
 Model-Driven Software Development in Technical Spaces (MOST) © Prof. U. Aßmann

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie

41. Role-Based (Meta-)Modeling

in the Research Training School on
Role-oriented Software Infrastructures (RoSI)

1. A Primer on Roles

2. Role-based Modeling and Programming Languages

3. The Compartment Role Object Model (CROM)

 ©
 P

ro
f.

U
. A

ßm
an

n

2 Model-Driven Software Development in Technical Spaces (MOST)

Complexity Change Longevity

Leagacy Code
► Technological dept
► Cobol & Fortran

programs still running

Business Rules
► Daily stockmarket,

currency, ...
► Quarterly

legal, tax, ...

BIAN Standard1

► 180 business
scenarios

► 280 unique business
capabilities

1) https://bian.org/assets/bian-standards/bian-service-landscape-3-0/

Markus Bernet (CC-SA 2.5) http://en.wikipedia.org/wiki/File:Frankfurt_Deutsche_Bank.jpg
Katrina Tuliao (CC-SA 2.0) http://www.flickr.com/photos/thewalkingirony/3051500551/

Roles increase
separation of concerns

Roles allow for dynamic
changes of the system

Roles enable updating
running applications

Challenges of Software Systems

 ©
 P

ro
f.

U
. A

ßm
an

n

3 Model-Driven Software Development in Technical Spaces (MOST)

The RoSI Research Training Group
Software Development for continuous-context-sensitive Systems

Foundation
Data Modeling, Logics, Programming Systems, Software Engineering

RoSI

Meta Modeling
Object Modeling

Language Modeling
Data Modeling

Application Modeling
Schema Design

System Modeling

C
o

n
ce

p
t

o
f

R
o

le
s

as
 G

en
er

al
 M

o
d
el

in
g
 P

ar
ad

ig
m

TB1
Roles in

Conceptual
and

Language
Modeling

TB2
Roles in
Software

Engineering

R
u
n
ti
m

e
S
u
p
p
o
rt

TB3
Roles at
Runtime

In
fl
u
en

ce

D
er

iv
at

io
n

 ©
 P

ro
f.

U
. A

ßm
an

n

4 Model-Driven Software Development in Technical Spaces (MOST)

The RoSI Research Training Group
Research Areas

Role-based
Design

Privacy
and

Data Security

Automata
Theory

Algebraic
and Logical
Foundations

Software
Technology

Computer
Networks

Compiler
Construction

Database

 Model-Driven Software Development in Technical Spaces (MOST) © Prof. U. Aßmann

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie

41.1. A Primer on Roles

Prof. Dr. Uwe Aßmann

Dr.-Ing. Thomas Kühn

Technische Universität Dresden

Institut für Software- und
Multimediatechnik

http://st.inf.tu-dresden.de
/teaching/most

Version 16-1.0, 18.12.17

http://st.inf.tu-dresden.de/

 ©
 P

ro
f.

U
. A

ßm
an

n

6 Model-Driven Software Development in Technical Spaces (MOST)

► Entities play multiple Roles during their lifetime

Examples: Driver, Doctor, Patient, Student, ...

BobAlice
Nurse

Gregory

Doctor
Bob

Patient
Bob

Driver

Bob

Injured

A Primer on Roles
Basic Roles

 ©
 P

ro
f.

U
. A

ßm
an

n

7 Model-Driven Software Development in Technical Spaces (MOST)

A Primer on Roles
Limitations of Object-Oriented Design

Supplier/Customer Problem
[Steimann2000]

Multiple Classification State-Dependence

► Specialization of entity
depends on state

► Entity subject to multiple
classifying features

► Multiple entities fulfill
the same roles

Supplier Customer

Person Company

Queue

Unordered

OrderedSynchronized

SO NUNO SU

NoSynch.

