
 Model-Driven Software Development in Technical Spaces (MOST) © Prof. U. Aßmann

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie

41. Family of Role-Based (Meta-)Models

in the Research Training School on
Role-oriented Software Infrastructures (RoSI)

4. Roles in Other Technical Spaces

5. Family of Role-based Languages

 ©
 P

ro
f.

U
. A

ßm
an

n

2 Model-Driven Software Development in Technical Spaces (MOST)

Recap Role-Based (Meta-)Modeling
Limitations of Object-Oriented Design

Supplier/Customer Problem
[Steimann2000]

Multiple Classification State-Dependence

► Specialization of entity
depends on state

► Entity subject to multiple
classifying features

► Multiple entities fulfill
the same roles

Supplier Customer

Person Company

Queue

Unordered

OrderedSynchronized

SO NUNO SU

NoSynch.

Order

status:EState

Shipped

carrier:String

Delivered

delivery:Date

Person Company

Supplier Customer Synchronized

Queue

Ordered Order

status:EState

Shipped

carrier:String

Delivered

delivery:Date

Class RoleType can playinheritance role implication

 ©
 P

ro
f.

U
. A

ßm
an

n

3 Model-Driven Software Development in Technical Spaces (MOST)

Recap Role-Based (Meta-)Modeling
Roles in Modeling and Programming Languages

Context-
Dependent

Relational

Behavioral

Behavioral

Relational

Combined

Relational & Behavioral

Contextual &
Relational

Contextual & Behavioral

► Structured Literature Review of publications since 2000
► Published by the big four (i.e., Springer, IEEE, ACM, Science Direct)

Research Field suffers from fragmentation and discontinuity

 ©
 P

ro
f.

U
. A

ßm
an

n

4 Model-Driven Software Development in Technical Spaces (MOST)

name:String creationtime:DateTime
amount:Money

Bank Transaction

Account
id:int
balance: Money

trans1 1

BankAccounts (1..1)

Person
title: String
firstName: String
lastName: String
address: String

Company
name: String
legalForm: String
addresses: String[]
POBox: String

own_ca

1

0..*

own_sa1..* 0..*

2..20..*
Participants (1..1)

0..*

0..*

1..*

advises

0..*

1..*

Natural Type Role Type
Fills-Relation

Compartment Type

RSTCardN CardMRoleGroup (n..m)

Card

RST Constraint

irreflexive

id:int
name:String

Customer

TargetSource

limit:Money

CheckingAccount

transactionFee:Double

SavingsAccount

execution:DateTime

MoneyTransfer

phone:String

Consultant

∃ Existential
Implication

∃

Recap Role-Based (Meta-)Modeling
The Compartment Role Object Model (CROM)

Example: Banking Application

 ©
 P

ro
f.

U
. A

ßm
an

n

5 Model-Driven Software Development in Technical Spaces (MOST)

Recap Role-Based (Meta-)Modeling
Formal Foundation of CROM

CROM EMOF (Ecore) Metamodel
RigidType Type

NaturalType

CompartmentType

AntiRigidType

RoleType

Relationship
direction : Direction

Fulfillment

Inheritance

Constraint

RoleConstraint

RelationshipConstraint

IntraRelationshipConstraint InterRelationshipConstraint

NaturalInherita...

CompartmentIn...

RoleInheritance

Place
lower : EInt
upper : EInt

<<enumeration>>
Direction

Undirected
FirstToSecond
SecondToFirst

RelationshipImplicationIrreflexive

Cyclic

Total

AbstractRole

RoleGroup
lower : EInt
upper : EInt

RoleImplication

RoleEquivalence

RoleProhibition

Part
lower : EInt
upper : EInt

RoleGroupElement

AbstractRoleRef

elements

1..*

super 1

super 1

super 1

sub 1

sub 1

sub 1

filled1

filler

1

first1

second1

first1

second1

holder1

relation
0..1

first
1

second
1

parts
0..*

whole1

relationships0..*

constraints

0..*

role 1

ref 1

contains

1..*

fulfillments

0..*

 ©
 P

ro
f.

U
. A

ßm
an

n

6 Model-Driven Software Development in Technical Spaces (MOST)

Recap Role-Based (Meta-)Modeling
Tool Support Surrounding CROM

translates to

Formal
Model
ConDL

created from

Graphical
Notation

FRaMED
[Kühn2015]

Database
Schema

RSQL

Role-based
Language

SCROLL

Textual
Syntax

TRoML

Compartment
Role Object

Meta-
Model

is a

Conceptual
Model

translates
to

Formal
Model

FormalCROM

translates
to

created from

Operational
 Model

ProRoles

 Model-Driven Software Development in Technical Spaces (MOST) © Prof. U. Aßmann

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie

41.4. Roles in Other Technical Spaces

Prof. Dr. Uwe Aßmann

Dr.-Ing. Thomas Kühn

Technische Universität Dresden

Institut für Software- und
Multimediatechnik

http://st.inf.tu-dresden.de
/teaching/most

Version 16-1.0, 18.12.17

http://st.inf.tu-dresden.de/

 ©
 P

ro
f.

