TECHNISCHE
@ UNIVERSITAT
DRESDEN

Fakultit Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie - Model-Driven Software Development in Technical Spaces (MOST)

31. Deep Graph Model Analysis and Megamodels:
Model and Program Analysis with Graph Reachability

How Context-Sensitive Constraints can be Checked in a Model
1) Graph Reachability as Deep Analysis
1)EARS
2)Regular graph reachability and Slicing
1) Graph slicing
2)Value-flow analysis

Prof. Dr. Uwe ARmann

Softwaretechnologie
Technische Universitat Dresden

Version 17-0.2,24.11.17
3) Context-free graph reachability
3)More on the Graph-Logic Isomorphism g
1) Implementation in Tools ‘\ "
4)Model Mappings in Megamodels D;D{;:

zzzzzzzzzzzz

uuuuuuuuu

Model-Driven Software Development in Technical Spaces (MOST) © Prof. U. ABmann

Other Literature

2 Model-Driven Software Development in Technical Spaces (MOST)

@ © Prof. U. ABmann

» [ARBmMann00] Uwe ARBmann. Graph rewrite systems for program optimization. ACM
Transactions on Programming Languages and Systems (TOPLAS), 22(4):583-637, June

2000.
= http://portal.acm.org/citation.cfm?id=363914

» Tom Mens. On the Use of Graph Transformations for Model Refactorings. GTTSE
2005, Springer, LNCS 4143

- http://www.springerlink.com/content/5742246115107431/

» Thomas Reps. Program analysis via graph reachability. Information and Software
Technology, 40(11-12):701-726, November 1998. Special issue on program slicing.

» Mark Weiser. Program slicing. IEEE Transactions on Software Engineering, SE-
10(4):352-357, July 1984.

» Frank Tip. A survey of program slicing techniques. Journal of Programming Languages,
3:121-189, 1995.

http://portal.acm.org/citation.cfm?id=363914

Literature on the Graph-Logic-Isomorphism

3 Model-Driven Software Development in Technical Spaces (MOST)

@ © Prof. U. ABmann

>

B. Courcelle. Graphs as relational structures: An algebraic and logical approach. In H.
Ehrig, H.-J. Kreowski, and G. Rozenberg, editors, 4™ International Workshop On Graph
Grammars and Their Application to Computer Science, volume 532 of Lecture Notes in
Computer Science, pages 238-252. Springer, March 1990.

B. Courcelle. The logical expression of graph properties (abstract). In H. Ehrig, H.-J.
Kreowski, and G. Rozenberg, editors, 4th International Workshop On Graph
Grammars and Their Application to Computer Science, volume 532 of Lecture Notes in

Computer Science, pages 38-40. Springer, March 1990.

B. Courcelle. Graph rewriting: An algebraic and logic approach. In Jan van Leeuwen,
editor, Handbook of Theoretical Computer Science, pages 193- 242, Amsterdam, 1990.

Elsevier Science Publishers.

Other References

4 Model-Driven Software Development in Technical Spaces (MOST)

> Uwe ABmann. OPTIMIX, A Tool for Rewriting and Optimizing Programs. In Graph
Grammar Handbook, Vol. Il. Chapman-Hall, 1999.

» K. Lano. Catalogue of Model Transformations
- http://www.dcs.kcl.ac.uk/staff/kcl/tcat.pdf

@ © Prof. U. ABmann

TECHNISCHE
@ UNIVERSITAT
DRESDEN

Fakultit Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie - Model-Driven Software Development in Technical Spaces (MOST)

31.1 Using EARS for Deep Analysis of Models and
Mappings of Models and Code

» Graph reachability engines are analysis tools answering questions
about the deeper structure of models and programs

» EARS can be employed for regular graph reachability, context-free
graph reachability, slicing, data-flow analysis

= And traceability for inter-model relationships
/N
O
o/

DRESDEN
concept

Model-Driven Software Development in Technical Spaces (MOST) © Prof. U. ABmann

EARS for Model Mapping

6 Model-Driven Software Development in Technical Spaces (MOST)

» Edge addition rewrite systems (EARS) compute direct relations for remotely reachable
parts of a graph and a model
= They abbreviate long paths in models
» EARS can be used for reachability and model mapping:
= Transitive closure
= Regular path reachability
= Context-free path reachability

@ © Prof. U. ABmann

Model Analysis with Graph Reachability

7 Model-Driven Software Development in Technical Spaces (MOST)

@ © Prof. U. ABmann

> Use the graph-logic-isomorphism: Represent everything in a program or a model as
directed graphs

Program code (control flow, statements, procedures, classes)
Model elements (states, transitions, ...)
Analysis information (abstract domains, flow info ...)