Order

status:EState

Shipped

carrier:String

Delivered

delivery:Date

Person Company

Supplier Customer Synchronized

Queue

Ordered Order

status:EState

Shipped

carrier:String

Delivered

delivery:Date

Class RoleType can playinheritance role implication

 ©
 P

ro
f.

U
. A

ßm
an

n

8 Model-Driven Software Development in Technical Spaces (MOST)

Context: Engagement

Role: Wife

Co-Role: Husband

Josephine Hello, darling!

A Primer on Roles
Context-Dependent Roles

 ©
 P

ro
f.

U
. A

ßm
an

n

9 Model-Driven Software Development in Technical Spaces (MOST)

Context: Chair of Software Technology

Role: Research Assistant

Co-Role: Professor

Prof. Aßmann
Hello Prof. Aßmann,

what can I do for you?

A Primer on Roles
Context-Dependent Roles

 ©
 P

ro
f.

U
. A

ßm
an

n

10 Model-Driven Software Development in Technical Spaces (MOST)

Context: Chair of Software Technology

Role: Called

Co-Role: (Unkown)Caller

+49351 463... Hello, this is chair of software
technology, Thomas Kühn

speaking.
How may I help you?

A Primer on Roles
Context-Dependent Roles

 ©
 P

ro
f.

U
. A

ßm
an

n

11 Model-Driven Software Development in Technical Spaces (MOST)

Context: Federal Republic of Germany

Role: Federal Citizen

Co-Role: Chancellor of Germany

Angela Merkel
Uh... What... Eh...

How may I help you?

A Primer on Roles
Context-Dependent Roles

 ©
 P

ro
f.

U
. A

ßm
an

n

12 Model-Driven Software Development in Technical Spaces (MOST)

► Role activation depends on context of both Caller and Called
► Roles can denote places in a relationship
► Each role is bound to context (instance)
► Contexts are hierarchically decomposable

■ May contain contexts, but
■ May overlap

► In the literature a context can be:
■ Relationship,
■ Process,
■ Social Individual,
■ Social Institution or
■ Ontology

A Primer on Roles
Summary

 Model-Driven Software Development in Technical Spaces (MOST) © Prof. U. Aßmann

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie

41.2. Roles in Modeling and Programming Languages

Prof. Dr. Uwe Aßmann

Dr.-Ing. Thomas Kühn

Technische Universität Dresden

Institut für Software- und
Multimediatechnik

http://st.inf.tu-dresden.de
/teaching/most

Version 16-1.0, 18.12.17

http://st.inf.tu-dresden.de/

 ©
 P

ro
f.

U
. A

ßm
an

n

14 Model-Driven Software Development in Technical Spaces (MOST)

Literature

[Steimann2000] On the Representation of Roles in Object-Oriented and Conceptual
Modelling.

Friedrich Steimann
Data & Knowledge Engineering, Elsevier, (2000)

[Kühn2014] A Metamodel Family for Role-based Modelling and Programming
Languages

T. Kühn, M. Leuthäuser, S. Götz, C. Seidl, and U. Aßmann
Software Language Engineering SLE'14, Springer (2014)

[Kühn2017] A Family of Role-Based Languages
T. Kühn
Dissertation, Technische Universität Dresden, Fakultät Informatik (2017)

 ©
 P

ro
f.

U
. A

ßm
an

n

15 Model-Driven Software Development in Technical Spaces (MOST)

References

[Bachman1977] The Role Concept in Data Models. Charles W. Bachman and Manilal Daya. VLDB (1977)

[Balzer2007] A Relational Model of Object Collaborations and its Use in Reasoning about Relationships. S.
Balzer, T. Gross, and P. Eugster. ECOOP, vol. 4609 of LNCS (2007)

[Barbosa2012] Modeling and Programming with Roles: introducing JavaStage. F.S. Barbosa and A. Aguiar.
Tech.Rrep., Instituto Polit ́cnico de Castelo Branco (2012)

