TECHNISCHE
@ UNIVERSITAT
DRESDEN

Fakultat Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie

12. An Overview of Technical Spaces

Prof. Dr. rer. nat. Uwe ABmann 1) Technical spaces

Institut fur Software- und 2) Model Management

Multimediatechnik 3) Model Analysis

Lehrstuhl Softwaretechnologie 4) Mega- and Macromodels

Fakultat fur Informatik 5) Pattern Languages

Technische Universitat Dresden 6) Bridging Technical Spaces ‘(A‘
http://st.inf.tu-dresden.de/teaching/most \v)}

Version 17-0.5,23.10.17 cestons oo

uuuuuuuuu

Model-Driven Software Development in Technical Spaces (MOST) © Prof. U. ABmann

http://st.inf.tu-dresden.de/teaching/most

TECHNISCHE
@ UNIVERSITAT
DRESDEN

Fakultat Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie

12.1 Technological & Technical Spaces

zzzzzzzzzzzz
Wissenschaft
uuuuuuuuu

Model-Driven Software Development in Technical Spaces (MOST) © Prof. U. ABmann

Technological Spaces

3

Model-Driven Software Development in Technical Spaces (MOST)

@ © Prof. U. ABmann

>

A technological space is a working context with a set of associated
concepts, body of knowledge, tools, required skills, and possibilities.

It is often associated to a given user community with shared know-how, educational
support, common literature and even workshop and conference regular meetings.
= Ex.compiler community, database community, semantic web community,
automotive community
= [Technological Spaces: an Initial Appraisal. lvan Kurtev, Jean Bézivin,
Mehmet Aksit. CooplS, DOA’2002 Federated Conferences, Industrial Track.
(2002) http://citeseerx.ist.psu.edu/viewdoc/download?
doi=10.1.1.109.332&rep=rep1&type=pdf]

Technical Spaces

Model-Driven Software Development in Technical Spaces (MOST)

@ © Prof. U. ABmann

A technical space is a metamodeling framework (in a technological space)

with a metapyramid (metahierarchy), accompanied by a set of tools that

operate on the models definable within the framework.

» [Model-based Technology Integration with the Technical Space Concept. Jean Bezivin
and Ivan Kurtev. Metainformatics Symposium, 2005.]

= http://citeseerx.ist.psu.edu/viewdoc/download?
doi=10.1.1.106.1366 &rep=repl&type=pdf

> |Ingredients of a Technical Space (Technikraum):

= A metapyramid (or metahierarchy) with data (tools, workflows, and
materials on MO0), Code and models (M1), languages (M2), and
metalanguages (M3)

= A model management unit (model algebra or model composition system)
= A macromodel
» Be aware: A technological space may contain several technical spaces:
= Compiler community: Grammarware, Tree-Ware, Graph-Ware
= Database community: Relational database model, csv-tables, XML
= Business software: Reports in TextWare. TableWare

The Trick of the Metapyramid

5

Model-Driven Software Development in Technical Spaces (MOST)

@ © Prof. U. ABmann

Observation:
In the metapyramid of a technical space, tools can be applied on every level.

» Level-independence: Tools on level M[n-1] can work on M[n]
» Tools can be lifted from the object to the class to the metaclass level to the
metametaclass level:
> Object-manipulating tools on MO work for clabjects in models on M1
= Graph-manipulating tools on MO for models on M1
» Class-manipulating tools on M1 work for clabjects in metamodels on M2
= Model-manipulating tools on M1 work for metamodels on M2

» Metaclass-manipulating tools on M2 work for clabjects in metamodels on M3
= Metamodel-manipulating tools on M2 work for metametamodels on M3

Q10: The House of a Technical Space

6

Model-Driven Software Development in Technical Spaces (MOST)

@ © Prof. U. ABmann

Technical Space

Method Engineering

Technical Mega- and Macromodels

Space
Bridges

Pattern
Languages

Model Management
Mapping, Transformation, Slicing, Composition

Model Analysis
Recognition, Querying, Metrics, Analysis

Metapyramid (Metahierarchy) for Token Modeling

Packeting on all Layers

7 Model-Driven Software Development in Technical Spaces (MOST)

» All layers can be structed into packages

MOF Model
!_t 1 !
UML 1L
Metampodel Metamodel metamodels
| M1 layer
|
1 mixdiels
LML Modals 1L Interfaces
I N