U
. A

ßm
an

n

8 Model-Driven Software Development in Technical Spaces (MOST)

Literature

[Leuthäuser2015] Enabling View-based Programming with SCROLL: Using Roles and
Dynamic Dispatch for Establishing View-based Programming

Max Leuthäuser and Uwe Aßmann
MORSE/VAO ’15, ACM (2015)

[Jäkel2016] Towards a Contextual Database
T. Jäkel, T. Kühn, H. Voigt, and W. Lehner
ADBIS (2016)

[Böhme2017] Reasoning on Context-Dependent Domain Models
S Böhme, T. Kühn
Proceedings of the JIST (2017)

 ©
 P

ro
f.

U
. A

ßm
an

n

9 Model-Driven Software Development in Technical Spaces (MOST)

References

[Hirschfeld2008] Context-oriented programming
R. Hirschfeld, P. Costanza, and O. Nierstrasz
Journal of Object technology 7:3 (2008).

[Meijer2004] Static typing where possible, dynamic typing when needed:
The end of the cold war between programming languages

E. Meijer and P. Drayton
OOPSLA (2004)

 ©
 P

ro
f.

U
. A

ßm
an

n

10 Model-Driven Software Development in Technical Spaces (MOST)

Roles in Other Technical Spaces
Overview

translates to

Formal
Model
ConDL

created from

Graphical
Notation

FRaMED
[Kühn2015]

Database
Schema

RSQL

Role-based
Language

SCROLL

Textual
Syntax

TRoML

Compartment
Role Object

Meta-
Model

is a

Conceptual
Model

translates
to

Formal
Model

FormalCROM

translates
to

created from

Operational
 Model

ProRoles

 ©
 P

ro
f.

U
. A

ßm
an

n

11 Model-Driven Software Development in Technical Spaces (MOST)

Issue of Role-based Software Systems
► Ambiguity of object’s behavior and role’s behavior

■ Object playing multiple roles adapting the same behavior
■ Object playing instances of the same role type in different compartments

Roles in Other Technical Spaces
Role-based Programming with SCROLL

Slides prepared by Max Leuthäuser

 ©
 P

ro
f.

U
. A

ßm
an

n

12 Model-Driven Software Development in Technical Spaces (MOST)

Four Dimensional Dispatch [Hirschfeld2008]
► Dispatch: Discover the correct computational unit utilizing the type system and

relationship information
■ 1D address computational unit with a name
■ 2D 1D + receiver
■ 3D 2D + sender
■ 4D 3D + context

Roles in Other Technical Spaces
Role-oriented Programming with SCROLL

by context (sender, receiver context, relations)by context (sender, receiver context, relations)

by senderby sender by receiverby receiver by nameby name

Slides prepared by Max Leuthäuser

 ©
 P

ro
f.

U
. A

ßm
an

n

13 Model-Driven Software Development in Technical Spaces (MOST)

Roles in Other Technical Spaces
Role-oriented Programming with SCROLL

SCala RoLes Library (SCROLL) [Leuthäuser2014]
► Lightweight Library for role-oriented programming¹
► Embedded DSL for

■ Compartment and Role Type declaration
■ Definition of role constraints
■ Role Playing Automaton defining a role’s life cycle

► Customizable 4D-dispatch based on declarative description
► Based on SCALA and utilizing:

■ Directed acyclic graphs and traversals
■ Compiler rewrite rules with Dynamic traits
■ Implicit conversions

Object

RoleA

func()

RoleB

RoleC

Client

Compound Object
func() ?

1) https://github.com/max-leuthaeuser/SCROLL

 ©
 P

ro
f.

U
. A

ßm
an

n

14 Model-Driven Software Development in Technical Spaces (MOST)

Roles in Other Technical Spaces
Role-based Programming with SCROLL

Example Banking Application

object BankExample extends App

{

 // Naturals

 case class Person(name: String)

 case class Company(name: String)

 class Account(var balance: Double = 0)
 {

 def increase(amount: Double) {
 balance = balance + amount
}

 def decrease(amount: Double) {
 balance = balance – amount
}

 }

}

// Compartment and Roles

class Bank extends Compartment

{

 @Role case class Customer()

 @Role class CheckingsAccount() {

 def decrease(amount: Double) {
 (-this).decrease(amount)
}

 }

 @Role class SavingsAccount() {

 private def transactionFee
(amount: Double) = amount * 0.1

 def decrease(amount: Double) {
(-this).decrease(amount -

transactionFee(amount))
}

 }

}

 ©
 P

ro
f.