[Burmester2005] Model-Driven Development of Reconfigurable Mechatronic Systems with Mechatronic UML. S.
Burmester, G. Holger, and M. Tichy. Model Driven Architecture, Springer, 2005

[Carrington2004] Using Integrated Metamodeling to Define OO Design Patterns with Object-Z and UML. S.-K.
Kim and D. Carrington. 11th Asia-Pacific Software Engineering Conference, IEEE (2004)

[Dahchour2002] A Generic Role Model for Dynamic Objects. M. Dahchour et al. Advanced Information Systems
Engineering, Springer (2002)

[Genovese2007] A meta-model for roles: Introducing sessions. V. Genovese. Roles’ 07 (2007)

[Graversen2003] Implementation of a Role Language for Object-Specific Dynamic Separation of Concerns. K.B.
Graversen and K. Østerbye. AOSD03 Workshop (2003)

[Halpin2005] ORM 2. T. A. Halpin. OTM Workshops, vol. 3762 of LNCS (2005)

[He2006] Rava: Designing a Java Extension with Dynamic Object Roles. Chengwan He, et al. 13th Annual
IEEE International Symposium and Workshop (2006)

[Hennicker2014] Foundations for Ensemble Modeling The HELENA Approach. R. Hennicker and A. Klarl.
Specification, Algebra, and Software, Springer (2014)

 ©
 P

ro
f.

U
. A

ßm
an

n

16 Model-Driven Software Development in Technical Spaces (MOST)

References

[Kamina2009] Towards Safe and Flexible Object Adaptation. Tetsuo Kamina and Tetsuo Tamai. International
Workshop on COP (2009)

[Kim2002] Using Role-Based Modeling Language (RBML) to Characterize Model Families. D.-K. Kim, R.
France, S. Ghosh, and E. Song. Engineering of Complex Computer Systems, IEEE, 2002

[Klarman2010] ALCALC: A Context Description Logic. S. Klarman and V. Gutiérrez-Basulto. Workshop on Logics in

Artificial Intelligence, Springer (2010)

[Liu2009] Information Networking Model. M. Liu and J. Hu. Conceptual Modeling - ER (2009)

[Reenskaug2009] The DCI Architecture: A New Vision of Object-oriented Programming. T. Reenskaug and J. O.
Coplien. http://www. artima. com/articles/dci vision. Html (2009)

[Selçuk2004} JAWIRO: Enhancing Java with Roles. Y. E. Selçuk and N. Erdogan. Symposium on Computer and
Information Sciences, Springer (2004)

[Silva2003] Taming Agents and Objects in Software Engineering. V. Da Silva, A. Garcia, A. Brandão, C.
Chavez, C. Lucena, and P. Alencar. Workshop on SE for Large-Scale MAS, Springer (2003)

[Zhu2006] Role-Based Collaboration and its Kernel Mechanisms. H. Zhu and M. Zhou. IEEE Transactions
36(4) (2006)

 ©
 P

ro
f.

U
. A

ßm
an

n

17 Model-Driven Software Development in Technical Spaces (MOST)

Roles in Modeling and Programming Languages
History

„All the world's a stage, and all the men and women merely players:
they have their exits and their entrances;

and one man in his time plays many parts, his acts being seven ages.“
– William Shakespeare

The Role Concept
► Relatively old, e.g. Bachman and Daya [Bachmann1977]
► Since then many different approaches emerged [Kühn2017]
► No common understanding (or formalism) for roles

Each approach can be classified along design decisions

 ©
 P

ro
f.