______________________ MO Layer

© Prof. U. ABmann

@ [MOF] Figure -2 MOF Metadata Architecture

Q10: Overview of Technical Spaces in the Classical
Metahierarchy

8 Model-Driven Software Development in Technical Spaces (MOST)

CWM NF2- ERD
(common language

warehous

e model)

String, Textin csv Relations NF2-tree XML- Link- Classes, Classes, CDIF Classes,
Program lines Table relation Docume Syntax- Program Programs - Programs
nts Trees S Mode
Is

N—

TECHNISCHE
@ UNIVERSITAT
DRESDEN

Fakultat Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie

12.2. Model Analysis in a Technical Space with
Model Querying, Model Metrics, and Model
Analysis

Discussing the internals of models and their model
elements o

zzzzzzzzzzzz
Wissenschaft
uuuuuuuuu

Model-Driven Software Development in Technical Spaces (MOST) © Prof. U. ABmann

The Internals of a Model

10

Model-Driven Software Development in Technical Spaces (MOST)

@ © Prof. U. ABmann

Model analysis techniques reveal the inner details of models.

» Model querying searches patterns in models, described by a query or pattern
match expression.
= Searching for a method with a specific set of parameters

» Model metrics counts patterns in models
= Counting the depth of the inheritance hierarchy

» Model analysis analyzes hidden knowledge from the models, making implicit
knowledge explicit
= Value flow analysis between variables in programs

TECHNISCHE
@ UNIVERSITAT
DRESDEN

Fakultat Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie

12.3. Model Management in a Technical Space
with Model Mapping, Transformation and
Composition

Discussing the relationships of models and their model
elements

zzzzzzzzzzzz
Wissenschaft
uuuuuuuuu

Model-Driven Software Development in Technical Spaces (MOST) © Prof. U. ABmann

Model Management in a Technical Space

12 Model-Driven Software Development in Technical Spaces (MOST)
> A model management system manages the relationships of models, metamodels,
metametamodels of a technical space as well as the relationships of their elements
= Model mapping subsystem
= Model transformation subsystem
= Model composition subsystem
M2 4 N\ M1
Mapping Tools Mapped
Models
Model mappingsl
Metamodel S =
Model 4)
Model Operator management
Generator Transformation
Additional system Tools Tral\zl‘i‘;oer{:ed
info [Model l
\| transformations

@ © Prof. U. ABmann

N -

odel compositio
operators

12.3.1. Model Mapping

13 Model-Driven Software Development in Technical Spaces (MOST)

Chair of Software Technology - Prof. U. ABmann

Model Mappings

14 Model-Driven Software Development in Technical Spaces (MOST)

A model mapping is a mapping between the model elements of several
models.

» A trace mapping records during a model elaboration, model restructuring or model
transformation, which model elements are copied from model A to model B, or created in B.

» A synchronization mapping records hot-links model elements from model A to model B.

A B
<- ------------------------------ J-; ------------------ >
RiskFactor | [t---+-------- _
Propability 7 Riskltem

String NAMe <@ -f---- === mmmmmm oo cbe el b dentif br risk

Propability p[J<g}----}- Realp _..___[...l. A e eal o

Damage d[] ‘-- ---------------------------- :;: -------------------------- Real dama[] Identlf er
S g i R R run() Char id[]
= | [compute() -) I R N corUn0
E Damage
©
@ Euro e

12.3.2. Model Transformation

15 Model-Driven Software Development in Technical Spaces (MOST)

Chair of Software Technology - Prof. U. ABmann

Model Transformations

16 Model-Driven Software Development in Technical Spaces (MOST)

A model transformation is a program (or a specification how) to derive a
model A from a model B.

» From a model mapping, two (partial) model transformations (forward and
backward) may be derived.