Directed graphs with node and edge types, node attributes, one-edge condition
(no multi-graphs)

» Use edge addition rewrite systems (EARS) and other graph reachability specification
languages to

Query the graphs (on values and patterns)
Analyze the graphs (on reachability of nodes)
Map the graphs to each other (model mapping)

» Later: Use graph rewrite systems (GRS) to construct and augment the graphs,
transform the graphs

» Use the graph-logic isomorphism to encode

Facts in graphs
Logic queries in graph rewrite systems

Specification Process

8 Model-Driven Software Development in Technical Spaces (MOST)

@ © Prof. U. ABmann

1)Specification of the data model (graph schema) with a graph-like DDL (ERD, MOF,
GXL, UML or similar):

* Schema of the program representation: program code as objects and basic
relationships. This data, i.e., the start graph, is provided as result of the parser

* Schema of analysis information (the infered predicates over the program objects)
as objects or relationships

2)Flat model and program analysis (preparing the abstract interpretation)
* Querying graphs, enlarging graphs
* Materializing implicit knowledge to explicit knowledge
3)Deep model and program analysis
Reachability
Inter-model reachability (traceability), materializing model mappings

4) Abstract Interpretation (program analysis as interpretation)

* Specifying the transfer functions of an abstract interpretation of the program with
graph rewrite rules on the analysis information

5)Model and Program transformation (optimization)
- Transforming the program representation

Q14: A Simple Program (Code) Model (Schema) in MOF

%) Model-Driven Software Development in Technical Spaces (MOST)

Analysis information (blue)
Program representation (green)

@ ExprEqClass
bIocksl @ ExorT
@4_ eft
Right
Block [© ¢ Ig
Expr
stmts statements ExprSOfStmt

Stmt

SHCECCessQrs
ControlFlowGraph
SO
Register
AsgdReg

predeces

If Join Plus IntConst ELE

AssReg UseReg Const

TECHNISCHE
@ UNIVERSITAT
DRESDEN

Fakultit Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie - Model-Driven Software Development in Technical Spaces (MOST)

31.2. Reachability of Model Elements and Models for
Model Analysis and Mapping

» With model mapping languages, such as edge addition rewrite
systems or TGreQL

zzzzzzzzzzzz

uuuuuuuuu

Model-Driven Software Development in Technical Spaces (MOST) © Prof. U. ABmann

TECHNISCHE
@ UNIVERSITAT
DRESDEN

Fakultit Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie - Model-Driven Software Development in Technical Spaces (MOST)

31.2.1. Simple Reachability of Model Elements and

Models:
Path Abbreviations in Graph Analysis

» With model mapping languages, such as edge addition rewrite
systems or TGreQL

zzzzzzzzzzzz

uuuuuuuuu

Model-Driven Software Development in Technical Spaces (MOST) © Prof. U. ABmann

Path Abbreviations for Simple Reachability

12 Model-Driven Software Development in Technical Spaces (MOST)

» Path abbreviations shorten paths in the manipulated graph.
» They may collect nodes into the neighborhood of other nodes.

» Ex.: Collection of Expressions for a procedure: edge addition

-- F-Datalog notation:
AL1Exprs(Proc, Expr) :-
Blocks(Proc,Block), Blocks
Stmts(Block,Stmt),
Exprs(Stmt, Expr).
-- if-then rules:
if Blocks(Proc,Block),
Stmts(Block,Stmt),
Exprs(Stmt, Expr)
then

AllExprs(Proc, Expr);
- regular expression notation (TGreQL):
AL1Exprs := Proc Blocks.Stmts.Exprs Expr

EXPrs

Transitive Closure (TC) for Remote Reachability

13 Model-Driven Software Development in Technical Spaces (MOST)

» Reachability most often can be reduced to transitive closure of one or several relations.

» "Does an Stmt S reach a expression Eq

» TC combines path abbreviation with recursion reach
= Left orright recursion in F-Datalog \
= Kleene *in TgreQL Gsmy gen @
. . . o
= Thick arrow in Fujaba not killed
// TGreQL

reach*(S:Stmt, E:Expr)

S:Stmt
reach

// F-Datalog
reach(S:Stmt,E:Expr) :- gen(S:Stmt,E:Expr), not killed(S:Stmt,E:Expr).
reach(S:Stmt,E:Expr) :- pred(S:Stmt,P), reach(P,E:Expr).

ﬂl‘ © Prof. U. ABmann

Ex.: Relating Nodes into Equivalence Classes

14 Model-Driven Software Development in Technical Spaces (MOST)

» Ex.: Computing equivalent nodes

» Context-sensitive problem, because mis not in the context of n

[baserule:

=) 1%

eq(m:Proc,n:Proc) :-

m.name == n.name. @
— m.name == n.name m.name == n.name
If (m:Proc, n:Proc) and m.name == n.name)

eq(m,n)

TgreQL regular expression:
m:Proc eq n.Proc if

=

.nhame == n.name

eq

m.name == n.name

Ex. Relating Nodes into Equivalence Classes (Here: Value
Numbering, Synt. Expression Equivalence)

15 Model-Driven Software Development in Technical Spaces (MOST)

equivalent expressions

. . . €q
> Question: “Which expression trees IntConst

have the same structure?"

> Ex.: Computing structurally @ I @

--- F-Datalog baserule:
eq(IntConstl, IntConst2) :
IntConstl ~ IntConst(Value),
IntConst2 ~ IntConst(Value).
- recursive_rule:
eq(Plusi,Plus2) :
Plusl ~ Plus(Type),
Plus2 ~ Plus(Type),
Left(Plusl, Exprl),
Right (Plusi, Expr2),
Left(Plus2,Expr3),
Right (Plus2,Expr4).
eq(Exprl, Expr3),

eq(Expr2, Expr4).