U
. A

ßm
an

n

15 Model-Driven Software Development in Technical Spaces (MOST)

Roles in Other Technical Spaces
Role-oriented Programming with SCROLL

Declarative Dispatch Description
► Based on graph traversal operators

// implicits are passed as additional, hidden argument to method invocations

implicit val dd =

 From (_ is[Account]).

 To (_ is[Source]).

 Through (_ => checkSomeRestriction()).

 Bypassing (_ => checkSomeOtherRestriction())

transaction:Compartmenttransaction:Compartment

accForStan:AccountaccForStan:Account

accForBrian:AccountaccForBrian:Account

bank:Compartmentbank:Compartment

ca1:CheckingsAccountca1:CheckingsAccount

ca2:CheckingsAccountca2:CheckingsAccount

s:Sources:Source

t:Targett:Target

Slides prepared by Max Leuthäuser

 ©
 P

ro
f.

U
. A

ßm
an

n

16 Model-Driven Software Development in Technical Spaces (MOST)

Roles in Other Technical Spaces
Role-oriented Programming with SCROLL

“Static typing where possible, dynamic typing when needed!”

– Eric Meijer [Meijer2004]

Summary

► SCROLL: Scala-based library approach for role-oriented programming

► no additional tools, compilers, or translation step needed

► Scala ensures type safety for static code, but roles enable dynamic evolution

► Open source, lightweight library¹ → easy to extend and/or change

► Fully configurable declarative dispatch

► Graphs and traversals represent powerful tool for 4D dispatch

1) https://github.com/max-leuthaeuser/SCROLL

 ©
 P

ro
f.

U
. A

ßm
an

n

17 Model-Driven Software Development in Technical Spaces (MOST)

Roles in Other Technical Spaces
Overview

translates to

Formal
Model
ConDL

created from

Graphical
Notation

FRaMED
[Kühn2015]

Database
Schema

RSQL

Role-based
Language

SCROLL

Textual
Syntax

TRoML

Compartment
Role Object

Meta-
Model

is a

Conceptual
Model

translates
to

Formal
Model

FormalCROM

translates
to

created from

Operational
 Model

ProRoles

 ©
 P

ro
f.

U
. A

ßm
an

n

18 Model-Driven Software Development in Technical Spaces (MOST)

Roles in Other Technical Spaces
Role-based Data Management with RSQL

Software System

DBMSDBMS

ApplicationApplication

ApplicationApplicationRole-Based
Application
Role-Based
Application

Role-Based
Application
Role-Based
Application

Database
Design

Store / Load

Store / Load

Role-Based
Conceptual

Model

Role-Based
Conceptual

Model

Role-based
Application Design

SCROLL

SCROLL

CROM

Role-based
Application Design

Role-Relational Impedance Mismatch
► Issues for Apps and Developers

■ Mapping overhead
■ Redundant code

implementation
► Issues for the DBMS

■ No “single point of truth”
■ Reconstruction overhead

► Issues for the Software System
■ Huge semantic gap
■ Unstructured design

Slides prepared by Tobias Jäkel

 ©
 P

ro
f.

U
. A

ßm
an

n

19 Model-Driven Software Development in Technical Spaces (MOST)

Roles in Other Technical Spaces
Role-based Data Management with RSQL

Technology Stack Solution

Role-Based Database Model
(RSQL Database Model)

Role-Based Database Model
(RSQL Database Model)

Role-Based ApplicationsRole-Based Applications

Database Model (RSQL Database Model)
• Explicit metatype distinction
• Operators

Database Model (RSQL Database Model)
• Explicit metatype distinction
• Operators

Query Language (RSQL Query Language)
• Role-based communication interface
• Revised DDL – DML – DQL

Query Language (RSQL Query Language)
• Role-based communication interface
• Revised DDL – DML – DQL

Result Representation (RSQL Result Net)
• Accessing role-based data structures
• Client-side support

Result Representation (RSQL Result Net)
• Accessing role-based data structures
• Client-side support

R
SQ

L Q
L

R
SQ

L Q
L

Re
su

lt
N

et
Re

su
lt

N
et

Slides prepared by Tobias Jäkel

 ©
 P

ro
f.

U
. A

ßm
an

n

20 Model-Driven Software Development in Technical Spaces (MOST)

RSQL Database Model [Jäkel2016]

► Dynamic Data Types represent complex entities filling and containing role types
► Configuration denotes the currently filled and participating role types
► Relationship Types connect two distinct role types

Roles in Other Technical Spaces
Role-based Data Management with RSQL

2) https://github.com/Eden-06/CROM

Dynamic Data TypesDynamic Data Types

ConfigurationsConfigurations

Dynamic TuplesDynamic Tuples

Relationship TypeRelationship Type

RelationshipsRelationships

In
st

an
ce

 o
f

Belongs to

Defines

Connects

In
st

an
ce

 o
f

Type level

Instance level

Connects

 ©
 P

ro
f.

