
 Model-Driven Software Development in Technical Spaces (MOST) © Prof. U. Aßmann

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie

Part IV. Megamodels in a Software Factory
64. Requirements and Test Megamodels

Prof. Dr. U. Aßmann

Technische Universität Dresden

Institut für Software- und
Multimediatechnik

http://st.inf.tu-dresden.de
/teaching/most

Version 17-0.1, 27.01.18

1) Traceability and Megamodels

2) Requirements Management and Tracing in a
Megamodel

3) Tracing Requirements and Testing

4) Tracing Goals and Requirements with ODRE

http://st.inf.tu-dresden.de/

 ©
 P

ro
f.

U
. A

ß
m

an
n

2 Model-Driven Software Development in Technical Spaces (MOST)

Literature

➢ Regina Hebig and Andreas Seibel and Holger Giese. On the Unifcation of Megamodels.
Proceedings of the 4th International Workshop on Multi-Paradigm Modeling (MPM
2010). Electronic Communications of the EASST Volume 42 (2011). ISSN 1863-2122.
Guest Editors: Vasco Amaral, Hans Vangheluwe, Cecile Hardebolle, Lazlo Lengyel

➢ http://www.easst.org/eceasst/

► [CH06] K. Czarnecki and S. Helsen. Feature-based survey of model transformation
approaches. IBM Systems Journal, Vol 45, No 3, 2006.

 ©
 P

ro
f.

U
. A

ß
m

an
n

3 Model-Driven Software Development in Technical Spaces (MOST)

References

► [Grammel] Birgit Grammel. Automatic Generation of Trace Links in Model-driven Software
Development. PhD Thesis, Technische Universität Dresden, 2014.

■ http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-155839

► Katja Siegemund, Edward J. Thomas, Yuting Zhao, Jeff Pan, and Uwe Assmann. Towards Ontology-
driven Requirements Engineering. Semnatic Web Enabled Software Engineering (SWESE)
Workshop at ISWC 2011, Koblenz

■ http://iswc2011.semanticweb.org/fleadmin/iswc/papers/workshops/swese/4.pdf

► [Mylopoulos1999] John Mylopoulos, Lawrence Chung, and Eric Yu. From Object-oriented to Goal-
oriented Requirements Analysis. Communications of the ACM, 42(1):31 37, 1999.

► [Zowghi2002] Didar Zowghi and Vincenzo Gervasi. The Three Cs of Requirements: Consistency,
Completeness, and Correctness. In Proceedings of 8th International Workshop on Requirements
Engineering: Foundation for Software Quality, (REFSQ'02), 2002.

► [Lamsweerde2000] Axel van Lamsweerde. Requirements Engineering in the year 00: A Research
Perspective. In International Conference on Software Engineering, pages 5, 19, 2000.

► Grady, Robert; Caswell, Deborah (1987). Software Metrics: Establishing a Company-wide
Program. Prentice Hall. pp. 159. ISBN 0-13-821844-7.

 ©
 P

ro
f.

U
. A

ß
m

an
n

5 Model-Driven Software Development in Technical Spaces (MOST)

Q12: A Software Factory's Heart: the Multi-TS Megamodel

Mega- and MacromodelsMega- and Macromodels

Method EngineeringMethod Engineering

Model Management
Mapping, Transf., Composition

Model Management
Mapping, Transf., Composition

Technical
Space
Bridges

Technical
Space
Bridges

Technical SpaceTechnical Space

Pattern
Languages

Pattern
Languages

Model Analysis
Querying, Interpretation

Model Analysis
Querying, Interpretation

Metapyramid (Metahierarchy) for Token ModelingMetapyramid (Metahierarchy) for Token Modeling

Software Factory

Multi-TS
Megamodel

Mega- and MacromodelsMega- and Macromodels

Method EngineeringMethod Engineering

Model Management
Mapping, Transf., Composition

Model Management
Mapping, Transf., Composition

Technical
Space
Bridges

Technical
Space
Bridges

Technical SpaceTechnical Space

Pattern
Languages

Pattern
Languages

Model Analysis
Querying, Interpretation

Model Analysis
Querying, Interpretation

Metapyramid (Metahierarchy) for Token ModelingMetapyramid (Metahierarchy) for Token Modeling

 ©
 P

ro
f.

U
. A

ß
m

an
n

7 Model-Driven Software Development in Technical Spaces (MOST)

Software Factories

A software factory schema essentially defines
a recipe for building members of a software
product family.