TECHNISCHE
@ UNIVERSITAT
DRESDEN

Fakultit Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie - Model-Driven Software Development in Technical Spaces (MOST)

31.3. Deep Model Analysis (Value-Flow Analysis, Data-
Flow Analysis) as General Graph Reachability

» with edge addition rewrite systems and F-Datalog

zzzzzzzzzzzz

uuuuuuuuu

Model-Driven Software Development in Technical Spaces (MOST) © Prof. U. ABmann

Data-flow Analysis for Reachability and Traceability

17 Model-Driven Software Development in Technical Spaces (MOST)

@ © Prof. U. ABmann

Value-flow analysis (data-flow analysis) is a specific form of deep model analysis
asking reachability questions, i.e., computing the flow of data (value flow) through the
model or program, from variable assignments to variable uses

= Result: the value-flow graph (data-flow graph)

= |f the value flow analysis is done along the control-flow graph, it is called an
abstract interpretation of a program

EARS can do an abstract interpretation of a program, if they are rewriting
on the control-flow graph. Then, their rules implement transfer functions of
an abstract interpreter

Examples of reachability problems:
= AllSuperClasses: find out for a class transitively all superclasses
= AllEnclosingScopes: find out for a scope all enclosing scopes

= Reaching Definitions Analysis: Which Assignments (Definitions) of a variable can
reach which statement?

= Live Variable Analysis: At which statement is a variable live, i.e., will further be
used?

= Busy Expression Analysis: Which expression will be used on all outgoing paths?
- Central part: 1 recursive system

Reaching Definition Analysis By Abstract Interpretation with

EARS

18 Model-Driven Software Development in Technical Spaces (MOST)

» Problem: “wWhich definitions of expressions
reach which statement?"

= Assignments of a variable,
temporary, or register

= Usually computed for all positions
before and after a statement

» Graph rewrite rules implement an abstract
interpreter

= Oninstructions or on blocks of
instructions

= Flow information is expressed with
edges of relations “reach-*”

> Recursive system (via edge reach-begin)

= (Breach-endE) := (E reaches end of
block B)

>

reach-end
B:Stk
gen

reach-end

@St

not killed

reach-begin

reach-end

reach-end(B,E) :- gen(B,E).
reach-end(B,E) :- reach-begin(B,E), not killed(B,E).
reach-begin(B,E) :-pred(B,P), reach-end(P,E).

@ © Prof. U. ABmann

Code Motion Analysis

19 Model-Driven Software Development in Technical Spaces (MOST)

» Code motion is an essential transformation to speed up the generated code. However,
it is a complex transformation:

- Discovering loop-invariant expressions by data-flow analysis
- Moving loop-invariant expressions out of loops upward
- Code motion needs complex data-flow analysis
> Busy Code Motion (BCM) moves expressions as upward (early) as possible
» Lazy Code Motion (LCM)
= Moving expressions out of loops to the front of the loop, upward, but carefully:

= Moving expressions to an optimal place so that register lifetimes are shorter and
not too long (optimally early)
= LCM analysis computes this optimal early place of an expression [Knoop/Steffen]

Analyze an optimally early place for the placement of an expression
About 6 equation systems similar to reaching-definitions
= Every equation system is an EARS [ABmMann00]

@ © Prof. U. ABmann

Excerpt from LCM Analysis with Overlaps

20 Model-Driven Software Development in Technical Spaces (MOST)

» Compute an optimally early block for an expression (out of a loop)

Question: “Which expression is not isolated (social) at the beginning of a block?”

social_In
NOT earliest_out
CBlock > >. - @NCT ea”'est_f’“;.
I
social_out social out

'/
o
/

comp_SOcC_1In

@ comp_in - - @ comp_in -

Question: “Which expression is not isolated (social) at the beginning of a block?"

‘// isolated_and_latest_in
R
: NOT social_in I NOT social_in M
e __
)
5 | A
g latest_in latest_in

TECHNISCHE
@ UNIVERSITAT

DRESDEN

Fakultit Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie - Model-Driven Software Development in Technical Spaces (MOST)

31.3.2 Regular Graph Reachability and Slicing

O

DRESDEN
concept
Exzellenz aus
Wissensc haft
und Kultur

Model-Driven Software Development in Technical Spaces (MOST) © Prof. U. ABmann

Regular Graph Reachability

22 Model-Driven Software Development in Technical Spaces (MOST)

> If the query can be expressed as a regular expression, the query is a regular graph
reachability problem

» Kleene star is used as transitive closure operator
» TgreQL and Fujaba are languages offering Kleene *

-- F-Datalog notation:
Al1Exprs(Proc, Expr) :-
Block*(Proc,Block),

Stmt*(Block, Stmt),

Expr*(Stmt, Expr).