U
. A

ßm
an

n

18 Model-Driven Software Development in Technical Spaces (MOST)

Roles in Modeling and Programming Languages
Initial Classifying Features of Roles

Feature Metalevel

(1) Roles have properties and behaviors (M1,M0)

(2) Roles depend on relationships (M1,M0)

(3) An object may play different roles simultaneously (M1,M0)

(4) An object may play the same role (type) several times (M0)

(5) An object may acquire and abandon roles dynamically (M0)

(6) Sequence of role acquisition and removal may be restricted (M1,M0)

(7) Unrelated objects can play the same role (M1)

(8) Roles can play roles (M1,M0)

(9) Roles can be transferred between objects (M0)

(10)The state of an object can be role-specific (M0)

(11)Features of an object can be role-specific (M1)

(12)Roles restrict access (M0)

(13)Different roles may share structure and behavior (M1)

(14)An object and its roles share identity (M0)

(15)An object and its roles have different identities (M0)

– Friedrich Steimann [Steimann2000]

Re
la

ti
on

al
B

eh
av

io
ra

l

 ©
 P

ro
f.

U
. A

ßm
an

n

19 Model-Driven Software Development in Technical Spaces (MOST)

Roles in Modeling and Programming Languages
Additional Classifying Features of Roles

Feature Metalevel

(16)Relationships between Roles can be constrained (M1)

(17)There may be constraints between relationship (M1)

(18)Roles can be grouped and constrained together (M1)

(19)Roles depend on contexts (M1,M0)

(20)Contexts have properties and behaviors (M1,M0)

(21)A role can be part of several contexts (M1,M0)

(22)Contexts may play roles like objects (M1,M0)

(23)Contexts may play roles which are part of themselves (M1,M0)

(24)Contexts can contain other contexts (M1,M0)

(25)Different contexts may share structure and behavior (M1)

(26)Contexts have their own identity (M0)

(27)The number of roles occurring in a context can be constrained (M1)

– Kühn et al. [Kühn2000]

C
on

te
xt

-D
ep

en
de

nt

 ©
 P

ro
f.

U
. A

ßm
an

n

20 Model-Driven Software Development in Technical Spaces (MOST)

Roles in Modeling and Programming Languages
Natures of Roles

Context-
Dependent

Relational

Behavioral

Roles are named
places of relationships

Roles adapt the
behavior of playing

objects

Roles can capture
context-dependent
properties of objects

 ©
 P

ro
f.

U
. A

ßm
an

n

21 Model-Driven Software Development in Technical Spaces (MOST)

Roles in Modeling and Programming Languages
Literature Survey [Kühn2014,Kühn2017]

Context-
Dependent

Relational

Behavioral

Behavioral
[Dahchour2002, Graversen2003,
 Selçuk2004, He2006, Barbosa2012]

Relational
[Halpin2005]

Combined
[Silva2003,
 Hennicker2015]

Relational & Behavioral
[Steimann2000, Kim2003,
 Carrington2003, Balzer2007,
 Noble2008, Guizzardi2012,
 Harkes2014]

Contextual &
Relational
[Liu2009,
 Klarman2010]

Contextual & Behavioral
[Tamai2000, Selçuk2004, Herrmann2005,
 Zhu2005, Burmester2005, Boella2006,
 Genovese2007, Reenskaug2009, Kamina2009,
 Pradel2009]

► Structured Literature Review of publications since 2000
► Published by the big four (i.e., Springer, IEEE, ACM, Science Direct)

Research Field suffers from fragmentation and discontinuity

 ©
 P

ro
f.

U
. A

ßm
an

n

22 Model-Driven Software Development in Technical Spaces (MOST)

Roles in Modeling and Programming Languages
Selected Relational Modeling Languages

LODWICK’s UML Notation [Steimann2000]

Object-Role Modeling (ORM) 2 [Halpin2005]

 ©
 P

ro
f.

U
. A

ßm
an

n

23 Model-Driven Software Development in Technical Spaces (MOST)

Roles in Modeling and Programming Languages
Selected Relational and Behavioral Modeling Languages

OntoUML [Guizzardi2012]

 ©
 P

ro
f.