U
. A

ßm
an

n

21 Model-Driven Software Development in Technical Spaces (MOST)

Dynamic Data Types
Logical data structure that encapsulates role-based semantics
► Describes the expansion possibilities of instances
► Consists of a core type and role types in the two dimensions

■ Filling and Participating

Roles in Other Technical Spaces
Role-based Data Management with RSQL

2) https://github.com/Eden-06/CROM

CREATE CompartmentType Transaction
CREATE RoleType Source PLAYED BY (Account)

PART OF Transaction
CREATE RoleType Target PLAYED BY (ACCOUNT)

PART OF Transaction
CREATE RoleType MoneyTransfer PLAYED BY (Transaction)

PART OF Bank

DDL

TransactionTransaction

Conceptual Model (Compartment Role Object Model) RSQL Database Model

Transaction {MT} {S, Ta}

Dynamic Data Type → Transaction

Money
Transfer
Money
Transfer SourceSource TargetTarget

Core

 ©
 P

ro
f.

U
. A

ßm
an

n

22 Model-Driven Software Development in Technical Spaces (MOST)

Roles in Other Technical Spaces
Role-based Data Management with RSQL

Slides prepared by Tobias Jäkel

INSERT INTO CompartmentType Transaction (Name)
VALUES(„Rent“)

INSERT INTO RoleType Source (ID) VALUES (42)
PLAYED BY Account a WHERE a WITH a.IBAN = 1234
FEATURED BY Transaction t WHERE
t WITH t.name=„Rent“

…

DML
Dynamic Tuples
Logical data structure encapsulating role semantics
► Describes the current structure of an instance
► Consists of a core and roles in two dimensions

■ Playing and featuring
► Roles are grouped by their respective role type

Rent : TransactionRent : Transaction

RSQL Database Model

RentRent {{mt1, mt3}}{{mt1, mt3}} {{s1}, {ta4}}{{s1}, {ta4}}

Dynamic Tuple → Rent

s1:Sources1:Source

Core Playing
Dimension

Featuring
Dimension

ta4:Targetta4:Target

mt1:MTmt1:MT

mt3:MTmt3:MT

Conceptual Model (Compartment Role Object Model)

 ©
 P

ro
f.

U
. A

ßm
an

n

23 Model-Driven Software Development in Technical Spaces (MOST)

Roles in Other Technical Spaces
Role-based Data Management with RSQL

RSQL Data Query Language [Jäkel2016}
► Dynamic Tuple focused querying

■ For each targeted Dynamic Data Type
■ Dynamic Tuples have to match given Configuration

SELECT * FROM Transaction {MT} {S, Ta}Transaction tTransaction t

PLAYING MoneyTransfer mt PLAYING MoneyTransfer mt

FEATURING Source s AND Target taFEATURING Source s AND Target ta

 General syntax single Config-Expression

SELECT <projection> FROM CoreCore PLAYING Role TypesPLAYING Role Types FEATURING Role TypesFEATURING Role Types

Configuration-Expression

Core

Filling Dimension

Participating Dimension

 ©
 P

ro
f.

U
. A

ßm
an

n

24 Model-Driven Software Development in Technical Spaces (MOST)

Roles in Other Technical Spaces
Role-based Data Management with RSQL

Internal navigation (solid)
► Dynamic Tuple intern
► Accessing roles

Result Group Bank

Bank2 Ø {{mt2, mt3}}

Result Group Transaction

Bank Ø {MT}Transaction {MT} {S, Ta}

t1 {{mt1, mt3}} {{s1}, {t4}}

t2 {{mt2, mt6}} {{s2}, {t2}}

Bank1 Ø {{mt1, mt6}}

External navigation (dashed)
► From roles to Dynamic Tuples
► Leveraging overlapping information

RSQL Result Net [Jäkel2016]
► Sets of Dynamic Tuple as query result

■ Initial pointer to a Dynamic Tuple
■ Navigation path between Dynamic Tuples

 ©
 P

ro
f.

U
. A

ßm
an

n

25 Model-Driven Software Development in Technical Spaces (MOST)

Software System

Roles in Other Technical Spaces
Role-based Data Management with RSQL

Role-based
DBMS

Role-based
DBMS

ApplicationApplication

Role-Based
Application
Role-Based
Application

Role-Based
Application
Role-Based
Application

Database
Design

Store / Load

Store / Load

Role-Based
Conceptual

Model

Role-Based
Conceptual

Model

Role-based
Application Design

SCROLL

SCROLL

CROM

Role-based
Application Design

RSQL Approach
► Standard role abstraction for DBMS

■ Data Model
■ Query Language
■ Result Net

► Dynamic Data Types and Dynamic Tuple
as logical structuring unit

► Independent of the underlying store

Consequences
► Better interoperability between

multiple role-based applications
► Role-based consistency enforceable by

DBMS
► More stable DB schemata

Slides prepared by Tobias Jäkel

RSQL

 ©
 P

ro
f.