-- if-then rules:

if Block*(Proc,Block),

Stmt*(Block, Stmt),

Expr*(Stmt, Expr)

then

AllExprs(Proc, Expr);

- regular expression notation (TGreQL):
Al1Exprs := Proc Block*.Stmt*.Expr* Expr

ﬂ! © Prof. U. ABmann

Static Slicing: Single-Source-Multiple-Target Regular
Reachability

23 Model-Driven Software Development in Technical Spaces (MOST)

> [Weiser] [Tip]
» Astaticslice is the region of a program or model dependent from one source node
(reachable by a regular reachability query in a dependency graph)

= Astaticslice is a single-source path reachability problem (SSPP) on the
dependency graph

= Astaticslice introduces path abbreviations from one entity to a region
» Aforwardslice is a dependent region in forward direction of the program

= The uses of avariable

= The callees of acall

= The uses of a type
> A backward slice is a dependent region in backward direction of the program

= The assignments which can influence the value of a variable

= The callers of a method

= The type of a variable

» Slicing can map arbitrary entities in programs and models to other entities, based on a
regular graph expression

@ © Prof. U. ABmann

Reachability within Models and
Traceability between Models

24 Model-Driven Software Development in Technical Spaces (MOST)

» Data-flow analysis (graph reachability, slicing) can be done
= |ntraprocedurally (within one procedure)
= Interprocedurally (program-wide)

> Traceability is inter-model slicing and graph reachability
= inter-model: then it creates trace relations between requirements models,
design models, and code models
= |ntra-megamodel: trace relations can trace dependencies between all models in a
megamodel, e.g.,in an MDA

> A model mappingis an inter-model trace(-ability) graph

= Model mappings are very important for the dependency analysis and traceability
in megamodels and the construction of macromodels

@ © Prof. U. ABmann

TECHNISCHE
@ UNIVERSITAT
DRESDEN

Fakultit Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie - Model-Driven Software Development in Technical Spaces (MOST)

31.3.3 Context-Free Graph Reachability

> |If arbitrary recursion patterns are allowed in F-Datalog and EARS
qgueries, we arrive at context-free graph reachability.

O

DRESDEN
concept

Model-Driven Software Development in Technical Spaces (MOST) © Prof. U. ABmann

Free Recursion

26 Model-Driven Software Development in Technical Spaces (MOST)

> Transitive closure and regular graph reachability rely on regular recursion (linear
recursion) expressible with the Kleene-* on relations

» Beyond that,, F-Datalog and EARS can describe other recursions
= Context-free recursions
= Cross-recursions
» Then, we speak of context-free graph reachability
= A context-free language describes graph reachability
> Applications:
= Complex intraprocedural value flow analyses
= Interprocedural, whole-program analysis
= Interprocedural IDFS framework (Reps)
= Model mappings in a megamodel

@ © Prof. U. ABmann

TECHNISCHE
@ UNIVERSITAT
DRESDEN

Fakultit Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie - Model-Driven Software Development in Technical Spaces (MOST)

31.3.4 More on the Logic-Graph Isomorphism

» [Courcelle] discovered that many problems can be expressed in
logic (on facts) and in graph rewriting (on graphs)

(A
\
‘\v)

DRESDEN
concept

Model-Driven Software Development in Technical Spaces (MOST) © Prof. U. ABmann

Program and Model Analyses Covered by Graph
Reachability

28 Model-Driven Software Development in Technical Spaces (MOST)

» Graph Reachability Analysis can do abstract interpretation
= |fit adds analysis information to the control-flow graph
= Slicing is a Single-Source-Multiple-Target reachability analysis
» Every abstract interpretation where a mapping of the abstract domains to graphs can
be found.
= monotone and distributive data-flow analysis
= control flow analysis
= Static-single-assignment (SSA) construction
= Interprocedural IDFS analysis framework (Reps)

@ © Prof. U. ABmann

The Common Core of Logic, Graph Rewriting and Program
Analysis

29 Model-Driven Software Development in Technical Spaces (MOST)

> Graph rewriting, DATALOG and data-flow analysis have a common core: EARS

ation)

abstract interpretatiq

@ © Prof. U. ABmann

Relation DFA/F-DATALOG/GRS

30 Model-Driven Software Development in Technical Spaces (MOST)

@ © Prof. U. ABmann

» Abstract interpretation (Data-flow analysis), F-DATALOG and graph rewrite systems
have a common kernel: EARS

= AsF-DATALOG, graph rewrite systems can be used to query the graph.
» Contrary to F-DATALOG and query languages, edge graph rewrite systems
materialize their results instantly.
= Therefore, they are amenable for model analysis and mappings
= Graphrewritingis restricted to binary predicates and always yields all solutions
» General graph rewriting can do transformation, i.e. is much more powerful than F-

DATALOG.

= Graph rewriting enables a uniform view of the entire optimization process

= There is no methodology on how to specify general abstract interpretations
with graph rewrite systems

= |ninterprocedural analysis, instead of chaotic iteration special evaluation
strategies must be used [Reps95] [Knoop92]

= Currently strategies have to be modeled in the rewrite specifications explicitly
» Uniform Specification of Analysis and Transformation [ABmann00]

= |If the program analysis (including abstract interpretation) is specified with GRS,
it can be unified with program transformation

TECHNISCHE
@ UNIVERSITAT

DRESDEN

Fakultit Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie - Model-Driven Software Development in Technical Spaces (MOST)

31.3.5 Implementation of Data-Flow Analysis in Tools

O

DRESDEN
concept
Exzellenz aus
Wissensc haft
und Kultur

Model-Driven Software Development in Technical Spaces (MOST) © Prof. U. ABmann

Optimix: using Efficient Evaluation Algorithms from Logic
Programming

32 Model-Driven Software Development in Technical Spaces (MOST)

@ © Prof. U. ABmann

>

>

Tool OPTIMIX uses the ,Order algorithm“ scheme [ARmann00]

