, Slicing, Composition

Model Management
Mapping, Transformation, Slicing, Composition

Technical
Space
Bridges

Technical
Space
Bridges

Technical SpaceTechnical Space

Pattern
Languages

Pattern
Languages

Model Analysis
Recognition, Querying, Metrics, Analysis

Model Analysis
Recognition, Querying, Metrics, Analysis

Metapyramid (Metahierarchy) for Token ModelingMetapyramid (Metahierarchy) for Token Modeling

 ©
 P

ro
f.

U
. A

ß
m

an
n

7 Model-Driven Software Development in Technical Spaces (MOST)

Packeting on all Layers

► All layers can be structed into packages

[MOF]

 ©
 P

ro
f.

U
. A

ß
m

an
n

8 Model-Driven Software Development in Technical Spaces (MOST)

Q10: Overview of Technical Spaces in the Classical
Metahierarchy

Gramm
arware
(Strings
)

Text-
ware

Table-
ware

Treeware
(trees)

Graphw
are/Mo
delware

Role-
Ware

Ontology-
ware

Strings Text Text-
Table

Relational
Algebra

NF2 XML Link
trees

MOF Eclipse CDIF MetaEdit+ OWL-Ware

M3 EBNF EBNF CWM
(common
warehous
e model)

NF2-
language

XSD JastAdd,
Silver

MOF Ecore,
EMOF

ERD GOPPR RDFS
OWL

M2 Grammar
of a
language

Gramma
r with
line
delimiter
s

csv-
header

Relational
Schema

NF2-
Schema

XML
Schema
, e.g.
xhtml

Specific
RAG

UML-CD,
-SC,
OCL

UML,
many
others

CDIF
-
langu
ages

UML, many
others

HTML
XML
MOF UML
DSL

M1 String,
Program

Text in
lines

csv
Table

Relations NF2-tree
relation

XML-
Docume
nts

Link-
Syntax-
Trees

Classes,
Program
s

Classes,
Programs

CDIF
-
Mode
ls

Classes,
Programs

Facts (T-
Box)

M0 Objects Sequenc
es of
lines

Sequen
ces of
rows

Sets of
tuples

trees dynamic
semantic
s in
browser

Object
nets

Hierarchic
al graphs

Objec
t nets

Object nets A-Box (RDF-
Graphs)

 Model-Driven Software Development in Technical Spaces (MOST) © Prof. U. Aßmann

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie

12.2. Model Analysis in a Technical Space with
Model Querying, Model Metrics, and Model
Analysis

Discussing the internals of models and their model
elements

 ©
 P

ro
f.

U
. A

ß
m

an
n

10 Model-Driven Software Development in Technical Spaces (MOST)

The Internals of a Model

► Model querying searches patterns in models, described by a query or pattern
match expression.

■ Searching for a method with a specifc set of parameters
► Model metrics counts patterns in models

■ Counting the depth of the inheritance hierarchy
► Model analysis analyzes hidden knowledge from the models, making implicit

knowledge explicit
■ Value fow analysis between variables in programs

Model analysis techniques reveal the inner details of models.Model analysis techniques reveal the inner details of models.

 Model-Driven Software Development in Technical Spaces (MOST) © Prof. U. Aßmann

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie

12.3. Model Management in a Technical Space
with Model Mapping, Transformation and
Composition

Discussing the relationships of models and their model
elements

 ©
 P

ro
f.

U
. A

ß
m

an
n

12 Model-Driven Software Development in Technical Spaces (MOST)

Mapping Tools

Model Management in a Technical Space

► A model management system manages the relationships of models, metamodels,
metametamodels of a technical space as well as the relationships of their elements

■ Model mapping subsystem
■ Model transformation subsystem
■ Model composition subsystem

Model Operator
Generator

Metamodel

Additional
info

Model
management

system

Composition
Tools Composed

Models

M2 M1

Model composition
operators

Model mappings

Mapped
Models

Transformation
Tools

Model
transformations

Transformed
Models

13

Chair of Software Technology - Prof. U. Aßmann

 Model-Driven Software Development in Technical Spaces (MOST)

12.3.1. Model Mapping

 ©
 P

ro
f.