U
. A

ßm
an

n

24 Model-Driven Software Development in Technical Spaces (MOST)

Roles in Modeling and Programming Languages
Selected Contextual and Relational Modeling Languages

Information Network Model (INM) [Liu2009]

 ©
 P

ro
f.

U
. A

ßm
an

n

25 Model-Driven Software Development in Technical Spaces (MOST)

Roles in Modeling and Programming Languages
Selected Combined Modeling Languages

Taming Agents and Objects (TAO) [Silva2003]

 ©
 P

ro
f.

U
. A

ßm
an

n

26 Model-Driven Software Development in Technical Spaces (MOST)

Roles in Modeling and Programming Languages
Selected Combined Modeling Languages

The HELENA Approach [Hennicker2015]

 ©
 P

ro
f.

U
. A

ßm
an

n

27 Model-Driven Software Development in Technical Spaces (MOST)

Roles in Modeling and Programming Languages
Comparison (1)

Role-Based Programming LanguagesRole-Based Modeling Languages

Roles
depend on
Relation-
ships

Roles
played by
unrelated
Objects

 ©
 P

ro
f.

U
. A

ßm
an

n

28 Model-Driven Software Development in Technical Spaces (MOST)

Roles in Modeling and Programming Languages
Comparison (2)

Roles
depend on

Contexts

Role-Based Programming LanguagesRole-Based Modeling Languages

 ©
 P

ro
f.

U
. A

ßm
an

n

29 Model-Driven Software Development in Technical Spaces (MOST)

► Discontinuity and fragmentation of research field

► Insufficient formal foundation for role-based languages

► No language supports all features of roles and modeling constraints

► Only few languages provide tool support, most rely on UML stereotypes

► No family of role-based language for all language variants

Roles in Modeling and Programming Languages
Summary

 Model-Driven Software Development in Technical Spaces (MOST) © Prof. U. Aßmann

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie

41.3. The Compartment Role Object Model (CROM)

Prof. Dr. Uwe Aßmann

Dr.-Ing. Thomas Kühn

Technische Universität Dresden

Institut für Software- und
Multimediatechnik

http://st.inf.tu-dresden.de
/teaching/most

Version 16-1.0, 18.12.17

http://st.inf.tu-dresden.de/

 ©
 P

ro
f.

U
. A

ßm
an

n

31 Model-Driven Software Development in Technical Spaces (MOST)

Literature

[Kühn2015] A Combined Formal Model for Relational Context-Dependent Roles
T. Kühn, S. Böhme, S. Götz and U. Aßmann
Software Language Engineering SLE’15, ACM (2015)

[Kühn2016] FRaMED: Full-Fledge Role Modeling Editor (Tool Demo)
T. Kühn, K. Bierzynski, S. Richly, and U. Aßmann
Software Language Engineering SLE'16, ACM (2016)

 ©
 P

ro
f.

U
. A

ßm
an

n

32 Model-Driven Software Development in Technical Spaces (MOST)

References

[Leuthäuser2015] Enabling View-based Programming with SCROLL: Using Roles and Dynamic
Dispatch for Establishing View-based Programming. Max Leuthäuser and Uwe Aßmann. MORSE/VAO
’15, ACM (2015)

[Jäkel2016] Towards a Contextual Database. T. Jäkel, T. Kühn, H. Voigt, and W. Lehner. ADBIS
(2016)

[Böhme2017] Reasoning on Context-Dependent Domain Models. S Böhme, T. Kühn.Proceedings of the
JIST (2017)

 ©
 P

ro
f.

U
. A

ßm
an

n

33 Model-Driven Software Development in Technical Spaces (MOST)

The Compartment Role Object Model (CROM)
Design Goals

Design a role-based modeling language for RoSI

► Incorporate all natures of roles and model constraints

► Develop a graphical role-based modeling language

► Provide a formal foundation for the modeling language

► Offer readily applicable tools for modeling and code generation

► Support both formal and automatic verification of role models

 ©
 P

ro
f.