Generates target code of a programming language
Code generation uses variants of nested loop join algorithm
Works effectively on very sparse directed graphs

Bottom-up evaluation, as in F-Datalog; top-down evaluation as in Prolog possible,
with resolution

Optimizations from Datalog and F-Datalog

Bottom-up evaluation is normal, as in Datalog

Top-down evaluation as in Prolog possible, with resolution
Sometimes fixpoint evaluations can be avoided

Use of index structures possible

Linear bitvector union operations can be used

semi-naive evaluation

index structures

magic set transformation

transitive closure optimizations

Graph Rewrite Tools for Graph Reachability

33 Model-Driven Software Development in Technical Spaces (MOST)

» Fujaba graph rewrite system www.fujaba.de
> (e)MOFLON graph rewrite system www.moflon.de
= TGG for Model Mapping, similar to QVT-R
= See chapter MOFLON
» AGG graph rewrite system (From Berlin and Marburg)
= http://user.cs.tu-berlin.de/~gragra/agg/
» VIATRAZ2 graph rewrite system on EMF
= http://eclipse.org/gmt/VIATRA2/
» GROOVE for the construction of iInterpreters
= http://groove.cs.utwente.nl/

@ © Prof. U. ABmann

http://www.fujaba.de/
http://www.moflon.de/
http://eclipse.org/gmt/VIATRA2/

TECHNISCHE
@ UNIVERSITAT
DRESDEN

Fakultit Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie - Model-Driven Software Development in Technical Spaces (MOST)

31.4 Model Mappings in In-Memory Megamodels
(Modellverkniipfung) and Their Use for Traceability

» Model mapping languages are model query languages who
enter their results again into the models as analysis
information.

» They create model mappings which are important for
macromodels.

zzzzzzzzzzzz

uuuuuuuuu

Model-Driven Software Development in Technical Spaces (MOST) © Prof. U. ABmann

Obligatory Literature

35 Model-Driven Software Development in Technical Spaces (MOST)

» [BERSO08] Daniel Bildhauer, Jirgen Ebert, Volker Riediger, and Hannes Schwarz. Using
the TGraph Approach for Model Fact Repositories. . In: Proceedings of the
International Workshop on Model Reuse Strategies (MoRSe 2008). S. 9--18.

» Hannes Schwarz, Jirgen Ebert, and Andreas Winter. Graph-based traceability: a
comprehensive approach. Software and System Modeling, 9 (4):473-492, 2010.

@ © Prof. U. ABmann

Q2: Tools in an Integrated Development Environment (IDE)

for MDSD

36 Model-Driven Software Development in Technical Spaces (MOST)

>

Model mappings relate different models to enable reachability analysis, trace

analysis (if models are in different repositories) and impact analysis

>

An in-memory macromodel is a megamodel where all models are loaded in memory

[Tool

Y

) [- |

J

[Model mappings

] Model slicing] [Model composition]

[Reachability analysis (traceability)

Attribute analysis

J |

Reasoning Relational GRS TRS XML
engine engine engine engine engine
5

@ © Prof. U. ABmann

Requwements
Repository

DeS|gn Implementation
Repository Repository
(PIM, Arch) (PSI, Code)

Metamodel
Repository
(M2)

Test Case
Repository

Q12: The ReDeCT Problem and its Macromodel

37

Model-Driven Software Development in Technical Spaces (MOST)

» The ReDeCT problem is the problem how requirements, design, code and tests are
related(V model)

» Mappings between the Requirements model, Design model, Code, Test cases

» A ReDeCT macromodel has maintained mappings between all 4 models

> If all models belong to one repository, we call it a mono-repository macromodel

» If the models belong to multiple repositories, we call it a multi-repository macromodel

= Then, Reachability means Traceability

@ © Prof. U. ABmann

Requirements Design Code Test
~ Package Bill age TestBill {
< — Uses gorder; {< ses TestOrder;
Q Class Counting { Proc testCounting IS
\ Procedure count IS S
5] End; na;
(_%4, mmmmmmmmmmmmmm N\)
] }
® | e TestOrder {
W nnnnnnnnnnn el < acka rder { < ST Uses Bill;
l Uses BIm; | TestOrdering {
Class OrderingZ—] rocedure
Procedure count IS testCount IS
g e -
S — } }
1 }

Advantages of Model Mappings

38 Model-Driven Software Development in Technical Spaces (MOST)

> Error tracing
= When an error occurs during testing or runtime, we want to trace back the
error to a design element or requirements element

> Traceability
= We want to know which requirement (feature) influences which design,
code, and test elements, so that we can demarcate modules in the solution

space (product line development)

> Synchronization in Development:
= Two models are called synchronized, if the change of one of them leads
automatically to a hot-update of the other

» Cohesion of Distributed Information:
= Two related model elements may contain distributed information about a
thing. The relation allows for reconstructing the full information

= Example:
Storing two roles of an object in two different models (See “Amoeba
Object Pattern”)

Splitting the representation of the requirements on an object and
its design in requirements vs design model

@ © Prof. U. ABmann

Different Forms of Model Mappings

39 Model-Driven Software Development in Technical Spaces (MOST)

> Directly specified mappings specify a deterministic mapping function between a
source and target model.