U
. A

ßm
an

n

26 Model-Driven Software Development in Technical Spaces (MOST)

Roles in Other Technical Spaces
Overview

translates to

Formal
Model
ConDL

created from

Graphical
Notation

FRaMED
[Kühn2015]

Database
Schema

RSQL

Role-based
Language

SCROLL

Textual
Syntax

TRoML

Compartment
Role Object

Meta-
Model

is a

Conceptual
Model

translates
to

Formal
Model

FormalCROM

translates
to

created from

Operational
 Model

ProRoles

 ©
 P

ro
f.

U
. A

ßm
an

n

27 Model-Driven Software Development in Technical Spaces (MOST)

► Increased complexity of CROM domain models
► Context-dependence and various constraints are hard to comprehend
► Easily leading to inconsistent model or unintended restrictions

Roles in Other Technical Spaces
Role Model Consistency Checking

Roles playable?

Hidden restrictions?

Inconsistant?

 ©
 P

ro
f.

U
. A

ßm
an

n

28 Model-Driven Software Development in Technical Spaces (MOST)

Roles in Other Technical Spaces
Role Model Consistency Checking

Verify consistency of CROM domain models

► Utilize Description Logic (DL) as technical space with highly optimized reasoners

► Express compartments, “players” and roles as DL concepts

► Model compartments and ternary role-playing relation with binary DL roles

► Permit handling rigid, i.e., context-independent, knowledge

► Decidable reasoning on model consistency

 ©
 P

ro
f.

U
. A

ßm
an

n

29 Model-Driven Software Development in Technical Spaces (MOST)

Roles in Other Technical Spaces
Role Model Consistency Checking

Slides prepared by Stephan Böhme

 ©
 P

ro
f.

U
. A

ßm
an

n

30 Model-Driven Software Development in Technical Spaces (MOST)

Roles in Other Technical Spaces
Role Model Consistency Checking

Slides prepared by Stephan Böhme

 ©
 P

ro
f.

U
. A

ßm
an

n

31 Model-Driven Software Development in Technical Spaces (MOST)

Roles in Other Technical Spaces
Role Model Consistency Checking

Contextualized Description Logic (ConDL) [Böhme2015]

► Two-dimensional, two-sorted description logic �M��O�
► �M to describe knowledge about contexts (meta level)

► �O to describe knowledge within contexts (object level)

► Contexts ⩯ possible worlds

► Concepts/axioms of object logic are usual �O concepts/axioms

► Object axioms used as meta concepts

→

 ©
 P

ro
f.

U
. A

ßm
an

n

32 Model-Driven Software Development in Technical Spaces (MOST)

Roles in Other Technical Spaces
Role Model Consistency Checking

Mapping CROM to ConDL

 ©
 P

ro
f.

U
. A

ßm
an

n

33 Model-Driven Software Development in Technical Spaces (MOST)

Roles in Other Technical Spaces
Role Model Consistency Checking

Mapping CROM to ConDL

 ©
 P

ro
f.

U
. A

ßm
an

n

34 Model-Driven Software Development in Technical Spaces (MOST)

Roles in Other Technical Spaces
Role Model Consistency Checking

Limitations (so far)
► CROM does not support attribute-based constraints, while ConDL does
► Global role constraints of CROM not supported, yet

Verifying consistency of CROM models
► ConDL naturally captures semantics of compartments, “players” and roles
► Dedicated reasoner JConHT³ supports efficient reasoning on ConDLs

■ 2EXPTIME-hard complexity
■ Improved, if no rigid names occur
■ Reduced, if nested contexts (compartments) occur

► Decidable reasoning on 􏺙􏺩􏺕􏺪􏺗�􏺙􏺩􏺕􏺪􏺗�

3) https://github.com/ElCattivo13/JConHT

 Model-Driven Software Development in Technical Spaces (MOST) © Prof. U. Aßmann

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie

41.5. Family of Role-based Languages

Prof. Dr. Uwe Aßmann

Dr.-Ing. Thomas Kühn

Technische Universität Dresden

Institut für Software- und
Multimediatechnik

http://st.inf.tu-dresden.de
/teaching/most

Version 16-1.0, 18.12.17

http://st.inf.tu-dresden.de/

 ©
 P

ro
f.

U
. A

ßm
an

n

36 Model-Driven Software Development in Technical Spaces (MOST)

Literature

[Kühn2014] A Metamodel Family for Role-based Modelling and Programming
Languages

T. Kühn, M. Leuthäuser, S. Götz, C. Seidl, and U. Aßmann
Software Language Engineering SLE'14, Springer (2014)

[Kühn2017] A Family of Role-Based Languages
T. Kühn
Dissertation, Technische Universität Dresden, Fakultät Informatik (2017)

 ©
 P

ro
f.