U
. A

ß
m

an
n

14 Model-Driven Software Development in Technical Spaces (MOST)

Model Mappings

► A trace mapping records during a model elaboration, model restructuring or model
transformation, which model elements are copied from model A to model B, or created in B.

► A synchronization mapping records hot-links model elements from model A to model B.

A model mapping is a mapping between the model elements of several
models.

A model mapping is a mapping between the model elements of several
models.

RiskFactor

String name
Propability p[]
Damage d[]

run()
compute()

RiskItem

Identif ier risk
Real prop[]
Real dama[]

run()
sumUp()

Propability

Real p

Damage

Euro e

A B

Identif ier

Char id[]

┴

15

Chair of Software Technology - Prof. U. Aßmann

 Model-Driven Software Development in Technical Spaces (MOST)

12.3.2. Model Transformation

 ©
 P

ro
f.

U
. A

ß
m

an
n

16 Model-Driven Software Development in Technical Spaces (MOST)

Model Transformations

► From a model mapping, two (partial) model transformations (forward and
backward) may be derived.

► Deleted model elements are framed red, added elements are framed green,
modifed blue

A model transformation is a program (or a specification how) to derive a
model A from a model B.

A model transformation is a program (or a specification how) to derive a
model A from a model B.

RiskFactor

String name
Propability p[]
Damage d[]

run()
compute()

RiskItem

Identif ier risk
Real prop[]
Real dama[]

run()
sumUp()

Propability

Real p

Damage

Euro e

A B

Identif ier

Char id[]

┴

17

Chair of Software Technology - Prof. U. Aßmann

 Model-Driven Software Development in Technical Spaces (MOST)

12.3.3. Model Composition with Model
Algebrae and Composition Systems

Component-based Model Engineering (CBME)

 ©
 P

ro
f.

U
. A

ß
m

an
n

18 Model-Driven Software Development in Technical Spaces (MOST)

Model Composition in a Technical Space

► A model composition system manages the relationships of models, metamodels,
metametamodels of a technical space with a uniform model algebra

 Operators on M1 can be generated from M2
 Operators on M2 can be generated from M3

Model Operator
Generator

Grammar

Additional
info

Model
management

algebra/system

Composition
Text Editor

Composed
Text Artefact

(Program)

Model Operator
Generator

Metamodel

Additional
info

Model
management

algebra/system

Composition
Visual Editor

Composed
Model

M2 M1

Text

Models

Text operators

Model operators

 ©
 P

ro
f.

U
. A

ß
m

an
n

19 Model-Driven Software Development in Technical Spaces (MOST)

Simple Algebra for Models (on M1) and Metamodels (on M2)

► Models and metamodels can be grouped in packages (module)
■ A simple component model and composition system (see CBSE)

► Algebraic composition technique with operators on packages:

■ use (import)
■ merge (union)
■ Instance-of (element-of-reifed-set)

→ Metamodels are composed by unifying their views in the different packages

→ Metamodels can be composed from packages

Composition System

Component Model Composition Technique

Composition Language

 ©
 P

ro
f.

U
. A

ß
m

an
n

20 Model-Driven Software Development in Technical Spaces (MOST)

Ex.: EMOF Class Composition by EMOF Package Merge

[MOF]

Composition System

Component Model Composition Technique

Composition Language

Packages merge, import, instantiate

EMOF

 ©
 P

ro
f.

U
. A

ß
m

an
n

21 Model-Driven Software Development in Technical Spaces (MOST)

Ex: CMOF Package Composition from UML Core and EMOF

[MOF]

22

Chair of Software Technology - Prof. U. Aßmann

 Model-Driven Software Development in Technical Spaces (MOST)

12.3.4. Composing UML Metamodels in the
MOF Technical Space

 ©
 P

ro
f.

U
. A

ß
m

an
n

23 Model-Driven Software Development in Technical Spaces (MOST)

Beneft of UML-Metamodeling for MDSD Tools and Model-
Driven Applications

The language report of UML uses a simple metamodel algebra for the bottom-up
composition of UML language.

The UML-metamodel is a “logic” metamodel, because it is composed:
► Defnition of merge operator composing metaclasses and metaclass-packages

► Defned in composable packages
■ With a clear CMOF-package architecture
■ uniform package structure and context-sensitive semantics for all

diagrams such as Statecharts (UML-SC), Sequence Diagrams (UML-SD), etc.