Jack Greenfield

 Model-Driven Software Development in Technical Spaces (MOST) © Prof. U. Aßmann

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie

64.1 Traceability between Models

 ©
 P

ro
f.

U
. A

ß
m

an
n

9 Model-Driven Software Development in Technical Spaces (MOST)

System Comprehension:
■ To improve orientation by navigating via trace links along model

transformation chains

► Change Impact Analysis:
■ to analyze the impact of a model change on other models
■ to analyze the impact of a model change on existing generated or

transformed output
■ To enable to do model synchronization (hot updating dependent parts)

► Orphan Analysis: fnding orphaned elements in models

Validation and Verifcation:

► System Validation: Connecting the requirements with the customer's goals and
problems (see ZOPP method)

► (Test) Coverage analysis: to determine whether all requirements were covered by
test cases in the development life cycle

► Debugging: To locate bugs when tracing code back to requirements
■ To locate bugs during the development of transformation programs

Why Traceability in a Megamodel?

[Grammel]

 ©
 P

ro
f.

U
. A

ß
m

an
n

10 Model-Driven Software Development in Technical Spaces (MOST)

Derivation
• Classification of source-target
 relationships [CH06]
• CRUD Actions

Source-Target Relations

New Target Model Existing Target Model

Traceability Metamodel: CRUD Types of Trace Links
between Model Elements of Different Models

[Grammel]

Update Transformation In-Place Transformation

Destructive Extension-Only
Destructive Extension-Only

Create
Link

Delete
Link

Delete
Link

Create
Link

Update
Link

Create
Link

Update
Link

 ©
 P

ro
f.

U
. A

ß
m

an
n

12 Model-Driven Software Development in Technical Spaces (MOST)

Extensible Traceability Metamodel acc. to Grammel

Model
(to be traced)

TraceLinkFacet

TraceLink

targetsource 1..* 1..*
0..*

0..*

CreateLink RetrieveLink UpdateLink DeleteLink

ChangesLinkMonotonicLink

ContainmentLink

► New facets for new trace link types can be created

Configuration

Granularity

Scope

Tracemodel

Links
1..*

 ©
 P

ro
f.

U
. A

ß
m

an
n

13 Model-Driven Software Development in Technical Spaces (MOST)

Examples for TraceLinkFacet

► Facets factorize inheritance hierarchies; new facets extend inheritance hierarchies

TextFacet

UnknownTextFacet

TextBlockValues

StartPos
EndPos

TextFileValues

Location
Name

JavaCodeFacet

UnknownJavaFacet

JavaClassValues

Name

JavaPackage
Values

Name

JavaMethod
Values
Name

Parameters
returnType

JavaAttribute
Values
Name
Type

[Grammel]

 ©
 P

ro
f.

U
. A

ß
m

an
n

14 Model-Driven Software Development in Technical Spaces (MOST)

Adding a Trace Link Generator to Tools

► TraceLinkGenerators can be connected in two ways, following a generic traceability
interface:

Transformation
Engine

TraceLinkGenerator
Engine

Generic Traceability
Interface

Transformation
Engine

TraceLinkGenerator
EngineBlack-box connector

Transformation
Engine

TraceLinkGenerator
EngineInvasive connector

Transformation engine
must know and call
the generator

Transformation engine
need not know but
is extended
Invasively or by
AOP

[Grammel]

 ©
 P

ro
f.

U
. A

ß
m

an
n

15 Model-Driven Software Development in Technical Spaces (MOST)

Traceability in Megamodels

► Piecemeal growth of megamodels in the software process:
■ Start with requirements, then add more stuff and models

► Add links
■ Create links are drawn between model element MA from model A and

model element MB whenever MB is generated or added because of MA
■ Retrieve links are drawn when MB is extracted from a model A and added

to another model B
■ Containment links are drawn, when in a new model B the model element

MA is contained in another model element MB'
■ Delete links are drawn if In model B the model element MB should be

deleted
■ Update links are drawn if MA has changed and MB should be changed too

 ©
 P

ro
f.