» Deleted model elements are framed red, added elements are framed green,

modified blue

A B
RlskFactor "--.-----.--------.---.::::::::::::: ------------------------ ’
Propability 7 Riskitem
O B =TI - - e S Identif er risk
Propablllty p[]’"' """" R _egl_p_ """""""" :,"': ----------------------------- pReal prop[] —
Damage d[] -----j===-=" e e ‘ CARREELRELEEOLEEITLERIEEL CRPRERPS Real damal] Identif er
run() : --------------------------------- run Char id
compute() -----}eeemeeed-o.- Ramage... Ll . Isurr(l)Up() :
Euro e

@ © Prof. U. ABmann

12.3.3. Model Composition with Model
Algebrae and Composition Systems

17 Model-Driven Software Development in Technical Spaces (MOST)

Component-based Model Engineering (CBME)

Chair of Software Technology - Prof. U. ABmann

Model Composition in a Technical Space

18

Model-Driven Software Development in Technical Spaces (MOST)

> A model composition system manages the relationships of models, metamodels,
metametamodels of a technical space with a uniform model algebra

= QOperators on M1 can be generated from M2
= QOperators on M2 can be generated from M3

@ © Prof. U. ABmann

M2 M1
Text A
Grammar Composition Composed
Model Text Editor T?;:E (:)A\r:aerl;a)ct
Mogngrgigitor management Text operators]) S
Additional algebra/syste = =
info
Models
Metamodel N\
Model .
MOéle| Opirator T Composition Composed
enerator : .
Additional algebra/syste Model
info)

Simple Algebra for Models (on M1) and Metamodels (on M2)

19 Model-Driven Software Development in Technical Spaces (MOST)

» Models and metamodels can be grouped in packages (module)
= A simple component model and composition system (see CBSE)

» Algebraic composition technique with operators on packages:
= use (import)
= merge (union)
= Instance-of (element-of-reified-set)

Metamodels are composed by unifying their views in the different packages

Metamodels can be composed from packages

/ Composition System \

Composiﬁon Technique

Componeni' Model

Composition Language

@ © Prof. U. ABmann

Ex.: EMOF Class Composition by EMOF Package Merge

MOF

20 Model-Driven Software Development in Technical Spaces (MOST)

Comman

oasc | 1o Logical Viaw / Composition System \

. & -

Component Model Composition Technique

w17 8 e
T M e = = . . .
<me Packages merge, import, instantiate

Idnu.rrlil‘lur:
ffom Logical View

ACCTT R I B0~ !
EMOF] j
{iem Legical 'I.'iﬂh':ll)
: | Retiecion
~trom Logical View)
ST B B0u e

Exfengon |
flram Logical Viaw] |

@ © Prof. U. ABmann

Ex: CMOF Package Composition from UML Core and EMOF

21 Model-Driven Software Development in Technical Spaces (MOST)

Cane

PrimitreaTypas

<cimpartss ST

Basc Consructs

<<impod=> coimpontss

emang i,
TR R
MOF
FHe CMOF SemanlicDomain
[TR
< Mai == (mmnm
Comman =R E e e
ot a8] AT L e
*ACITIERG (e
c Erviansion | CMOFExEndan EMOFRedlection
= Raflactian
©
S
2
<
> The CMOF package reuses
= .
o the abstract syntax defined in
o siach Mt the krastrecturelibrary for
© UBIL, MOF.

) [MOF]

12.3.4. Composing UML Metamodels in the
MOF Technical Space

22 Model-Driven Software Development in Technical Spaces (MOST)

Chair of Software Technology - Prof. U. ABmann

Benefit of UML-Metamodeling for MDSD Tools and Model-
Driven Applications

23

Model-Driven Software Development in Technical Spaces (MOST)

@ © Prof. U. ABmann

The language report of UML uses a simple metamodel algebra for the bottom-up
composition of UML language.

The UML-metamodel is a “logic” metamodel, because it is composed:
» Definition of merge operator composing metaclasses and metaclass-packages
» Defined in composable packages

= With aclear CMOF-package architecture

= uniform package structure and context-sensitive semantics for all
diagrams such as Statecharts (UML-SC), Sequence Diagrams (UML-SD), etc.