U
. A

ßm
an

n

34 Model-Driven Software Development in Technical Spaces (MOST)

The Compartment Role Object Model (CROM)
Graphical Notation

Fulfilment (fills-Relation)

RigidTypeRoleType

cardA cardBA B

Binary Relationship

CompType

Participation (participates-Relation)

RoleType1 RoleTypeN
...

Rigid Type Inheritance

RigidType SubType

RelType

RelationsEntities

Natural Types

Role Types

NaturalType
fields

methods()

fields
methods()

RoleType

Data Types

DataType
fields

methods()

fields
methods()
RoleTypes

Compartment Types

CompType

A B

Intra-Relationship Constraints

irreflexive, acyclic, total, ...

Local Role Constraints

RoleGroup (n..m)

Role Groups

...

cardA cardB

Inter-Relationship Constraints

A

B

cardA

cardB

CcardC cardD

card = (n...m)
where n is lower and m upper bound

RG

∃CT

RGRG

∀CT ∇CT

Global Role Constraints

Universal Existential Relevant

RG_kRG_1

Occurence Constraints

Compartment Type
card1 cardk

RG_1 RG_k

D

cardE

cardF

CT_A

Global Implications / Prohibition

A

CT_B

B

∀

∃

∇

A B

Role Implication

Role Prohibition

Role Equivalence

Relationship Constraints

Role Constraints

Universal

Existential

Relevant

Prohibition

Rel. Implication

Rel. Exclusion

 ©
 P

ro
f.

U
. A

ßm
an

n

35 Model-Driven Software Development in Technical Spaces (MOST)

The Compartment Role Object Model (CROM)
Graphical Notation

Account
id:int
balance: Money

BankAccounts (1..1)

Person
title: String
firstName: String
lastName: String
address: String

Company
name: String
legalForm: String
addresses: String[]
POBox: String

Participants (1..1)

Natural Type Role Type
Fills-Relation

RoleGroup (n..m)

id:int
name:String

Customer

TargetSource

limit:Money

CheckingAccount

transactionFee:Double

SavingsAccount

phone:String

Consultant

Account
id:int
balance: Money

trans1 1

BankAccounts (1..1)

Person
title: String
firstName: String
lastName: String
address: String

Company
name: String
legalForm: String
addresses: String[]
POBox: String

own_ca

1

0..*

own_sa1..* 0..*

Participants (1..1)

advises

0..*

1..*

Natural Type Role Type
Fills-Relation

RSTCardN CardMRoleGroup (n..m)

RST Constraint

irreflexive

id:int
name:String

Customer

TargetSource

limit:Money

CheckingAccount

transactionFee:Double

SavingsAccount

phone:String

Consultant

name:String creationtime:DateTime
amount:Money

Bank Transaction

Account
id:int
balance: Money

trans1 1

BankAccounts (1..1)

Person
title: String
firstName: String
lastName: String
address: String

Company
name: String
legalForm: String
addresses: String[]
POBox: String

own_ca

1

0..*

own_sa1..* 0..*

2..20..*
Participants (1..1)

0..*

0..*

1..*

advises

0..*

1..*

Natural Type Role Type
Fills-Relation

Compartment Type

RSTCardN CardMRoleGroup (n..m)

Card

RST Constraint

irreflexive

id:int
name:String

Customer

TargetSource

limit:Money

CheckingAccount

transactionFee:Double

SavingsAccount

execution:DateTime

MoneyTransfer

phone:String

Consultant

∃ Existential
Implication

∃

Example: Banking Application

 ©
 P

ro
f.