U
. A

ß
m

an
n

16 Model-Driven Software Development in Technical Spaces (MOST)

Traceability in Megamodels with Models from Link-Treeware

► In link-tree models, a skeleton tree exists, in which every model element has a unique
tree node number (hierarchical number)

► Trace links can be added with tree node number and stored externally of the model in
the megamodel

1. TraceLink

1.1.1 CreateLink
1.1.2

RetrieveLink
1.2.1 UpdateLink 1.2.2 DeleteLink

1.2 ChangesLink1.1. MonotonicLink

1.1.2.1
ContainmentLink

Hierarchical numbering of the classes
in an inheritance tree:

Hierarchical numbering of the classes
in an inheritance tree:In link-treeware, megamodels

maintain tracelink models linking
and tracing all models and their
elements by referencing the
hierarchical numbers of all nodes

In link-treeware, megamodels
maintain tracelink models linking
and tracing all models and their
elements by referencing the
hierarchical numbers of all nodes

 ©
 P

ro
f.

U
. A

ß
m

an
n

17 Model-Driven Software Development in Technical Spaces (MOST)

Q12: The ReDeCT Problem and its Macromodel

► The inter-model mappings between the Requirements, Design model, Code, Test cases
are traceability links stemming for example from:

■ Lifted results of deep model analysis (reachability analysis)
■ Generated trace links from added trace link generators

► A ReDeCT macromodel has maintained intermodel mappings between all 4 models

Requirements Design Code Test

ComponentName

ComponentName

ComponentName

Node

Node

Package Bill {
 Uses Order;
 Class Counting {
 Procedure count IS
 End;
}
}

Package Order {
 Uses Bill;
 Class Ordering {
 Procedure count IS
 End;
}
}

Package TestBill {
 Uses TestOrder;
 Proc testCounting IS
….
 End;
}
}

Package TestOrder {
 Uses Bill;
 Class TestOrdering {
 Procedure
testCount IS
 End;
}
}

 Model-Driven Software Development in Technical Spaces (MOST) © Prof. U. Aßmann

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie

64.2. Megamodels for Test and Requirements
Management

 ©
 P

ro
f.

U
. A

ß
m

an
n

19 Model-Driven Software Development in Technical Spaces (MOST)

Tool References

► [RPro] Requisite Pro User's Guide

■ ftp://ftp.software.ibm.com/software/rational/docs/v2003/win_solutions/rational_req
uisitepro/reqpro_user.pdf

► Dominic Tavassoli, IBM Software. Requirements Defnition and Management - Ten steps to better
requirements management. June 2009

■ ftp://ftp.software.ibm.com/software/emea/de/rational/neu/Ten_steps_to_better_req
uirements_management_EN_2009.pdf

► Tools: http://www.jiludwig.com/Requirements_Management_Tools.html

► Free community-licensed tool Axiom (Windows, Linux): http://www.iconcur-software.com/

■ http://d60f31wukcdjk.cloudfront.net/docs/Axiom_4_User_Manual.pdf

► Teach videos of Axiom

■ http://www.iconcur-software.com/resources.html

■ Video on linking matrix (traceability matrix) http://iconcur-
software.com/tutorials/matrix.htm

 ©
 P

ro
f.

U
. A

ß
m

an
n

20 Model-Driven Software Development in Technical Spaces (MOST)

Introduction to Requirements Management (RM)

► RM bridges the needs of the customer to testing, design, coding, and documentation

► RM continuously manages requirements in the entire software life cycle

► RM relies on inter-model mappings between requirements, test cases, design, and code

Needs

Product
Features

Software
Requirements

Test Design
User
Docs

Problem

The
Product
To Be
Built

Solution
Space

Problem
Space

Code

Traceability

 ©
 P

ro
f.

U
. A

ß
m

an
n

21 Model-Driven Software Development in Technical Spaces (MOST)

Tools in an Integrated Development Environment (IDE)

Requirements
Repository

Design
Repository
(PIM, Arch)

Implementation
Repository
(PSI, Code)

Test Case
Repository

Requirements Tool Testing Tool

Metamodel
Repository

(M2)

Reasoning
engine

GRS
engine

TRS
engine

XML
engine

Relational
engine

Coding Tool

Reachability analysis (traceability) Attribute analysis

Model mappings Model slicing Model composition

 ©
 P

ro
f.