► Schemata for repositories for uniform description of tools, materials, code, models
(metamodel-driven repositories)

► Exchange format (XMI)

► The UML infrastructure can be used by MDSD applications

 ©
 P

ro
f.

U
. A

ß
m

an
n

24 Model-Driven Software Development in Technical Spaces (MOST)

Coarse-Grain Structure of UML on M2

UML
Superstructure

UML
Superstructure

UML
Infrastructure

UML
Infrastructure

<<import>>

UML Infrastructure

<<merge>>

 ©
 P

ro
f.

U
. A

ß
m

an
n

25 Model-Driven Software Development in Technical Spaces (MOST)

Core Package of the UML-Infrastructure Metamodel (M2)

From: UML 2.0 Infrastructure Specification; OMG Adopted Specification ptc/03-09-15

Basic: basic constructs for XMI Abstractions: abstract metaclasses
Constructs: Metaclasses for modeling Primitive Types: basic types

 ©
 P

ro
f.

U
. A

ß
m

an
n

26 Model-Driven Software Development in Technical Spaces (MOST)

Package Basic: Uses Types from CMOF

From: UML 2.0 Infrastructure Specification; OMG Adopted Specification ptc/03-09-15

 ©
 P

ro
f.

U
. A

ß
m

an
n

27 Model-Driven Software Development in Technical Spaces (MOST)

Package Basic: Classes

From: UML 2.0 Infrastructure Specification; OMG Adopted Specification ptc/03-09-15

 ©
 P

ro
f.

U
. A

ß
m

an
n

28 Model-Driven Software Development in Technical Spaces (MOST)

Package Composition Architecture UML 2.0 (M2)

From: UML 2.0 Infrastructure Specification; OMG Adopted Specification ptc/03-09-15

<<merge>>

<<merge>>

<<merge>>

 ©
 P

ro
f.

U
. A

ß
m

an
n

29 Model-Driven Software Development in Technical Spaces (MOST)

Metamodel Composition – the Composition System of the
UML Language Report

Composition System

Component Model Composition Technique

Composition Language

Packages merge, import, instantiate

MOF

 Model-Driven Software Development in Technical Spaces (MOST) © Prof. U. Aßmann

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie

12.4 Mega- and Macromodels

In a technical space, a megamodel is an infrastructure for models and
metamodels, systematically linking a set of models

In a technical space, a megamodel is an infrastructure for models and
metamodels, systematically linking a set of models

 ©
 P

ro
f.

U
. A

ß
m

an
n

31 Model-Driven Software Development in Technical Spaces (MOST)

Megamodels

► A megamodel is a model for a set or graph of models.
■ The graph of models is an instance of the megamodel (element of the of the

language)

► Usually, a technical space has one or several megamodels on M1, linking many models
on M1

■ Clearifying the relationships of the M1 models by model transformations,
model mappings, and model compositions

■ A megamodel uses the model management system of the technical space

The idea behind a mega-model is to define the set of entities and relations
that are necessary to model some aspect about
model-driven engineering (MDE).

[Favre]

The idea behind a mega-model is to define the set of entities and relations
that are necessary to model some aspect about
model-driven engineering (MDE).

[Favre]

 ©
 P

ro
f.

U
. A

ß
m

an
n

32 Model-Driven Software Development in Technical Spaces (MOST)

Macromodels – Megamodels with Consistency Rules

► A macromodel is a model for a set or graph of models fulflling some consistency
constraints over the models and their elements

■ The graph of models is an instance of the megamodel (element of the of the
language)

■ The graph of models obeys wellformedness constraints
■ There are fne-grained relations between model elements of the models,

which also follow consistency constraints
. Trace mappings between tools, materials, automata
. Synchronization relations for updating

 ©
 P

ro
f.

U
. A

ß
m

an
n

33 Model-Driven Software Development in Technical Spaces (MOST)

Model Synchronization in Macromodels

► Model synchronization keeps a set of connected models (the crowd) in sync, i.e.,
consistent

Test
Model

Requirements
Model

Documentation

Design
Model

Implementation
Model

Code

 ©
 P

ro
f.