U
. A

ßm
an

n

36 Model-Driven Software Development in Technical Spaces (MOST)

The Compartment Role Object Model (CROM)
Graphical Notation

Context
► Prescriptive (Bottom Up)
► Have (so far) no identity
► Have no intrinsic behavior
► Indefinite lifetime
► Can not play roles
► Has no existential part

Compartments
► Descriptive (Top Down)
► Instances carry identity (Feature 26)
► Have behavior and state (Feature 19)
► Have a defined lifetime
► Can play roles
► Has roles as parts (Feature 20)

Compartment Types
► Denote an objectified collaboration between participants
► Declare a class of compartments (instances) with

■ Properties, behavior, role types, and relationships
► Represent processes, teams, institutions, or “context“ [Kühn2014]

 ©
 P

ro
f.

U
. A

ßm
an

n

37 Model-Driven Software Development in Technical Spaces (MOST)

The Compartment Role Object Model (CROM)
Formal Foundation

Ontological Foundation
Distinction of concepts by meta-properties:
► Rigidity [Steimann2000, Guizzardi2005]

■ Type is rigid, if its instances have this type until they die
► Foundedness (Dependence) [Steimann2000, Guizzardi2005]

■ Type is founded, if its instances depend on existence of other instances
► Identity [Guizzardi2005]

■ Whether identity of an instance is unique, derived or composed from others

Concept Rigid Founded Identity Example

Natural Types yes no unique Person, Company

Data Types yes no derived Money

Role Types no¹ yes derived Consultant, Customer

Compartment Types yes yes unique Bank, Transaction

Relationship Types yes yes composite advises, owns

¹) Actual classified as anti-rigid by Guizzardi et.al. [Guizzardi2005]

 ©
 P

ro
f.

U
. A

ßm
an

n

38 Model-Driven Software Development in Technical Spaces (MOST)

The Compartment Role Object Model (CROM)
Formal Foundation

Ontological Foundation

Questions to classify domain concepts:
► Rigidity

■ Belong instances of the concept to this type throughout their lifetime?
► Foundedness (Dependence)

■ Depend instances of the concept on existence of another instance?
► Identity

■ Carry instances of the concept a unique, derived or composite identity criterion?

Answers are still domain-dependent

 ©
 P

ro
f.

U
. A

ßm
an

n

39 Model-Driven Software Development in Technical Spaces (MOST)

The Compartment Role Object Model (CROM)
Formal Foundation

CROM EMOF (Ecore) Metamodel²

2) https://github.com/Eden-06/CROM

RigidType Type

NaturalType

CompartmentType

AntiRigidType

RoleType

Relationship
direction : Direction

Fulfillment

Inheritance

Constraint

RoleConstraint

RelationshipConstraint

IntraRelationshipConstraint InterRelationshipConstraint

NaturalInherita...

CompartmentIn...

RoleInheritance

Place
lower : EInt
upper : EInt

<<enumeration>>
Direction

Undirected
FirstToSecond
SecondToFirst

RelationshipImplicationIrreflexive

Cyclic

Total

AbstractRole

RoleGroup
lower : EInt
upper : EInt

RoleImplication

RoleEquivalence

RoleProhibition

Part
lower : EInt
upper : EInt

RoleGroupElement

AbstractRoleRef

elements

1..*

super 1

super 1

super 1

sub 1

sub 1

sub 1

filled1

filler

1

first1

second1

first1

second1

holder1

relation
0..1

first
1

second
1

parts
0..*

whole1

relationships0..*

constraints

0..*

role 1

ref 1

contains

1..*

fulfillments

0..*

 ©
 P

ro
f.

U
. A

ßm
an

n

40 Model-Driven Software Development in Technical Spaces (MOST)

The Compartment Role Object Model (CROM)
Formal Foundation

Formal Model

 ©
 P

ro
f.

U
. A

ßm
an

n

41 Model-Driven Software Development in Technical Spaces (MOST)

The Compartment Role Object Model (CROM)
Formal Foundation

Constraint Model

 ©
 P

ro
f.