U
. A

ß
m

an
n

22 Model-Driven Software Development in Technical Spaces (MOST)

Defciencies of Current RE Methods

► Relationships among requirements are inadequately captured
■ Causal relationship between consistency, completeness and correctness

[Zowghi2002]
■ Completeness and consistency are not verifed

► Requirement problems (e.g. conficts, incompleteness) are detected too late or not all

► Relationships between requirements and dependent artifacts are insuffciently
managed (test, documentation, design, code)

► Desirable:
■ Models for RE need richer and higher-level abstractions (goals, problems,

needs) to validate that they are fulflled [Mylopoulos1999]
. Metamodels can be used to defne these concepts
. Ontologies deliver reasoning services

■ Model mappings (direct and indirect) between the artifacts (design, code)
and the goals, problems, needs of the customer

. Based on the model mappings, the requirements are consistently
managed with design, code, and documentation

http://www.jiludwig.com/Requirements_Management_Tools.html

 Model-Driven Software Development in Technical Spaces (MOST) © Prof. U. Aßmann

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie

64.2.2 Metamodel-Based Requirements
Management

 ©
 P

ro
f.

U
. A

ß
m

an
n

24 Model-Driven Software Development in Technical Spaces (MOST)

Requirements Tools on the Requirement Database

Text
Editor

Analysis

Require
ments
model

Query

Simulation

Analysis
Fulflling metrics

Prototype
Generation

Documentation
generator

Text
edits

Code skeletons for
Rapid Application
Development

Reports

Output

Documentation

Diagramm-
Eingabe

Konsistency
Completeness
Correctness

Balance

Browser Web-
Editor

Diagram
Editor

Design
models

Traceability
(Verfolgbarkeit)

Word
Editor

Metamodel Ontology

 ©
 P

ro
f.

U
. A

ß
m

an
n

25 Model-Driven Software Development in Technical Spaces (MOST)

Metamodeling of Requirements

► Metamodeling is very helpful in RM
■ Requirements are domain-specifc, i.e., need domain models
■ The granularity of requirements is very different, and need to be balanced

. →metamodeling helps to type the requirements
 Requirements can be treated as models, and model mappings can map

them to design, implementation, and test models (traceability,
Verfolgbarkeit)

► Many requirement tools are metamodel-controlled
 typing requirements
 linking them

 Model-Driven Software Development in Technical Spaces (MOST) © Prof. U. Aßmann

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie

64.2.3 Requisite Pro

 ©
 P

ro
f.

U
. A

ß
m

an
n

27 Model-Driven Software Development in Technical Spaces (MOST)

RequisitePro (IBM)

► Metamodel-driven Repository of requirements (requirements database)
■ Metamodel for requirements (requirement types) in metalanguage ERD

 Attributes: Status, Priority, Diffculty, Stability, Costs

 Dependencies and traces of requirements
 Hierarchical requirements
 Views on requirements

 Query facility; confguraiton managment

 Integration into processes and IDE, e.g., Rational Unifed Process with Rational Rose UML,
ClearCase and MS Project.

► Traceability Matrix allows for linking requirements with test cases (direct inter-model mapping)

► Create software requirements specifcations (SRS) with template documents:
 Support of different types of SRS (system product, software, service).

http://www-142.ibm.com/software/products/de/de/reqpro/
ftp://ftp.software.ibm.com/software/rational/docs/v2003/win_solutions/rational_requisitepro/reqpro_user.pdf
http://public.dhe.ibm.com/common/ssi/ecm/en/rad10955usen/RAD10955USEN.PDF

 ©
 P

ro
f.

U
. A

ß
m

an
n

28 Model-Driven Software Development in Technical Spaces (MOST)

Metaclass RequirementType (Ex.)

<<metaclass>>
RequirementType

ReqTag tag;
String name;
Enum status = {proposed,
approved,incorporated};
Person[] authors;
Date date;
Version version;
Person responsible;
Text rationale;
Text estimated_cost;
Enum diffculty;
Enum stability;
RiskFactor risk;

RiskFactor

Money damage;
Propability probability;

ReqTag

String prefx={SR, FEAT, ..};
Int number;

Performance

Time deadline;

 ©
 P

ro
f.

U
. A

ß
m

an
n

29 Model-Driven Software Development in Technical Spaces (MOST)

RequisitePro – Main Windows

new
requirement

properties dependencies

views

Description of Requirement PR3

Selection of different
requirements types and views

 ©
 P

ro
f.