U
. A

ß
m

an
n

34 Model-Driven Software Development in Technical Spaces (MOST)

Model Synchronization in Macromodels

► In model synchronizsation, if an edit has occurred in a origin model, all other connected
models of a crowd (dependent models) are updated instantaneously, when one focus
model changes

Test
Model

Requirements
Model

Documentation
Design
Model

Implementation
Model

Code

 ©
 P

ro
f.

U
. A

ß
m

an
n

35 Model-Driven Software Development in Technical Spaces (MOST)

Round-Trip Engineering Changes the Model-in-Focus of the
Crowd

► But always performs model synchronization as a basic step

Test
Model

Requirements
Model

Docu
mentation

Design
Model

Implementation
Model

Code

Test
Model

Requirements
Model

Docu
mentation

Design
Model

Implementation
Model

Code

 ©
 P

ro
f.

U
. A

ß
m

an
n

36 Model-Driven Software Development in Technical Spaces (MOST)

Q12: The ReDeCT Problem and its Macromodel

► The ReDeCT problem is the problem how requirements, design, code and tests are
related (→ V model)

► Mappings between the Requirements model, Design model, Code, Test cases

► A ReDeCT macromodel has maintained mappings between all 4 models

Requirements Design Code Test

ComponentName

ComponentName

ComponentName

Node

Node

Package Bill {
 Uses Order;
 Class Counting {
 Procedure count IS
 End;
}
}

Package Order {
 Uses Bill;
 Class Ordering {
 Procedure count IS
 End;
}
}

Package TestBill {
 Uses TestOrder;
 Proc testCounting
IS
….
 End;
}
}Package TestOrder {
 Uses Bill;
 Class TestOrdering {
 Procedure testCount
IS
 End;
}
}

 ©
 P

ro
f.

U
. A

ß
m

an
n

37 Model-Driven Software Development in Technical Spaces (MOST)

Advantages of Model Mappings in Macromodels

► Error tracing
■ When an error occurs during testing or runtime, we want to trace back the

error to a design element or requirements element

► Traceability
■ We want to know which requirement (feature) infuences which design,

code, and test elements, so that we can demarcate modules in the solution
space (product line development)

► Synchronization in Development:
■ Two models are called synchronized, if the change of one of them leads

automatically to a hot-update of the other

 ©
 P

ro
f.

U
. A

ß
m

an
n

38 Model-Driven Software Development in Technical Spaces (MOST)

Q9: Model Mappings and Model Weavings in the MDA
Macromodel

► Model mappings connect models horizontally (on the same level)
or vertically (crossing levels).

► Model transformations transform models horizontally or
vertically.

■ From a model mapping, a simple transformation
can be infered

► Model extensions (model merges, aadditions) extend an input
model by an extension (often done by hand)

■ Usually, some parts are still hand-written code

Weaving

Code addition

Platform-Independent Model (CIM)
Design specification

Domain model for application domain

Computationally-Independent Model (CIM)
Requirements specification

Platform-Specific Implementation
(PSI, Code)

Platform-Specific Extension (PSE)

Platform Description Model (PDM)

Handwritten code

Platform Specific Model (PSM)

► Model weavings weave two input models to an output
model, based on a crosscut specification

► Model2Text expansion (code generation by template
expansion)

 Model-Driven Software Development in Technical Spaces (MOST) © Prof. U. Aßmann

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie

12.5. Pattern Languages in a Technical Space

► In a TS, several pattern languages may be used to structure
the relationship of models and metamodels

► TAM can be used as Pattern Language on all levels in the
metahierarchy

► However, there may be more pattern languages associated
to a technical space

► Pattern languages can be expressed as stereotypes

 ©
 P

ro
f.

U
. A

ß
m

an
n

40 Model-Driven Software Development in Technical Spaces (MOST)

A Pattern Language Useful for all Technical Spaces
TAM Structures on M1

► On M1, application class models need to defne (stereotype) tools, automata, and
materials.

 Type Level

ToolsTools

MaterialsMaterials

AutomataAutomataApplicationsApplications

 ©
 P

ro
f.