» Schemata for repositories for uniform description of tools, materials, code, models
(metamodel-driven repositories)

» Exchange format (XMl)

» The UML infrastructure can be used by MDSD applications

Coarse-Grain Structure of UML on M2

24

Model-Driven Software Development in Technical Spaces (MOST)

UML

Infrastructure

<<import>>

<<merge>>

UML

Superstructure

@ © Prof. U. ABmann

UML Infrastructure

UML ‘

MOF

Caore

CYM

Profiles

Core Package of the UML-Infrastructure Metamodel (M2)

25 Model-Driven Software Development in Technical Spaces (MOST)

Core
] 1]

PrimitiveTypes m=s————— Abstractions

o

N
i A

Basic o — ———— Constructs
Basic: basic constructs for XMI Abstractions: abstract metaclasses
Constructs: Metaclasses for modeling Primitive Types: basic types

From: UML 2.0 Infrastructure Specification; OMG Adopted Specification ptc/03-09-15

@ © Prof. U. ABmann

Package Basic: Uses Types from CMOF

26 Model-Driven Software Development in Technical Spaces (MOST)

Element
froim Elemants)

A\

MNamedE lement
name : 5tring [0..1]

£\ I\

TypedElement ype Type

0..1

From: UML 2.0 Infrastructure Specification; OMG Adopted Specification ptc/03-09-15

@ © Prof. U. ABmann

Package Basic: Classes

27

Model-Driven Software Development in Technical Spaces (MOST)

@ © Prof. U. ABmann

Type

Clasas

mAbstract | Boolean = lalas

TipedE lerment

I 1

Mulliplicit yElement
o m T o

Propeity

swredAfn bute [sRead0nly - Boolean = talse

T

class
il default | Stnng[0..1] DppE e
01 * {oderedh s camposite | Boolean = false
sCerned | Boalean = false 0.1
TypedEiament | | MullipheityEismen TypedEiement | MultplicilyElement
i o ML i s fm Mulliplicitas
. - Operation | OPeration ownedPammeter Pararater
awnedOperation
> 04 « fordered)
o {ordared] « -
ralsedE veeption
el . Type
-
L]
SuperClass

From: UML 2.0 Infrastructure Specification; OMG Adopted Specification ptc/03-09-15

Package Composition Architecture UML 2.0 (M2)

28 Model-Driven Software Development in Technical Spaces (MOST)

From: UML 2.0 Infrastructure Specification; OMG Adopted Specification ptc/03-09-15

| L [L
CommorBefavors <<merge>> Clasaes Profles
- — — — — — — T = —
AT 00
<<merge>>ﬁ; Illlll-'"rll. S s .. <<merges> fl hr
-~ ‘x o i
PO T T~ oo
== /o Statelichires ~ L \
JI o " ‘,r' l"I.I
-
f:’r |I P -~ o~ . - : f i
P e B ' —Y
/ Actnilies CorpoateSc e ALharConsiiels
————————— =
i
¥ - d L
L~ |
Ackre 1
Corparerts
= %
(=
: |
= [—
S Deployrmeris
°

Metamodel Composition - the Composition System of the
UML Language Report

29 Model-Driven Software Development in Technical Spaces (MOST)

/Composition System \

Composition Technique

merge, import, instantiate

c
c
©
S
2
<
-
N
(]
P .
[a
©
101
010,

TECHNISCHE
@ UNIVERSITAT
DRESDEN

Fakultat Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie

12.4 Mega- and Macromodels

In a technical space, a megamodel is an infrastructure for models and
metamodels, systematically linking a set of models

(A
\
‘\v)

DRESDEN
concept

Model-Driven Software Development in Technical Spaces (MOST) © Prof. U. ABmann

Megamodels

31 Model-Driven Software Development in Technical Spaces (MOST)

» A megamodel is a model for a set or graph of models.
= The graph of models is an instance of the megamodel (element of the of the
language)
» Usually, a technical space has one or several megamodels on M1, linking many models

on M1
= Clearifying the relationships of the M1 models by model transformations,
model mappings, and model compositions

= A megamodel uses the model management system of the technical space

The idea behind a mega—model is to define the set of entities and relations
that are necessary to model some aspect about
model—driven engineering (MDE).