U
. A

ß
m

an
n

30 Model-Driven Software Development in Technical Spaces (MOST)

FURPS Classifcation of Requirements

FURPS delivers RequirementTypes for RequisitePro

[Wikipedia] [Grady/Caswell] in Hewlett-Packard
► Functionality - Feature set, Capabilities, Generality

■ Semi-functionality: Security

► Qualities:
■ Usability - Human factors, Aesthetics, Consistency, Documentation
■ Reliability - Frequency/severity of failure, Recoverability, Predictability,

Accuracy, Mean time to failure
■ Performance - Speed, Effciency, Resource consumption, Throughput,

Response time
■ Supportability - Testability, Extensibility, Adaptability, Maintainability,

Compatibility, Confgurability, Serviceability, Installability, Localizability,
Portability

http://www-142.ibm.com/software/products/de/de/reqpro/
ftp://ftp.software.ibm.com/software/rational/docs/v2003/win_solutions/rational_requisitepro/reqpro_user.pdf
http://public.dhe.ibm.com/common/ssi/ecm/en/rad10955usen/RAD10955USEN.PDF

 ©
 P

ro
f.

U
. A

ß
m

an
n

31 Model-Driven Software Development in Technical Spaces (MOST)

FURPS+ (FURPS-DIIP)

► IBM: http://www.ibm.com/developerworks/rational/library/4706.htm

► http://www.ibm.com/developerworks/rational/library/4708-pdf.pdf

► Design Requirement: a constraint on the design of a system

■ Architecture Requirement: a constraint on the architecture

► Implementation Requirement: a constraint on the code of the system
► Interface Requirement: a constraint on the external interfaces of the system (the

“context model”)

► Physical Requirement: a constraint on the hardware environment

 ©
 P

ro
f.

U
. A

ß
m

an
n

32 Model-Driven Software Development in Technical Spaces (MOST)

Attribute Matrix of Requisite Pro

► The attribute matrix is a hierarchical table (relation) of requirement objects and their
attributes

■ Super and subrequirements
■ Priority and Status, and other attributes

 ©
 P

ro
f.

U
. A

ß
m

an
n

33 Model-Driven Software Development in Technical Spaces (MOST)

Formalizing Requirement Texts

► If requirements are entered in free text (in Word processor), they can be formalized by
text mining with

■ Verb-noun-analysis
■ Keyword identifcation: MUST, MAY, SHALL, SHOULD, WILL, CUSTOMER
■ Markup information, such as section headers, emphasizing, etc.
■ Concept recognition by looking up nouns in domain models (glossaries,

taxonomies, ontologies)

► Requirements can also be recognized from tables in Word documents [RPro]

 ©
 P

ro
f.

U
. A

ß
m

an
n

34 Model-Driven Software Development in Technical Spaces (MOST)

Traceability with Direct Model Mappings

► The Traceability Matrix connects and relates requirements by direct traces and
indirect traces over trace_to and trace_from relationships

■ The trace relationship is a model mapping within the requirements model
■ External projects can be imported, and traces to their public requirements

can be defned

► Direct traces are entered
■ into a form
■ into the corresponding bitfeld of the traceability matrix

► If somebody changes the requirements later, the trace links become suspect and
should be checked

http://www.ibm.com/developerworks/rational/library/4706.htm
http://www.ibm.com/developerworks/rational/library/4708-pdf.pdf

 ©
 P

ro
f.

U
. A

ß
m

an
n

35 Model-Driven Software Development in Technical Spaces (MOST)

Metamodel of Requirements Managements in RequisitePro
(Metalanguage ERD)

Feasibility Study
(Lastenheft)

Requirement

Document Template

Glossary
(Begriffslexikon)

depends

Diffculty

Status

Priority

Stability
Cost

uses

Requirements
Specifcation(SRS)

Design

subset

Refers
-to

structu
res forms

Model

Use Case Class diagram

n

1

n traced-from
m

n

n

1

1

n n 1

1

1

1

RequirementType

m traced-to

 ©
 P

ro
f.

U
. A

ß
m

an
n

36 Model-Driven Software Development in Technical Spaces (MOST)

Other Tools

CaliberRM Borland http://www.borland.com/us/products/caliber/in
dex.aspx

DOORS IBM http://www-01.ibm.com/software/awdtools/doors/
http://www.docstoc.com/docs/90794258/Getting-
the-most-out-of-DOORS-for-requirements---NJIT-
Computer

 Model-Driven Software Development in Technical Spaces (MOST) © Prof. U. Aßmann

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie

64.3 Traceability in Practical RM Tools

 ©
 P

ro
f.

U
. A

ß
m

an
n

38 Model-Driven Software Development in Technical Spaces (MOST)

Direct Traceability

► With a direct model mapping, a requirements model can be linked
■ to a test case specifcation
■ to a documentation
■ to an architectural specifcation
■ via the architectural specifcation, to the classes and procedures in the code

 ©
 P

ro
f.