U
. A

ß
m

an
n

41 Model-Driven Software Development in Technical Spaces (MOST)

TAM Structures on M1 Provide Types for Objects in
Repositories on M0

► On M1, application class models need to defne (stereotype) tools, automata, and
materials.

 Schema-/Meta-/Type Level

MaterialsMaterials

ApplicationsApplications

ToolsTools

AutomataAutomata

Graph-/Base Level

Material RepositoryTool RepositoryAutomaton Repository

M
1

M1M1

M0

 ©
 P

ro
f.

U
. A

ß
m

an
n

42 Model-Driven Software Development in Technical Spaces (MOST)

TAM Structures on M2 Provide Language Concepts for
Stereotypes for Classes in M1

► On M2, TAM forms a DSL for stereotypes on M1

► Other pattern languages can use the same principle

 Type Level

Graph-/Base Level

Material RepositoryTool RepositoryAutomaton Repository

Metamodel Level

Material
Metaclasses

Material
Metaclasses

LanguagesLanguages Tool
Metaclasses

Tool
Metaclasses

Automata
Metaclasses
Automata

Metaclasses

Material
Classes

Material
Classes

LanguagesLanguages Tool
Classes
Tool

Classes

Automata
Classes

Automata
Classes M

1

M
2

M2

M0

M1

 Model-Driven Software Development in Technical Spaces (MOST) © Prof. U. Aßmann

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie

12.6. Briding Technical Spaces

► While one tool/application may live in one TS, for the
communication with other tools/applications, technical
space bridges have to be built.

► Usually, a technical spaces has a subsystem for technical
space bridging.

 ©
 P

ro
f.

U
. A

ß
m

an
n

44 Model-Driven Software Development in Technical Spaces (MOST)

An Application May Need Several Technical Spaces

Static Semantic World
Ontologies

Abstract
Interpretation

Model Checking

Structural (Syntactic)
Modeling World

Grammar
Structure

Hierarchies
Layout

Dynamic semantics

Interpretation

State systems

Simulation

Domain World

Ontologies

Domain Models

Domain
Expert

Static
Semantics

Expert

Dynamic
Semantics

Expert

EBNF
EMOF

EMOF
UML-CD

MOF

Petri Nets
SOS

Natural Semantics

F-logic
OWL

 ©
 P

ro
f.

U
. A

ß
m

an
n

45 Model-Driven Software Development in Technical Spaces (MOST)

The End

 Model-Driven Software Development in Technical Spaces (MOST) © Prof. U. Aßmann

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie

12.A.1 Other Metalanguages

 ©
 P

ro
f.

U
. A

ß
m

an
n

47 Model-Driven Software Development in Technical Spaces (MOST)

Metamodel of EntityRelationship Diagrams (ERD-ML) in
MOF

ER-Model

Generate-SQL-DDL-Code()

er-modell 1..1

Element

elements 0..*

Relationship

Cardinality1 : Cardinality
Cardinality2 : Cardinality

Entity

Attribute

isKey : BOOL
Type

Role1

Role1

1..1

0..*

Role2 Role2

entität

1..1 1..1
0..*

attribute typ

0..* 1..1

Attribute 0..*

► ERD is like MOF without inheritance

 ©
 P

ro
f.

U
. A

ß
m

an
n

48 Model-Driven Software Development in Technical Spaces (MOST)

Software Objects Car1: car1.colorcarPlatoon1

Software Classes
(meta-objects)
(Models) Car

CarPlatoon Color

Entity Relationship Attribute

Metalanguage
Modelling concepts
(Metametaclasses in the
metametamodel)

 The Language

A metamodel is a
language description

The conceptual level
Metalanguage
A metametamodel is a
metalanguage description

Metalevels in ERD

Real World car Real car platoon car color

Modelling
Concept

Language concepts
(Metaclasses in the
metamodel)

Application
concepts

World
conceptsM0

M1

M2

M3

M-1

► Classes are called Entities

 ©
 P

ro
f.

U
. A

ß
m

an
n

49 Model-Driven Software Development in Technical Spaces (MOST)

Uncontrolled

Dictionary
Definition
Schema
Layer

Dictionary
Definition
Layer

Dictionary
Layer

Application-
Layer

(Program objects,
Data of the "real world")

ERD

Ex.: IRDS/MOF Metahierarchy for Data Dictionaries in the
Structured Analyse (SA)

M
0

► IRDS was defned in the 70s to model (persistent) data structures of applications

 ©
 P

ro
f.