= Direct mappings are specified in GUI or text files
= Direct mappings may be complete or incomplete
» Recursive mappings are defined in a functional language
= Denotational semantics is a complete direct mapping of two languages

= The coverage of the source model must be ensured (completeness of
specification)

> General mappings may be intensionally specified. Source and target models are
mapped
= With graph reachability expressions (QVT-R, TgreQL, EARS)
= With query expressions (Semmle.QL)
= With expressionsin a logic (F-Datalog)
> Inter-model mappings are defined between model elements of different models

> Lifted inter-model mappings are lifted from intra-model element mappings

@ © Prof. U. ABmann

TECHNISCHE
@ UNIVERSITAT
DRESDEN

Fakultit Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie - Model-Driven Software Development in Technical Spaces (MOST)

31.4.1 Direct Mappings for Simple Traceability

» With a direct model mapping, a requirements model can be linked

to a test case specification
to a documentation
to an architectural specification

via the architectural specification, to the classes and
procedures in the code ‘(A

v)'
DRESDEN
concept

Model-Driven Software Development in Technical Spaces (MOST) © Prof. U. ABmann

Ex.: Explicit Model Mapping (Modell-Verknipfung) with
MID INNOVATOR

41 Model-Driven Software Development in Technical Spaces (MOST)

» MID Innovator can be used for requirements models (use cases), design models,
implementation models, as well as for transformations in between

> How to relate these models systematically?

% UML-Modell “TTBib_UML.ino_prak2’ - INNOVATOR

Element Bearbeiten #nsicht Modell Engineering ‘Wechseln Extras Hilfe

& & fhFEae Dl «) Hi O

- [»i: TTBib UML - Statusz Mame Typ | Anderungsdatum
@ Ef@ sy;teml'-.ﬂndel 1 0 A @ Ausleihe Sec... 22112003 004502
@ external object $INOTMP/docs 2.0 A Kunde _anmelden Kall... 1011 2003 01:21:54
-3 Use Case System 30 A |E| Rickaabe Sec.. 22112003 002147
%ﬂ @ analysiz system 4 0 A @ Tontrager_Einkauf Sec.. 10.11.2003 01:2359
Java design system 50 pit @ Hunden_neu_anlegen Sec... 10.11.2003 012619
@ Java implementation system $INOTMP/src 5 0 A @ AnalyzisClassDiagram Klas.. 0911 2003 152914
E3'$ systemModel management 7a A Q Werwatung A5 Klas.. 0911 2003 152556
] g8 0 A () Tontréger_AS Wlas.. 09112003 15 20:08
9 0 A D Hunde_A% Wlas.. 09112003 152732
oA D D Kunde_A5 Obj.. 0941 2003 13532005
@ 0 A Q c Tortrager A% Obje.. 0911 2003 1320016
.0 A HD) “werveatungUl_as Kla:... 0911 2003 1501632
. a pit KD WerwaltungUl_as Ohje.. 09.11.2003 132308
@ oA i : Kunde_LIC Obj.. 0911 2003 14:05:54
oA f;_ . Biblicthek_1C Obj.. 0911 2003 15:44:35
.0 A Q CWerwaltung_AS O 0911 2003 16:14:14

@ © Prof. U. ABmann

Example: imbus TestBench

42 Model-Driven Software Development in Technical Spaces (MOST)

@ © Prof. U. ABmann

O)
=

-

-

Q

-

Q

hd
N

Planung

Analyse
& Design

T

Automatisierung

(

Realisierung &
Durchflihrung

{

Auswertung & Bericht

(

Abschluss

Requirements get “red-yellow-green” Test Status Attribute

43 Model-Driven Software Development in Technical Spaces (MOST)

[Anforderungsverwaltung von Car Konfigurator (Version 2.1, Abnahmetest) §§§§§§

Anforderungshaum: gifDetails Benutzerdefinierte Felder | Erweitert | Wird verwendet in | Alle Versionen

A CarConfigurator - Version 1.1 (caliber)
¢ [@ 1. Business Requirements
[Konfiguration zusammenstellen :
v automatische Rabatte :
%0 Handler gewshrt Rabatt ; \ersion: 1.1
¢ [2. Uszer Reguirements :
%M standige Preisanzeige 3
[keine ermwungene Bedienerfolge §§ Status: Reviewy Complete
o [3 3. Functional Reguirements :
M sofortine Preisherechnung
¢ M Guelle der Basisdaten
oM Import einer Datei
oM Importvom OEM-Host
o [3 4. Design Requirements
O glltioe Konfiguration
.M Eingabe der Basisdaten

Name: Handler geswahrt Rabatt

Eigentiimer:

Prioritat: Essential

Test-Status: M Getestet PASS

http://www.imbus.de/produkte/imbus-testbench/hauptfunktionen/

@ © Prof. U. ABmann

Testf[...]: endpreis-berechnen-mit-rabatten_log.xml L Aktuelle Ansicht : Endpreis berechnen mit Rabatten : [...]Jgurieren : Fahrzeug wahlen CBR hieni

9. 2.3.2 Endpreis herechnen mit Rabatten
= EM 1. einfach

Datei Anzeige Mavigation Zetmessung Fenster Hife Ansicht

W CarConfig Starten | Interaktion Details
% M Freis prifen 7
ﬁl CarConfig Beenden | Fahrzeug wahlen CBR
44 Model-Driven Software [|z El 2. Testfall
Parameter
B Carconfig Starten
=] Fahrzeug kaonfigurieren Fahrzeug