U
. A

ß
m

an
n

39 Model-Driven Software Development in Technical Spaces (MOST)

Model Mapping in MID INNOVATOR

► Innovator can be employed simultaneously for requirements, design and
implementation models

► How to relate these models?

http://www-01.ibm.com/software/awdtools/doors/
http://www.docstoc.com/docs/90794258/Getting-

 ©
 P

ro
f.

U
. A

ß
m

an
n

40 Model-Driven Software Development in Technical Spaces (MOST)

Example: imbus TestBench

http://www.imbus.de/produkte/imbus-testbench/hauptfunktionen/

 ©
 P

ro
f.

U
. A

ß
m

an
n

41 Model-Driven Software Development in Technical Spaces (MOST)

Requirements get “red-yellow-green” Test Status Attribute

 ©
 P

ro
f.

U
. A

ß
m

an
n

42 Model-Driven Software Development in Technical Spaces (MOST)

 ©
 P

ro
f.

U
. A

ß
m

an
n

43 Model-Driven Software Development in Technical Spaces (MOST)

Direct Model Mappings between Requirements and Test
Tools

► Most often, these tools are in Link-treeware (hierarchical requirements, hierarchical
test cases and test suites)

► → The trace models can be stored externally in the megamodel
■ Every trace link refers to link-tree node numbers in the requirements and

test specifcations

 Model-Driven Software Development in Technical Spaces (MOST) © Prof. U. Aßmann

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie

64.4 Traceability to Goals in Goal Models
with Ontology-Driven Requirements
Engineering (ODRE)

Uwe Aßmann1, Katja Siegemund1, Edward J. Thomas2,
Jeff Pan2, Yuting Zhao2

1 Technische Universität Dresden, Germany

2 University of Aberdeen, UK

SWESE Oct 24, 2011

 ©
 P

ro
f.

U
. A

ß
m

an
n

45 Model-Driven Software Development in Technical Spaces (MOST)

Why Ontology-Driven Requirements Engineering (ODRE)?

► Objective: Trace goals from a goal model to requirements to designs and domain
models

► Use graph-logic isomorphism to store requirements and their requirement types in
logic, more precisely, in an OWL ontology

■ Provide a metamodel (T-Box of requirements ontology) with a huge set of
relevant metadata and requirement relationships

► Use reasoning services to
■ provide meaningful checks for completeness and consistency, e.g., as

queries to the A-Box with SparQL
■ Make specifc suggestions to repair inconsistencies and incompleteness

► Ontology consists of T- and A-Box
■ TBox (Terminological Box) provides metadata
■ ABox (Axiom Box, Fact Base) provides requirements, goals, relationships,...

ABox

TBox

 ©
 P

ro
f.

U
. A

ß
m

an
n

46 Model-Driven Software Development in Technical Spaces (MOST)

ODRE Needs Goal-Oriented RE (GORE)

► Lamsweerde defnes goals as "declarative statements of intent to be achieved by the
system under consideration" [Lamsweerde2000]

► Benefts of explicit specifcation of goals in GORE:
■ Goals drive the identifcation of requirements
■ Goals provide a criterion for suffcient completeness of a requirement

specifcation
. Specifcation of pertinent requirements
. Relationships between goals and requirements can help to choose

the best one
■ Concrete requirements may change over time whereas goals pertain stable

 ©
 P

ro
f.

U
. A

ß
m

an
n

47 Model-Driven Software Development in Technical Spaces (MOST)

Goal-Oriented Requirements Engineering (GORE) –
TBox of GORE Ontology

 ©
 P

ro
f.

U
. A

ß
m

an
n

48 Model-Driven Software Development in Technical Spaces (MOST)

Goal-Oriented RE (Motivation Example)

<Objective>

…

<Objective>

Goal

<Goal>

Win the game

 ©
 P

ro
f.

U
. A

ß
m

an
n

49 Model-Driven Software Development in Technical Spaces (MOST)

Goal-Oriented RE (Motivation Example)

<Objective>

…

<Objective>

Goal

<Obstacle>

Fouls

<Goal>

Win the game

<Scenario>

1st. Half time
offensive play

<Obstacle>

aggressive
Fans

 ©
 P

ro
f.