(Favre)

@ © Prof. U. ABmann

Macromodels - Megamodels with Consistency Rules

32

Model-Driven Software Development in Technical Spaces (MOST)

@ © Prof. U. ABmann

» A macromodel is a model for a set or graph of models fulfilling some consistency
constraints over the models and their elements

= The graph of models is an instance of the megamodel (element of the of the
language)
= The graph of models obeys wellformedness constraints

= There are fine-grained relations between model elements of the models,
which also follow consistency constraints

Trace mappings between tools, materials, automata
Synchronization relations for updating

Model Synchronization in Macromodels

33 Model-Driven Software Development in Technical Spaces (MOST)

» Model synchronization keeps a set of connected models (the crowd) in syngc, i.e.,

consistent

Requirements
Model

Design
Model

mplementatio
Model

Code

@ © Prof. U. ABmann

Documentation

Model Synchronization in Macromodels

34 Model-Driven Software Development in Technical Spaces (MOST)

> In model synchronizsation, if an edit has occurred in a origin model, all other connected
models of a crowd (dependent models) are updated instantaneously, when one focus

model changes

Requirements
Model

1 |

Design
Model

Documentation

Model

:

Code

Enplementatio

@ © Prof. U. ABmann

Round-Trip Engineering Changes the Model-in-Focus of the

Crowd

35 Model-Driven Software Development in Technical Spaces (MOST)

» But always performs model synchronization as a basic step

Requirements
Model

. 5

Em plementatio

Model

:

Code

@ © Prof. U. ABmann

Docu
mentation

Requirements
Model

Docu
mentation

Implementatio
Model

:

Code

Q12: The ReDeCT Problem and its Macromodel

36 Model-Driven Software Development in Technical Spaces (MOST)

» The ReDeCT problem is the problem how requirements, design, code and tests are
related(V model)

> Mappings between the Requirements model, Design model, Code, Test cases

> A ReDeCT macromodel has maintained mappings between all 4 models

Requirements Design Code Test
Package Bill { <G >ckage TestBill {
Uses Order; Uses TestOrder;
Class Counting { Proc testCounting
Procedure count IS IS

End;

;]{):‘c% TestOrder {

ses Bill;

j?TestOrdering {
rocedure testCount

IS

W\

Procedure count IS

proc)
< = " }

y N }
Node } }

@ © Prof. U. ABmann

Advantages of Model Mappings in Macromodels

37 Model-Driven Software Development in Technical Spaces (MOST)

> Error tracing
= When an error occurs during testing or runtime, we want to trace back the
error to a design element or requirements element

> Traceability
= We want to know which requirement (feature) influences which design,
code, and test elements, so that we can demarcate modules in the solution

space (product line development)

> Synchronization in Development:
= Two models are called synchronized, if the change of one of them leads
automatically to a hot-update of the other

@ © Prof. U. ABmann

Q9: Model Mappings and Model Weavings in the MDA

Macromodel

38 Model-Driven Software Development in Technical Spaces (MOST)

Domain model for application domain

V

Platform-Independent Model (CIM)
Design specification

\

Model mappings connect models horizontally (on the same level)
or vertically (crossing levels).

Model transformations transform models horizontally or
vertically.

= From a model mapping, a simple transformation
can be infered
Model extensions (model merges, aadditions) extend an input
model by an extension (often done by hand)
= Usually, some parts are still hand-written code

Platform-Specific Extension (PSE)

V
Platform Specific Model (PSM)

\

Platform Description Model (PDM)

» Model weavings weave two input models to an output
model, based on a crosscut specification

» Model2Text expansion (code generation by template
expansion)

Handwritten code

\
=
>]
“ |
& V
©

Platform-Specific Implementation
(PSI, Code)

=

TECHNISCHE
@ UNIVERSITAT
DRESDEN

Fakultat Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie

12.5. Pattern Languages in a Technical Space

> InaTs,several pattern languages may be used to structure
the relationship of models and metamodels

» TAM can be used as Pattern Language on all levels in the
metahierarchy

» However, there may be more pattern languages associated
to a technical space -
'@

» Pattern languages can be expressed as stereotypes \V)'

DRESDEN

zzzzzzzzzzzz

uuuuuuuuu

Model-Driven Software Development in Technical Spaces (MOST) © Prof. U. ABmann

A Pattern Language Useful for all Technical Spaces
TAM Structures on M1

40

Model-Driven Software Development in Technical Spaces (MOST)

@ © Prof. U. ABmann

>

On M1, application class models need to define (stereotype) tools, automata, and
materials.