£ Sondermodell wihlen
£ Zubehdrwahlen
¥ Preig priffen
=] .? B Fahrzeug konfigurieren
L3 W Fahrzeug wihlen CER
£3 W Sondermodell wahlen
3 M Zubehir wahlen
%5 W Preis priffen
=] .? M Fahrzeug konfigurieren
L3 W Fahrzeug wihlen CER
£3 W Sondermodell wahlen
L3 W Zubehir wihlen
% M Preis priffen
= .? W Endpreis berechnen "ohne" Rabatt
B carcaonfig Starten
= B Fahrzeug konfigurieren
L3 W Fahrzeug wihlen CBR

Benutzerdefinierte Felder der Durchfiihrung

X Bemerkungen

Interaktion: Fahrzeug wahlen CBR

~Bezchreibung ~Bemerkungen zur Durchidhrung

Fahrzeug aus der Liste der Fahrzeuge wahlen

b

~Bemerkungen zur Spezifikation

|

X Aufgezeichnete Attribute

=fir diezen Knatentyp kinnen Benutzerdefinierte Felder nicht definiert werden:= ~Tester
Aktugler Berutzer | |_]
Tester | |
A, | Letzte Anderung des Ergebni
Liste der Anforderungen X Aktueles Ergebniz Tupriifen
Ergebniz-Datum (DD MY YY) 07.03.2008
[ame | 8] | Yersion ‘ Eigentiimer | Status ‘ Pricritat
Ergebniz-Zet (HH:MM. 55 09:34:03
=oforige Preisherechnung WHATI03 34 Dierk Accepted Ez=ertial
keine erzweungens Bedienerfolge IJZERG02 1.0 Dierk Subrmitted E=z=zential Zeitmessung
sténdige Preizanzeige USER30 10 Dierk Sybmitted Ez=zertial Geplante Durchidhrungzzet (DDCHH MM S5 S55) (00 00 00 00,000
Aktuelle Durchithrungszet (DDoHH MM S5 S55) (0 00 00 00000
P

@ © Prof. U. ABmann

31.4.2. Analysis with Reachability

45

Model-Driven Software Development in Technical Spaces (MOST)

@ © Prof. U. ABmann

> Deep model analysis:

= Graph reachability analyzers create direct mappings (graphs) from indirect
mappings (abbreviate intensional or recursive mappings)

= for reachability of model elements

= to create model slicings (projections to some subgraphs)

= to prepare refactorings, transformers, and optimizers
For models: For model refactoring, adaptation and specialization, weaving
and composition
For code: Portability to new processor types and memory hierarchies

For optimization (time, memory, energy consumption)

> For traceability of model elements in other models. Traceability is reachability of model
elements over several models

TECHNISCHE
@ UNIVERSITAT
DRESDEN

Fakultit Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie - Model-Driven Software Development in Technical Spaces (MOST)

31.4.2 Specifying Inter-Model Mappings with Model
Mapping Languages

zzzzzzzzzzzz

uuuuuuuuu

Model-Driven Software Development in Technical Spaces (MOST) © Prof. U. ABmann

Ex.: Querying in ReDeCT

47 Model-Driven Software Development in Technical Spaces (MOST)

@ © Prof. U. ABmann

[

Requirements --'--'-""'ﬂr;_ﬁited'tﬁre | Detailed be's'i'gn--'-...__,_ﬁ‘;nurce Code

e . Erac -
: e [

IrF»:alenner'ltsl n(
from req:V{Requirement}, archElem:V{UMLElement},
desElem:V{UMLElement}, class:V{ClassDefinition }
with req.name="Create bills" and
req < ——{Satisfies} archElem and
archElem < ——{Realize} desElem
desElem < ——{Implements} class
report req, archElem, desElem, class
end

)

e

Fig. 4. Sample GReQL query with associated slice of a software case

Inter-Model Relationships in The ReDeCT Macromodel

48 Model-Driven Software Development in Technical Spaces (MOST)

> An Inter-model relationship is a relationship between model elements of different

models
= Here: expresses mapping between the Requirements model, Design model,
Code, Test cases

» The ReDeCT macromodel relies on inter-model relationships between all 4 models

Requirements Design Code Test
~ Package Bill ‘:?kage TestBiIll {
< °°°°°°°°°°°°° Uses %rder; {< ses TestOrder;
Q Class Counting { Proc testCounting IS
\ Procedure count IS E y
g End; na;
(_%4/ nnnnnnnnnnn \))
e }
o | e TestOrder {
X e & < >Packa rder { 41:/ Uses BIll;
Uses BT | TestOrdering {
I Class Orderin /;C:r/::edure
@ Procedure count IS testCount IS
< "— End; End;
—— == } %
1

@ © Prof. U. ABmann

Inter-Model Relationships in The ReDeCT Macromodel

49 Model-Driven Software Development in Technical Spaces (MOST)

>

>

CodeElement, TestElement

An (direct) inter-model relationship is defined between top-level metaclasses in the models of the macromodel

The ReDeCT macromodel defines on direct inter-model relationships on RequirementsElement, DesignElement,

implements

Code

Test

Requirements Design

Requirements satisfies Design

Element Element
instance-of instance-of

Element Element
instance-of instance-of

5

}

e

}
}

uscs vlrder,
Class Counting {

Uses -
Class Orderin

Procedure count IS
End;

rder { 4;

acka

Procedure count IS
End;