U
. A

ß
m

an
n

50 Model-Driven Software Development in Technical Spaces (MOST)

Goal-Oriented RE (Motivation Example)

<Objective>

…

<Objective>

Goal

<Goal>

Win the game

<Scenario>

1st. Half time
offensive play <Use-Case>

Nowotny backs
Schweinsteiger

<Misuse-Case>

Red card for
a player

<FR>

Early attack
<NFR>

Fast and good
backing <NFR>

Good
concentration

<Obstacle>

aggressive
Fans

<Obstacle>

Fouls

 ©
 P

ro
f.

U
. A

ß
m

an
n

51 Model-Driven Software Development in Technical Spaces (MOST)

Goal-Oriented RE (Motivation Example)

<Objective>

…

<Objective>

Goal

<Goal>

Win the game

<Scenario>

1st. Half time
offensive play <Use-Case>

Nowotny backs
Schweinsteiger

<Misuse-Case>

Red card for
a player

<FR>

Early attack
<NFR>

Fast and good
backing <NFR>

Good
concentration

<Obstacle>

aggressive
Fans

<Obstacle>

Fouls

<Metric>

Attack until
10th. minute

<Metric>

Keeps 90% of
the goals

<Constraint>

max. play time

 ©
 P

ro
f.

U
. A

ß
m

an
n

52 Model-Driven Software Development in Technical Spaces (MOST)

Goal-Oriented RE (Motivation Example)

<Objective>

…

<Objective>

Goal

<Goal>

Win the game

<Scenario>

1st. Half time
offensive play <Use-Case>

Nowotny backs
Schweinsteiger

<Misuse-Case>

Red card for
a player

<FR>

Early attack
<NFR>

Fast and good
backing <NFR>

Good
concentration

<Obstacle>

aggressive
Fans

<Obstacle>

Fouls

<Metric>

Attack until
10th. minute

<Metric>

Keeps 90% of
the goals

<Constraint>

max. play time

<Decision>

Neuer as
goalkepper

 ©
 P

ro
f.

U
. A

ß
m

an
n

53 Model-Driven Software Development in Technical Spaces (MOST)

Goal-Oriented RE (Motivation Example)

<Objective>

…

<Objective>

Goal

<Goal>

Win the game

<Scenario>

1st. Half time
offensive play

<Use-Case>

Nowotny backs
Schweinsteiger

<Misuse-Case>

Red card for
a player

<FR>

Early attack
<NFR>

Fast and good
backing <NFR>

Good
concentration

<Obstacle>

aggressive
Fans

<Obstacle>

Fouls

<Metric>

Attack until
10th. minute

<Metric>

Keeps 90% of
the goals

<Constraint>

max. play time

<Decision>

Neuer as
goalkepper

<Risk>

Early
exhaustion

 ©
 P

ro
f.

U
. A

ß
m

an
n

54 Model-Driven Software Development in Technical Spaces (MOST)

Architecture for ODRE Tool

 ©
 P

ro
f.

U
. A

ß
m

an
n

55 Model-Driven Software Development in Technical Spaces (MOST)

Reasoning for RE – Completeness Check

► Example of Completeness Rule:

► The GORE ontology of Lambsweerde needs about 50 completeness rules
■ Implemented as SPARQL queries on the A-Box
■ The requirements model is deemed incomplete if a specifc rule fails
■ Reasoning Strategy: Closed World Reasoning (for negation as failure)

. supported by SPARQL 1.1 and TrOWL reasoner

“Every Functional Requirement (FR) must define
whether it is mandatory or optional. ”

“Every Functional Requirement (FR) must define
whether it is mandatory or optional. ”

 ©
 P

ro
f.

U
. A

ß
m

an
n

56 Model-Driven Software Development in Technical Spaces (MOST)

Reasoning for RE –
Completeness Check (Example)

“Every Functional Requirement (FR) must define
whether it is mandatory or optional. ”

“Every Functional Requirement (FR) must define
whether it is mandatory or optional. ”

► SPARQL rule:

IF FR is NOT mandatory AND NOT optional THEN
 Print error: "You did not specify whether

the following FRs are mandatory or optional:
[FR_n].“

 "Please specify whether these FRs are mandatory
or optional."

IF FR is NOT mandatory AND NOT optional THEN
 Print error: "You did not specify whether

the following FRs are mandatory or optional:
[FR_n].“

 "Please specify whether these FRs are mandatory
or optional."

 ©
 P

ro
f.

U
. A

ß
m

an
n

57 Model-Driven Software Development in Technical Spaces (MOST)

Reasoning for RE –
Completeness Check (Example)

► Extract of individuals and relationships of the A-Box from the SPARQL analysis :

isRelatedTo(Goal2;UseCase7)

NonFunctionalRequirement (NonFunctionalRequirement1)

IsOptional(NonFunctionalRequirement1; true)

FunctionalRequirement(FunctionalRequirement1)

Error.