U
. A

ßm
an

n

37 Model-Driven Software Development in Technical Spaces (MOST)

References

[Steimann2000] On the Representation of Roles in Object-Oriented and Conceptual
Modelling.

Friedrich Steimann
Data & Knowledge Engineering, Elsevier, (2000)

 ©
 P

ro
f.

U
. A

ßm
an

n

38 Model-Driven Software Development in Technical Spaces (MOST)

Family of Role-based Languages
Motivation

Context-
Dependent

Relational

Behavioral

Behavioral

Relational

Combined

Relational & Behavioral

Contextual &
Relational

Contextual & Behavioral

„[…] there is not one ideal way of defining [the role concept],
but a number of competing approaches.“

– Friedrich Steimann [Steimann2000]

► How to harmonize and reconcile the research field?

FRaMED
CROM

Support all variants of role-based
languages

 ©
 P

ro
f.

U
. A

ßm
an

n

39 Model-Driven Software Development in Technical Spaces (MOST)

Family of Role-based Languages
Feature Modeling Approach

Design a family of role-based modeling languages
► Reuse graphical notation of CROM as common notation
► Design feature model for role-based languages
► Provide a family of metamodels for language variants
► Extend FRaMED to software product line (SPL)

A B

Intra-Relationship Constraints

irreflexive, acyclic, total, ...

Local Role Constraints

RoleGroup (n..m)

Role Groups

...

cardA cardB

Inter-Relationship Constraints

A

B

cardA

cardB

C
cardC cardD

card = (n...m)
where n is lower and m upper bound

RG

∃CT

RGRG

∀CT ∇CT

Global Role Constraints

Universal Existential Relevant

RG_kRG_1

Occurence Constraints

Compartment Type
card1 cardk

RG_1 RG_k

D

cardE

cardF

CT_A

Global Implications / Prohibition

A

CT_B

B

∀

∃

∇

A B

Role Implication

Role Prohibition

Role Equivalence

Relationship Constraints

Role Constraints

Universal

Existential

Relevant

Prohibition

Rel. Implication

Rel. Exclusion

Fulfilment (fills-Relation)

RigidTypeRoleType

cardA cardBA B

Binary Relationship

CompType

Participation (participates-Relation)

RoleType1 RoleTypeN
...

Rigid Type Inheritance

RigidType SubType

RelType

RelationsEntities

Natural Types

Role Types

NaturalType

fields

methods()

fields
methods()

RoleType

Data Types

DataType

fields

methods()

fields
methods()
RoleTypes

Compartment Types

CompType

Common Notation Family of
Metamodels

Feature
Model

...

Family of Role
Model Editors

 ©
 P

ro
f.

U
. A

ßm
an

n

40 Model-Driven Software Development in Technical Spaces (MOST)

Family of Role-based Languages
Common Graphical Notation

Fulfilment (fills-Relation)

RigidTypeRoleType

cardA cardBA B

Binary Relationship

CompType

Participation (participates-Relation)

RoleType1 RoleTypeN
...

Rigid Type Inheritance

RigidType SubType

RelType

RelationsEntities

Natural Types

Role Types

NaturalType
fields

methods()

fields
methods()

RoleType

Data Types

DataType
fields

methods()

fields
methods()
RoleTypes

Compartment Types

CompType

A B

Intra-Relationship Constraints

irreflexive, acyclic, total, ...

Local Role Constraints

RoleGroup (n..m)

Role Groups

...

cardA cardB

Inter-Relationship Constraints

A

B

cardA

cardB

CcardC cardD

card = (n...m)
where n is lower and m upper bound

RG

∃CT

RGRG

∀CT ∇CT

Global Role Constraints

Universal Existential Relevant

RG_kRG_1

Occurence Constraints

Compartment Type
card1 cardk

RG_1 RG_k

D

cardE

cardF

CT_A

Global Implications / Prohibition

A

CT_B

B

∀

∃

∇

A B

Role Implication

Role Prohibition

Role Equivalence

Relationship Constraints

Role Constraints

Universal

Existential

Relevant

Prohibition

Rel. Implication

Rel. Exclusion

 ©
 P

ro
f.

U
. A

ßm
an

n

41 Model-Driven Software Development in Technical Spaces (MOST)

Family of Role-based Languages
Feature Modeling Approach

Feature Model [Kühn2014]
► Collects all 27 features of roles
► Captures implicit dependencies among

features
► 6 cross tree constraints enforce

consistency

Usage
► Configuration of language variant
► Automatic generation of corresponding

■ Metamodel and
■ Role model editor

1

1

5

13

8

22

11

3

4

7

19

6

14

15

16

26

23

21

24

25

20

20

17

2

9

10

12

18

27

 ©
 P

ro
f.