U
. A

ß
m

an
n

50 Model-Driven Software Development in Technical Spaces (MOST)

Software Objects shipment: JohnyTechnical
Manager:

Software Classes
(meta-objects)
(Models)

Shipping
Manager Person

Task Role Responsible

 The Language

A metamodel is a
language description

The conceptual level
Metalanguage
A metametamodel is a
metalanguage description

Ex.: Metahierarchy in Workfow Systems
and Web Services (e.g., BPEL, BPMN, ARIS-EPK)

Modelling
Concept

M0

M1

M2

M3

► It is possible to specify workfow languages with the metamodelling hierarchy

► BPEL and other workfow languages can be metamodeled

► BPEL is metamodeled with the metalanguage XSD

 ©
 P

ro
f.

U
. A

ß
m

an
n

51 Model-Driven Software Development in Technical Spaces (MOST)

Role-Based Graph Types in MetaEdit+

► [www.metacase.com]

► The tool MetaEdit+ uses the graph schema (metalanguage) GOPRR:
 Objects and their Roles; Relationships
 Allowed Bindings between all entities:

 a binding consists of a relationship with roles and playing objects

Graph

Object

Binding

Role
Relationship

*

*

1

*

2..*

2..*
1

Port 10..1

11

0..*

http://www.metacase.com/

 ©
 P

ro
f.

U
. A

ß
m

an
n

52 Model-Driven Software Development in Technical Spaces (MOST)

Concept

typeName
typeDescription

NonProperty

decompGraph
(properties added by
types i.e.subclasses)

propertyTypeColl
propertyNameColl
propertyUniquenessColl
defaultProperty

Property
value

dataType
legalValueTest

*

Graph
relationshipSet
roleSet
objectSet
bindingSet
ExplodeSet

relationshipSet
roleSet
objectSet
bindingSet
explodeDict
decompDict
constraintSet
reportSet

Relationship ObjectRole
*

*
*

Binding Connection

relationship
connectionColl

role
objectSet
cardinality

*

*
*

Project

name
graphSet *

Metalanguage of
MetaEdit+ in EMOF

The GOPRR Metalanguage:
- Graph Objects
- Object Objects
- Property Objects
- Relationship Objects
- Role Objects

Port

 ©
 P

ro
f.

U
. A

ß
m

an
n

53 Model-Driven Software Development in Technical Spaces (MOST)

GXL Graph eXchange Language – a Technical
Metametamodel

► GXL is a modern graph-language (graph-exchange format)

► Contains abstractions for elements of graphs usable for generic algorithms (e.g.,
fexible navigation)

Graph

GraphElement

Edge

AttributedElement

LocalConnection Relation

to

from

contains

contains

Attribute

*

*

*

1

1

Node

RelEnd

relates-to

Richard C. Holt, Andy Schürr,Susan Elliott Sim, Andreas Winter. GXL: A graph-based standard exchange
format for reengineering. Science of Computer ProgrammingVolume 60, Issue 2, April 2006, Pages 149-170

TypedElement

 ©
 P

ro
f.

U
. A

ß
m

an
n

54 Model-Driven Software Development in Technical Spaces (MOST)

GXL-based Metamodel of Typed Attributed Graph

► GXL can be used as
metalanguage
(Metametamodel) on
M3, to type
metamodels and DSL
on M2

► For example, state
machines

► Alternatively, GXL can
also be used as DDL on
M2 (it is a lifted
metamodel)

 ©
 P

ro
f.

U
. A

ß
m

an
n

55 Model-Driven Software Development in Technical Spaces (MOST)

 Schema (Metaebene)

Typed Graphs (Models and Metamodels)

► Graphs can be typed, but the schemata may look differently

► Here: object-role model

 Graph-/Base Level

Graph

Object

Role
Relationship

* *
2..*

2..*
1

1

tuple1

tuple2
role3

role4

O1

O4

O3

O2

role2

M
i+1

M
i

<<instance_of>> <<schema_of>>

role1

 ©
 P

ro
f.