Type Level

Applications Automata

Tools

Materials

TAM Structures on M1 Provide Types for Objects in
Repositories on MO

41 Model-Driven Software Development in Technical Spaces (MOST)

» On M1, application class models need to define (stereotype) tools, automata, and
materials.

Schema-/Meta-/Type Level

Applications —= Automata

M1

L

Tools

Materials

Graph-/Base Level

Automaton Repository Tool Repository Material Repository

<
O

@ © Prof. U. /

TAM Structures on M2 Provide Language Concepts for
Stereotypes for Classes in M1

42 Model-Driven Software Development in Technical Spaces (MOST)

» On M2, TAM forms a DSL for stereotypes on M1
» Other pattern languages can use the same principle

Metamodel Level |
|

Automata]
M2 Languages é Metaclasses | Tool L—I

1 Metaclasses Material
Metaclasses

Type Level |
]
Automata
Ml Languages < Classes | Tool]
T Classes .
Material
Classes

Graph-/Base Level

ARBmann

MO Ematon Repositj Eol Repositoi Eerial Reposi@

TECHNISCHE
@ UNIVERSITAT
DRESDEN

Fakultat Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie

12.6. Briding Technical Spaces

» While one tool/application may live in one TS, for the

communication with other tools/applications, technical
space bridges have to be built.

» Usually, a technical spaces has a subsystem for technical
space bridging.

zzzzzzzzzzzz

uuuuuuuuu

Model-Driven Software Development in Technical Spaces (MOST) © Prof. U. ABmann

An Application May Need Several Technical Spaces

44 Model-Driven Software Development in Technical Spaces (MOST)

C!)
EBNF
Domain] EMOF
Expert _
Domain World Structural (Syntactio)
Ontologies Modeling World
i Grammar
Domain Models etructure
Q Y Hierarchies
i Layout
oWt Dynamic
o Semantics

Expert

Petri Nets
SOS
Natural Semantics

Static

Semantics EMOF
Expert UML-CD
MOF

@ © Prof. U. ABmann

The End

45

Model-Driven Software Development in Technical Spaces (MOST)

@ © Prof. U. ABmann

TECHNISCHE
UNIVERSITAT

DRESDEN

Fakultat Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie

12.A.1 Other Metalanguages

Model-Driven Software Development in Technical Spaces (MOST) © Prof. U. ABmann

')
|

DRESDEN
concept
Exzellenz aus
Wissenschaft
und Kultur

4

Metamodel of EntityRelationship Diagrams (ERD-ML) in
MOF

47 Model-Driven Software Development in Technical Spaces (MOST)

» ERD is like MOF without inheritance

ER-Model

Generate-SQL-DDL-Code()

er-modell 1..1

elements |0..*

Element
Rolel
O“*
4@1\ Relationship
entitat : 1.1 T T
| Entity Cardinalityl : Cardinality
Role2 Role?2 Cardinality2 : Cardinality

1.1 1“1\/
Attribute | 0..* 0.*

Attribute
isKey : BOOL

attribute typ| Type
0.* 1.1

@ © Prof. U. ABmann

Metalevelsin ERD

48 Model-Driven Software Development in Technical Spaces (MOST)

» Classes are called Entities

Modelling |
The conceptual level | Concept Metalanguage
"""""" Modelling concepts
M 3 A metametamodel is a 4 (Metametaclasses in the
metalanguage description metametamodel)
(Metaclasses in the
‘aa el Dalaticneh L LLCTEERE .metamodel
M2 Ameamodelisa g Refationship! iiiripiite)
language description /‘ T --------- B
Soft Cl / | Applicati
oftware .1asses CarPlatoon Color pprication
M 1 (meta-objects) concepts
(Models) Car ? A

M O Software Objects Carl:

carPlatoonl
A

carl.color | World

fﬂl, © Prof. U. ABmann

M - 1 Real World car

Real car platoon

+ concepts

car color

Ex.: IRDS/MOF Metahierarchy for Data Dictionaries in the
Structured Analyse (SA)