U
. A

ßm
an

n

42 Model-Driven Software Development in Technical Spaces (MOST)

Family of Role-based Languages
Software Product Line of CROM Metamodels [Kühn2014]⁴

RigidType Type

NaturalType

CompartmentType

AntiRigidType

RoleType

Relationship
direction : Direction

Fulfillment

Inheritance

Constraint

RoleConstraint

RelationshipConstraint

IntraRelationshipConstraint InterRelationshipConstraint

NaturalInherita...

CompartmentIn...

RoleInheritance

Place
lower : EInt
upper : EInt

<<enumeration>>
Direction

Undirected
FirstToSecond
SecondToFirst

RelationshipImplicationIrreflexive

Cyclic

Total

AbstractRole

RoleGroup
lower : EInt
upper : EInt

RoleImplication

RoleEquivalence

RoleProhibition

Part
lower : EInt
upper : EInt

RoleGroupElement

AbstractRoleRef

elements

1..*

super 1

super 1

super 1

sub 1

sub 1

sub 1

filled1

filler

1

first1

second1

first1

second1

holder1

relation
0..1

first
1

second
1

parts
0..*

whole1

relationships0..*

constraints

0..*

role 1

ref 1

contains

1..*

fulfillments

0..*

RML Feature Model

Role Types

Role Structure

Role Properties

Role Behavior

Role Inheritance

Playable

Players

Objects

Roles

Compartments

Role Dependent Player Features

Different Roles Simultaneously

Same Role Type Several Times

By Unrelated Players

Dynamically

Transferable between Players

Role Dependent Player State

Restrict Access

Dependent
On Compartments

On Relationships

Role Constraints

Role Implication

Role Prohibition

Role Equivalence

Group Constraints

Role Identity
Shared Identity

Owned Role Identity

Relationships Relationship Constraints

Relationship Cardinality

Intra Relationship Constraints

Inter Relationship Constraints

Compartment Types

Compartment Structure

Compartment Properties

Compartment Behavior

Compartment Inheritance

Participants

Contains Roles

Contains Compartments

Can Belong to Many Compartments

Playable by Defining Compartment

Compartment Identity
Composite Identity

Own Compartment Identity

Legend:

Mandatory
Optional
Or
Alternative
Abstract
Concrete

1

1

5

13

8

22

11

3

4

7

19

6

14

15

16

26

23

21

24

25

20

20

17

2

9

10

12

18

Selected

► Eclipse-based metamodel generator to create Ecore model variant
► Delta Modeling Approach refines a common base wrt. each selected feature

4) https://github.com/Eden-06/RoSI_CROM

 ©
 P

ro
f.

U
. A

ßm
an

n

43 Model-Driven Software Development in Technical Spaces (MOST)

Family of Role-based Languages
Software Product Line of CROM Metamodels [Kühn2014]⁴

► Based on Eclipse Modeling Framework (EMF), FeatureIDE [Thüm2014], and
DeltaEcore [Seidl2014]

► Feature minimal metamodel as common base
► Feature Mapping maps configuration to delta modules
► Delta modules add or refine model elements

4) https://github.com/Eden-06/RoSI_CROM

 ©
 P

ro
f.

U
. A

ßm
an

n

44 Model-Driven Software Development in Technical Spaces (MOST)

Family of Role-based Languages
Software Product Line of Role Model Editors [Kühn2017]⁵

► Support easy runtime reconfiguration of modeling language variants
► Feature configuration maintained for each graphical model (GORM)
► CROM variant is updated upon saving

5) https://github.com/Eden-06/FRaMED-2.0

 ©
 P

ro
f.

U
. A

ßm
an

n

45 Model-Driven Software Development in Technical Spaces (MOST)

Family of Role-based Languages
Software Product Line of Role Model Editors [Kühn2017]⁵

► Extension of FRaMED to fully dynamic feature-oriented product line
■ Feature-aware Palette
■ Family of Edit Policies to adapt editor behavior
■ Family of Model Transformations to save selected CROM variant

► Extensible due to family of Metamodels, Edit Policies and Model Transformations

5) https://github.com/Eden-06/FRaMED-2.0

 ©
 P

ro
f.

U
. A

ßm
an

n

46 Model-Driven Software Development in Technical Spaces (MOST)

Family of Role-based Languages
Tool Support

Tools Applicable within FRaMED SPL

translates to

Formal
Model
ConDL

[Böhme2016]

created from

Graphical
Notation

FRaMED SPL
[Kühn2017]

Database
Schema

RSQL
[Jäkel2016]

Role-based
Language

SCROLL
[Leuthäuser2015]

Textual
Syntax

TRoML

Compartment
Role Object

Model
Variants

is a

Conceptual
Model

translates
to

Formal
Model

FormalCROM
[Kühn2014]

translates
to

created from

Operational
 Model

ProRoles

 ©
 P

ro
f.