U
. A

ß
m

an
n

56 Model-Driven Software Development in Technical Spaces (MOST)

Different Types of Semantics and their Metalanguages
(Description Languages)

► Structure
■ Described by a context-free grammar or a metamodel
■ Does not regard context

► Static Semantics (context conditions on structure),
Wellformedness

■ Described by context-sensitive grammar (attribute grammar, denotational
semantics, logic constraints), or a metamodel with context constraints

■ Describes context constraints, context conditions, meaning of names
■ Can describe consistency conditions on the specifcations

. “If I use a variable here, it must be defned elsewhere”

. “If I use a component here, it must be alive”

► Dynamic Semantics (Behavior)
■ Interpreter in an interpreter language (e.g., lambda calculus), or a metaobject

protocol
■ A dynamic semantics consists of sets of run-time states or run-time terms
■ In an object-oriented language, the dynamic semantics can be specifed in the

language itself. Then it is called a meta-object protocol (MOP).

 ©
 P

ro
f.

U
. A

ß
m

an
n

57 Model-Driven Software Development in Technical Spaces (MOST)

Metamodelle für CASE

Fromn: http://www.uni-koblenz.de/FB4/Institutes/IST/AGEbert/MainResearch/MetaTechnology/Kogge
 http://www.cs.usask.ca/grads/vsk719/academic/856/project/node8.html

 http://www.cs.ualberta.ca/~softeng/Theses/zhu.shtml
 http://www.metacase.com/de/index.html

► Die auf Metamodellen beruhenden SEU werden oftmals auch als Meta-CASE
bezeichnet.

 Die Sprache, in der die Metamodelle erstellt werden, wird Metasprache
genannt (Auf Ebene M3)

 Sie beinhalten im Allgemeinen eine Technologie zum Entwickeln und zum
Erzeugen von CASE.

 unterstützen eine oder mehrere Entwicklungsmethoden
 unterstützen automatisch (Generierung,funktionaler Aspekt) oder

halbautomatisch (Modellierung, statischer Aspekt) die Entwicklung von
CASE-Tools

Metamodelle für CASE basieren auf textuellen oder graphischen Beschreibungen
einer Methode oder einer Notation, aus deren Interpretation, Compilier und CASE-
Werkzeuge generiert, konf iguriert oder parametrisiert werden können.

Metamodelle für CASE basieren auf textuellen oder graphischen Beschreibungen
einer Methode oder einer Notation, aus deren Interpretation, Compilier und CASE-
Werkzeuge generiert, konf iguriert oder parametrisiert werden können.

 ©
 P

ro
f.

U
. A

ß
m

an
n

58 Model-Driven Software Development in Technical Spaces (MOST)

Benefts of the Metahierarchy

► With Metametamodels (Metasprachen) arbitrary metamodels of languages can
be defned for their context-free and context-sensitive structure

► Auf Basis von Metaebenen können verschiedene Beschreibungssprachen
ineinander überführt werden (Model-driven Architecture; MDA)

 Hierarchische Anordnung der einzelnen Modellebenen ermöglicht
schrittweise Verfeinerung der semantischen Konzepte

 Transformationsbrücken (z.B. Transformation eines ER-Diagrams in ein
UML-Diagram, wenn beide Diagram-Sprachen als Instanz von Ecore
erstellt wurden)

► Metamodelle bieten:
 prägnante, präzise Defnition von Softwareobjekten und -dokumenten
 Vertiefung semantischer Beziehungen und Regeln (Konsistenzprüfung)
 automatisierte Implementation von Werkzeugen für zu unterstützende

Methoden
 Fähigkeit der Selbstbeschreibung und Überprüfbarkeit mit eigenen

Mitteln

 ©
 P

ro
f.

U
. A

ß
m

an
n

59 Model-Driven Software Development in Technical Spaces (MOST)

Metamodeling - Summary

► Discussed metametamodels are
■ Complete MOF and Essential MOF (EMOF/CMOF)

. Ecore as Eclipse's implementation of EMOF

. UML core – a subset of CMOF
■ GXL – Graph eXchange Language
■ GOPRR – Graph, Object, Property, Role, Relation

► Meta-Hierarchy
■ M3 to M0

► Example metamodels (Statecharts, ER, Class Diagrams)