49

Model-Driven Software Development in Technical Spaces (MOST)

@ ©§.A8mann

>

Dictionary
Definition
Schema
Layer

Dictionary
Definition
Layer

Dictionary
Layer

Application-
Layer

IRDS was defined in the 70s to model (persistent) data structures of applications

ERD

OOO

Ioool

(Program objects,
Data of the "real world")

va

Ex.: Metahierarchy in Workflow Systems
and Web Services (e.g., BPEL, BPMN, ARIS-EPK)

50 Model-Driven Software Development in Technical Spaces (MOST)

> |tis possible to specify workflow languages with the metamodelling hierarchy
» BPEL and other workflow languages can be metamodeled
» BPEL is metamodeled with the metalanguage XSD

fm i
The conceptual level :Modellmg |
| Concept

M 3 A metametamodel is a t
metalanguage description

The Language
N\

M2 Ameemodelisa | g Role % Rasponsibie

language description 7‘ A L — Procecenene :

Software Classes / ||\/|anager Person
M 1 (meta-objects) Shipping

(Models) f A
M O Software Objects ghipment: Technical Johny

Manager:

(-ﬂl, © Prof. . ABmann

Role-Based Graph Types in MetaEdit+

51

Model-Driven Software Development in Technical Spaces (MOST)

@ © Prof. U. ABmann

» [www.metacase.com]
> The tool MetaEdit+ uses the graph schema (metalanguage) GOPRR:
= QObjects and their Roles; Relationships

= Allowed Bindings between all entities:
= abinding consists of a relationship with roles and playing objects

http://www.metacase.com/

Metalanguage of
MetaEdit+in EMOF

Concept

52

Model-Driven Software Development in Technical Spaces (MOST)

typeName

The GOPRR Metalanguage:

- Graph Objects

- Object Objects

- Property Objects

- Relationship Objects
- Role Objects

typeDescription

I

NonProperty

decompGraph
(properties added by
types i.e.subclasses)

Property

N

~

value

propertyTypeColl
propertyNamecColl

propertyUniguenessColl

defaultProperty

dataType
legalValueTest

Project Graph

7

N

relationshipSet
roleSet
objectSet
bindingSet
ExplodeSet

name *
graphSet

Relationship

Role

Object

4

Port

relationshipSet
roleSet
objectSet
bindingSet
explodeDict
decompDict
constraintSet
reportSet

./

Binding

relationship

connectionColl

~ 7

Connection

@ © Prof. U. ABmann

N\

role
objectSet
cardinality

GXL Graph eXchange Language - a Technical
Metametamodel

53 Model-Driven Software Development in Technical Spaces (MOST)

(-ﬂ! © Prof. U. ABmann

» GXLis amodern graph-language (graph-exchange format)

» Contains abstractions for elements of graphs usable for generic algorithms (e.g.,
flexible navigation)

Richard C. Holt, Andy Schiirr,Susan Elliott Sim, Andreas Winter. GXL: A graph-based standard exchange
format for reengineering. Science of Computer ProgrammingVolume 60, Issue 2, April 2006, Pages 149-170

GXL-based Metamodel of Typed Attributed Graph

54 Model-Driven Software Development in Technical Spaces (MOST)

» GXL can be used as
metalanguage
(Metametamodel) on

Graph Metaschema (M3)
contains™ [¥ 54

M3, to type GraphQass [* | GaphElementClass |¢—
type 1 i
metamodels and DSL A “‘“T"“m
M?2 i attributes|™
on i ‘ertexClass EdgeQass AttrifuteClass
> For example, state i X X
machines
» Alternatively, GXL can Type Graph (M2) Graph Model (M2)

ol oraph model

also be used as DDL on

confaing ™

M2 (It is a lifted | 513&5 « Shke : Gaph [* GraphElement e—
Mo e——— — !
metamodel) Statchart name:sting 4--- typelt ok fom
§ vansitons " 1Mo 1Afrom -, e 1< attitutes|"
Transition : \ertex Ede Attribute

Typed
i s |0
2 Graph
5 yi: State Ve State V3. State (M1)
5 name = "Start" name = "Working" name = "End"
2 name = "Start’ g name = "End" |
©

Typed Graphs (Models and Metamodels)