U
. A

ßm
an

n

47 Model-Driven Software Development in Technical Spaces (MOST)

Family of Role-based Languages
Summary

SCROLL
● Role-oriented

programming
● Generation of

program stub

RSQL
● Role-based

database
● Generation of

database schema

ConDL
● Contextual

ontology
● Validation of

consistency

formalCROM
● Formal model

for roles
● Validation of

well-formedness

Artifact Generation

...

Behavioral
Metamodel

● Features roles
played by objects

● Supports role-
and group-
constraints

...

Metamodel Generation

Relational
Metamodel

● Relationships
with role ends

● Adds inter- and
intra-relationship
constraints

Contextual
Metamodel

● Compartments
containing roles
and relationships

● Adds occurrence
constraints

FRaMED Configuration

Behavioral Role-
Based

Modeling Language
● For behavioral

models
● Design simple

role models

Relational Role-
Based

Modeling Language
● Generates

relational models
● Declare role

relational models

Contextual Role-
Based

Modeling Language
● Context-depen-

dent models
● For contextual

role models

...

Behavioral
Role

Model

Relational
Role

Model

Contextual
Role

Model

Modeling

......

RML Feature Model

Role Types

Role Structure

Role Properties

Role Behavior

Role Inheritance

Playable

Players

Objects

Roles

Compartments

Role Dependent Player Features

Different Roles Simultaneously

Same Role Type Several Times

By Unrelated Players

Dynamically

Transferable between Players

Role Dependent Player State

Restrict Access

Dependent
On Compartments

On Relationships

Role Constraints

Role Implication

Role Prohibition

Role Equivalence

Group Constraints

Role Identity
Shared Identity

Owned Role Identity

Relationships Relationship Constraints

Relationship Cardinality

Intra Relationship Constraints

Inter Relationship Constraints

Compartment Types

Compartment Structure

Compartment Properties

Compartment Behavior

Compartment Inheritance

Participants

Contains Roles

Contains Compartments

Can Belong to Many Compartments

Playable by Defining Compartment

Compartment Identity
Composite Identity

Own Compartment Identity

Legend:

Mandatory
Optional
Or
Alternative
Abstract
Concrete

1

1

5

13

8

22

11

3

4

7

19

6

14

15

16

26

23

21

24

25

20

20

17

2

9

10

12

18

Selected

Feature Configuration

 ©
 P

ro
f.

U
. A

ßm
an

n

48 Model-Driven Software Development in Technical Spaces (MOST)

Family of Role-based Languages
Conclusion

Context-
Dependent

Relational

Behavioral

Behavioral

Relational

Combined

Relational & Behavioral

Contextual &
Relational

Contextual & Behavioral

► Metamodeling approach to reconcile and harmonize a research field
► Applicable for other domains: Context-Oriented Programming (COP)

FRaMED
CROM

Family of Metamodels [Kühn2014]
FRaMED Software Product Line

[Kühn2017]

 ©
 P

ro
f.

U
. A

ßm
an

n

49 Model-Driven Software Development in Technical Spaces (MOST)

The End

► Why is it hard to reconcile and harmonize a research field?
► What role does a metamodel play in a language?
► Why is the generator of metamodels beneficial for RoSI?
► How does one typically bridge the gap between technical spaces

	Family of Role-Based (Meta-)Models
	Recap
	Role-based Languages Overview
	Compartment Role Object Model
	CROM Metamodel
	Tool Support for CROM
	A Metamodel for RoSI
	41.4 Literature
	41.4 References
	Role-oriented Programming
	Issue of Role-based Software
	Four Dimensional Dispatch
	Role-oriented Programming with SCROLL
	SCROLL Banking Application
	Declerative Dispatch Description
	SROLL Summary
	Role-based Data Management
	Role-Relational Impedance Mismatch
	Role-based Data Management with RSQL
	RSQL Database Model
	Dynamic Data Types
	Dynamic Tuples
	RSQL Data Query Language
	Folie 24
	RSQL Approach
	Reasoning on Role Models
	Role Model Consistency Checking
	Role Model Consistency Checking with ConDL
	Description Logic Syntax
	Description Logic Semantics
	Contextualized Descrption Logic (ConDL)
	Mapping CROM to ConDL
	Reasoning on CROM with ConDL
	Verifying consistency of CROMs
	Family of Role-based Languages
	41.5 Literature
	41.5 References
	How to harmonize and reconcile?
	Feature Modeling Approach
	Common Graphical Notation
	Feature Model
	Family of CROM Metamodels
	CROM Metamodel Generator
	Family of Role Model Editors
	Role Model Editor Product Line
	Additional Tool Support
	Summary
	Conclusion
	The End