You did not specify whether the following FR are mandatory or

optional:

FunctionalRequirement1. Please specify this attribute for the FR:

FunctionalRequirement1. Every FR must specify AT LEAST ONE

requirement relationship.

 ©
 P

ro
f.

U
. A

ß
m

an
n

58 Model-Driven Software Development in Technical Spaces (MOST)

Reasoning for RE – Consistency Check

► GORE needs 6 consistency rules among requirement artefacts (valid relations
between requirement artefacts)

– Based on a chosen subset of requirement artefacts

– Consistency rules are encoded as DL axioms in the A-Box

► Instance specifc error messages resulting from validation displayed by Guidance
Engine

 ©
 P

ro
f.

U
. A

ß
m

an
n

59 Model-Driven Software Development in Technical Spaces (MOST)

Reasoning for RE –
Consistency Check (Example)

► Extract of individuals and relationships of the A-Box from the SPARQL analysis :

isExclusionOf (FunctionalRequirement5; FunctionalRequirement7)

ChosenRequirement(FunctionalRequirement5)

ChosenRequirement(FunctionalRequirement7)

Error.

The following requirements exclude others:

FunctionalRequirement5.

Please choose one of the following options:

Suggestion.

Exclude the following requirements from the chosen requirement

set: FunctionalRequirement5. OR

Find alternatives for: FunctionalRequirement5 or

Revise the requirement relationships of(FunctionalRequirement5,

FunctionalRequirement7).

FR5

FR7

 ©
 P

ro
f.

U
. A

ß
m

an
n

60 Model-Driven Software Development in Technical Spaces (MOST)

Reasoning for RE –
Verifcation Methods (Example)

► Consistency check of requirement selection (6 rules)

IF excluding requirements are included in one set

THEN print error: "The following requirements exclude

 Others: [R_n]."

"Please choose one of the following options:

Exclude the following requirements: [R_n],

Find alternatives for [R_n] or

Revise the requirement relationships of [[R x, R y],...]."

Uwe Aßmann Towards Ontology-driven RE 60

Excluding requirements must not be included in one set.Excluding requirements must not be included in one set.

 ©
 P

ro
f.

U
. A

ß
m

an
n

61 Model-Driven Software Development in Technical Spaces (MOST)

Status of ODRE

► All Requirement artefacts and meaningful relationships can be captured
within an Ontology Metamodel

► ODRE Approach detects inconsistent and incomplete requirements

► Standard tooling (reasoners) are useful
■ Specifcation of requirements uses OWA
■ Verifcation needs CWA

► First evaluation proves applicability for medium requirement specifications
■ Problem: available requirement specifications do not provide sufficient

information (much less than could be captured by ODRE)
■ Primary evaluation within MOST Project

. Capture all requirement artefacts

. Detect all inconsistencies and incomplete metadata
■ PhD Thesis of Katja Siegemund (2014)

 ©
 P

ro
f.

U
. A

ß
m

an
n

62 Model-Driven Software Development in Technical Spaces (MOST)

The End

	2. Werkzeugfunktionen in den Basistechniken
	Slide 2
	References
	Slide 5
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	7. Werkzeuge zur Anforderungsanalyse
	Slide 19
	Introduction to Requirements Management
	Slide 21
	Deficiencies of Current RE Methods
	7.3 Werkzeuggestützte Anforderungs- analyse
	Werkzeuge zur Anforderungsanalyse
	Slide 25
	Slide 26
	RequisitePro
	Slide 28
	RequisitePro (2)
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	ERD des Requirements Engineering
	Slide 36
	Slide 37
	Slide 38
	Modellgrenzen am Beispiel INNOVATOR
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Towards Ontology-driven Requirements Engineering (ODRE)
	Use of Reasoning for RE
	GORE
	GORE – Tbox
	Slide 48
	Goal-Oriented RE (Motivation Example)
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Reasoning for RE - Architecture
	Reasoning for RE – Completeness Check
	Reasoning for RE – Completeness Check (Example)
	Reasoning for RE – Completeness Check (Example)
	Reasoning for RE – Consistency Check
	Reasoning for RE – Consistency Check (Example)
	Reasoning for RE – Verification Methods (Example)
	Evaluation
	Slide 62