WL\

Proc testCounti,ng IS
End:

}

}

e TestOrder {
Uses Bill;

;07 TestOrdering {
rocedure

testCount IS
End;

}
}

Specification of Traceability in ReDeCT with TGreQL

50 Model-Driven Software Development in Technical Spaces (MOST) [BERSOS]

> Direct inter-model relationships form the basis of queries in the macromodel. Allow for

the definition of
= Traceability relations between model elements of different models

= Hyperedges (tuples) between several model elements of different models

» Any query language can be used for model mappings, if their results are entered into
the model resp. macromodel

/ Defining a inter-model hyperedge (tuple) in TGreQL [BERSO8]
elementsin(
from req:V{Requirement}, archElem:V{UMLElement},
desElem:V{UMLElement}, class:V{ClassDefinition}
with reg.name="Count Bill”
andreq< {Satisfies} archElem
and archElem < {Realize} desElem
and desElem < {Implements} class
report req, archElem, desElem, class

end

]

@ © Prof. U. ABmann

TECHNISCHE
@ UNIVERSITAT
DRESDEN

Fakultit Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie - Model-Driven Software Development in Technical Spaces (MOST)

31.4.3 Inter-Model Reachability (Traceability)

» When models are kept in different repositories, inter-model
reachability becomes traceability

(A
\
‘\v)

DRESDEN
concept

Model-Driven Software Development in Technical Spaces (MOST) © Prof. U. ABmann

Q9: Model Mappings and Model Weavings in the MDA
Megamodel

52 Model-Driven Software Development in Technical Spaces (MOST)

» Model mappings connect models horizontally (on the same level)
or vertically (crossing levels).

» Model transformations transform models horizontally or
I vertically.

Domain model for application domain

= From a model mapping, a simple transformation can be
infered

» Model extensions (model merges, additions) extend an input
model by an extension (often done by hand)

V = Usually, some parts are still hand-written code

Platform-Independent Model (CIM)
Design specification

Platform-Specific Extension (PSE)

Platform Description Model (PDM)

<<creates>>] _
» Model weavings weave two input models to an output model,
based on a crosscut specification
Platform Specific Model (PSM) » Model2Text expansion (code generation by template
expansion)
\
\

Handwritten code

Code addition

<<creates>>

Platform-Specific Implementation
(PSI, Code)

© Prof. U. ABmann

=

Rpt. from ST-1I: Model Mapping, Transformation and
Synchronization in the MDA

53 Model-Driven Software Development in Technical Spaces (MOST)

M2

M1

@ © Prof.U. A"

The MDA macromodel derives from a platform-independent model (PIM) by
hand, by rules, by transformations, by metaprograms platform-specifc

models (PSM)

» Model mapping connects systematically all elements of a source model (in a source
language) to the elements of a target model in a target language.

» From the mappings, a translation, transformation, or synchronization can be
automatically infered.

Extension Language

y

A

def hed

1in
'
1

Source Model

Extension Model

PIM

Adapted from:

Ty depe
upon
Source Language [«

: depends
Mapping upon
Specif tation & _,| Target Language
4 3
' defhed +def hed
s in 1N
; <<create>> :

[

Mapping]_> Target Model

PSM

_ _Kleppe, A., Warmer, J., Bast, W.: MDA Explained - Practice and Promise of the
Model Driven Architecture; Addison Wesley 2003 (Draft 31.10.02)

Q9b: Inter-Model Mappings in the MDA Megamodel

54 Model-Driven Software Development in Technical Spaces (MOST)

extends

Model mappings connect models horizontally (on the same level)
or vertically (crossing levels).

Model extensions (model merges, additions) extend an input
model by an extension (often done by hand)

l <<creates>>

Platform-Independent Model (CIM)
Design specification

extends

Architectural Extension

Platform-Specific Extension (PSE)

<<creates>>

Platform Specific Model (PSM)

extends

Platform Description Model (PDM)

» Model weavings weave two input models to an output model,
based on a crosscut mapping specification

<<creates>>

Platform-Specific Implementation
(PSI, Code)

© Prof. U. ABmann

=

Handwritten code

Application of Traceability: Inter-Model Trace Mappings in
the Macromodel MDA

55

V

Platform-Independent Model (CIM)
Design specification

\
G

1
Platform-Specific Exte!nsion (PSE)

2 s

v

4 '
Platform Description Model (PDM
Platform Specific Model (PSM) |’ :' atform Description Model (PDM)
\ '
V '
L]
@de addlD 7 Handwritten code
N '
]

@ © Prof. U. ABmann

The End - Appendix
Comprehension Questions

56 Model-Driven Software Development in Technical Spaces (MOST)

@ © Prof. U. ABmann

> Explain program slicing as an application of graph reachability.

» Why isregular graph reachability “regular”? What is the different to context-free
graph reachability?

» How do you create a model mapping with regular graph reachability?

> Explain a typical data-flow analysis with EARS. Why do EARS rules that rewrite the
information “around” the control-flow graph form an abstract interpreter?

» EARS canrewrite models. How would you specify a model refactoring engine with
EARS?

» Why are EARS good for traceability in megamodels?