U
. A

ßm
an

n

42 Model-Driven Software Development in Technical Spaces (MOST)

The Compartment Role Object Model (CROM)
Tool Support

Full-fledged Role Modeling Editor (FRaMED)³
► Zoomable editor with Top-Level and Focus view for Compartment Types
► Top-Level view for specifying:

■ Natural, Data and Compartment Types, as well as inheritance and fulfillment
► Focus view for specifying

■ Role and Relationship Type, as well as Role Groups and Constraints
3) https://github.com/leondart/FRaMED

 ©
 P

ro
f.

U
. A

ßm
an

n

43 Model-Driven Software Development in Technical Spaces (MOST)

The Compartment Role Object Model (CROM)
Tool Support

Editor UI

Transformation

Code Generator

FRaMED

Xtend

Build Generate

GEF

UI

Epsilon(ETL)

Trans-
former

initiate

read create

initiate

Metamodel

Ecore

read

CROM
Ecore

GORM

edits

Edit
Policies

Trans.
Rules

Full-fledged Role Modeling Editor (FRaMED)³
► Fully model-driven Eclispe-based editor based on:

■ Eclipse Modeling Framework (EMF), Graphical Editing Framework (GEF),
Epsilon (ETL)

► Separation of Graphical Model (GORM) and Semantic Model (CROM)

3) https://github.com/leondart/FRaMED

 ©
 P

ro
f.

U
. A

ßm
an

n

44 Model-Driven Software Development in Technical Spaces (MOST)

The Compartment Role Object Model (CROM)
Tool Support

Additional tools supported by FRaMED

translates to

Formal
Model
ConDL

[Böhme2017]

created from

Graphical
Notation

FRaMED
[Kühn2015]

Database
Schema

RSQL
[Jäkel2016]

Role-based
Language

SCROLL
[Leuthäuser2015]

Textual
Syntax

TRoML

Compartment
Role Object

Meta-
Model

is a

Conceptual
Model

translates
to

Formal
Model

FormalCROM
[Kühn2015]

translates
to

created from

Operational
 Model

ProRoles

 ©
 P

ro
f.

U
. A

ßm
an

n

45 Model-Driven Software Development in Technical Spaces (MOST)

The Compartment Role Object Model (CROM)
Conclusion

► Incorporating all natures of roles and various modeling constraints

► Modeling language (formal CROM) fulfilled 22 (19) features of roles

► Introduce common graphical notation for role-based modeling languages

► CRO(meta-)Model provides its abstract syntax

► FRaMED as eclipse-based editor for modeling and code generation

► Propose CROM as formal foundation for roles

Still no common role-based modeling language
supporting all language variants

 ©
 P

ro
f.

U
. A

ßm
an

n

46 Model-Driven Software Development in Technical Spaces (MOST)

The End

► Why is it hard to unify the role concept?
► Why are compartments necessary to group roles in metamodels?
► What was crucial for providing tool support for RoSI?

	Role-Based (Meta-)Modeling
	Challenges of Software Systems
	The RoSI Project
	RoSI Research Areas
	A Metamodel for RoSI
	Basic Roles
	Limitations of OOD
	Context-Dependent Roles (1)
	Context-Dependent Roles (2)
	Context-Dependent Roles (3)
	Context-Dependent Roles (4)
	Primer Summary
	Folie 13
	41.2 Literature
	41.2 References (1)
	41.2 References (2)
	History
	Steimann Classification
	Kuehn Classification
	Natures of Roles
	Literature Survey
	LODWICK and ORM 2
	OntoUML
	Information Network Model (INM)
	Taming Agents and Objects (TAO)
	The HELENA Approach
	Comparison (1)
	Comparison (2)
	Summary
	The Compartment Role Object Model (CROM)
	41.3 Literature
	41.3 References
	Compartment Role Object Model
	Graphical Notation
	Banking Example
	Compartment Types
	Ontological Foundation
	Folie 38
	CROM Metamodel
	Formal Model (1)
	Formal Model (2)
	FRaMED
	Folie 43
	Additional Tool Support
	Conclusion
	The End