55 Model-Driven Software Development in Technical Spaces (MOST)

» Graphs can be typed, but the schemata may look differently
» Here: object-role model

Schema (Metaebene)

Graph

,\
Object

Relationship

Graph-/Base Leve}’

@ © Prof. U. AR Z

Different Types of Semantics and their Metalanguages
(Description Languages)

56 Model-Driven Software Development in Technical Spaces (MOST)

Structure
= Described by a context-free grammar or a metamodel

= Does not regard context
Static Semantics (context conditions on structure),

Wellformedness

= Described by context-sensitive grammar (attribute grammar, denotational
semantics, logic constraints), or a metamodel with context constraints

= Describes context constraints, context conditions, meaning of names

= Can describe consistency conditions on the specifications
“If | use a variable here, it must be defined elsewhere”

“If | use a component here, it must be alive”

Dynamic Semantics (Behavior)
= |nterpreter in an interpreter language (e.q., lambda calculus), or a metaobject
protocol
= A dynamic semantics consists of sets of run-time states or run-time terms

= |n an object-oriented language, the dynamic semantics can be specified in the
language itself. Then it is called a meta-object protocol (MOP).

@ © Prof. U. ABmann

Metamodelle fir CASE

57

Model-Driven Software Development in Technical Spaces (MOST)

@ © Prof. U. ABmann

Metamodelle fir CASE basieren auf textuellen oder graphischen Beschreibungen
einer Methode oder einer Notation, aus deren Interpretation, Compilier und CASE-
Werkzeuge generiert, konf guriert oder parametrisiert werden kénnen.

» Die auf Metamodellen beruhenden SEU werden oftmals auch als Meta-CASE

bezeichnet.

= Die Sprache, in der die Metamodelle erstellt werden, wird Metasprache
genannt (Auf Ebene M3)

= Sie beinhalten im Allgemeinen eine Technologie zum Entwickeln und zum
Erzeugen von CASE.

= unterstitzen eine oder mehrere Entwicklungsmethoden

= unterstitzen automatisch (Generierung,funktionaler Aspekt) oder
halbautomatisch (Modellierung, statischer Aspekt) die Entwicklung von
CASE-Tools

Fromn: http://www.uni-koblenz.de/FB4/Institutes/IST/AGEbert/MainResearch/MetaTechnology/Kogge
http://www.cs.usask.ca/grads/vsk719/academic/856/project/node8.html
http://www.cs.ualberta.ca/~softeng/Theses/zhu.shtmi
http://www.metacase.com/de/index.html

Benefits of the Metahierarchy

58 Model-Driven Software Development in Technical Spaces (MOST)

» With Metametamodels (Metasprachen) arbitrary metamodels of languages can
be defined for their context-free and context-sensitive structure

» Auf Basis von Metaebenen konnen verschiedene Beschreibungssprachen
ineinander uberfiihrt werden (Model-driven Architecture; MDA)
= Hierarchische Anordnung der einzelnen Modellebenen ermoglicht
schrittweise Verfeinerung der semantischen Konzepte
= Transformationsbriicken (z.B. Transformation eines ER-Diagrams in ein
UML-Diagram, wenn beide Diagram-Sprachen als Instanz von Ecore
erstellt wurden)

» Metamodelle bieten:
= pragnante, prazise Definition von Softwareobjekten und -dokumenten
= Vertiefung semantischer Beziehungen und Regeln (Konsistenzpriifung)
= automatisierte Implementation von Werkzeugen fur zu unterstutzende
Methoden

= Fahigkeit der Selbstbeschreibung und Uberpriifbarkeit mit eigenen
Mitteln

@ © Prof. U. ABmann

Metamodeling - Summary

59

Model-Driven Software Development in Technical Spaces (MOST)

@ © Prof. U. ABmann

» Discussed metametamodels are
= Complete MOF and Essential MOF (EMOF/CMOF)

Ecore as Eclipse's implementation of EMOF
UML core - a subset of CMOF
= GXL - Graph eXchange Language
= GOPRR - Graph, Object, Property, Role, Relation
» Meta-Hierarchy
= M3 to MO
» Example metamodels (Statecharts, ER, Class Diagrams)

