
Bitcoin, Ethereum und
andere Blockchains:
Was steckt dahinter?
Wie wenden wir sie an?

Dr. Stephan Murer
Murer Consulting GmbH
stephan.murer@ggaweb.ch

1

Objectives
● Understand key concepts in computer science behind

cryptocurrencies
○ Hash functions and hash pointers

○ Hashed data structures (blockchain, Merkle tree)

○ Digital signature

○ Distributed consensus (byzantine agreement)

● Understand how cryptocurrencies work on the example
of Bitcoin

○ Double spending problem

○ Probabilistic consensus, proof-of-work

● Generalize concept of currency transaction to more
flexible agreements (smart contracts) in Ethereum

● Towards the holy grail: Scalable, distributed consensus
among large numbers of non-permissioned users with
immediate finality (no forks) in Algorand

● Understand the breadth of possible applications and
their economic importance

2

Textbook

● Many concepts from there
● ISBN: 9780691171692

3

Agenda

1. Cryptocurrency fundamentals
2. Bitcoin - transaction data on the blockchain
3. Ethereum - the programmable blockchain
4. Algorand - scalable distributed consensus & immediate

finality
5. Applications & Market

4

Cryptographic Hash Functions

● Mathematical function
● Input: String of any size
● Output: Fixed-side bit array (256 bit in the examples)
● Efficiently computable: Computation time grows linearly

with string length.
● Running time: O(n), for string length = n

h := H(s)
s: arbitrary length string
h: fixed length hash

5

Hash Functions Properties
Collision resistant: Hard to find two values

x and y, such that x ≠ y, yet H(x) = H(y).
x

y

H(x) = H(y)

x H(r ǁ x)

Hiding: A hash function H is said to be

hiding if when a secret value r is chosen

from a probability distribution that has

high min-entropy, then, given H(r ǁ x), it

is infeasible to find x.

Puzzle friendliness: A hash function H is

said to be puzzle friendly if for every

possible n-bit output value y, if k is

chosen from a distribution with high

min-entropy, then it is infeasible to find

x such that H(k ǁ x) = y in time

significantly less than 2n.

H(k ǁ x) = y x

6

Hash Pointers

data

H()

Hash pointer
● Normal pointer, pointing to block of

data
● Plus hash H() of the data pointed to
● Verify that data hasn’t changed in

block pointed to
● Pointered data structures (lists,

trees, etc.) have interesting
properties with hash pointers

● Often the pointer is implicit (e.g. to
the previous block in the blockchain)

● Only works for acyclic structures

7

data

H()

data

prev:

H()

Blockchain: Tamper-evident log

data

prev:

H()

prev:

H()

● Blockchain: Linked list with hash pointers

data

H()

data

prev:

H()

data

prev:

H()

prev:

H()

● Tamper-evident log (book keeping journal e.g.!)
● Alter data in block k of the blockchain
● Hash pointer pointing to that block from block k+1 is wrong
● Hash pointers pointing to previous blocks are part of block data
● Therefore: All hash pointers of succeeding blocks are wrong, including

head of list
● Head of list hash pointer is all needed to check integrity of blockchain

8

Merkle Trees

H() H()

H()

H() H() H() H()

H() H() H() H()H() H() H() H()

data data data data data data data data

● Merkle Tree: Binary tree with hash pointers

● Same tamper evidence property as blockchain

● log(n) proofs of (non-) membership: Provide neigbouring hashes as proof

https://en.wikipedia.org/wiki/Merkle_tree, 9.3.2017
9

https://en.wikipedia.org/wiki/Merkle_tree

Digital Signatures
Digital signature scheme with three algorithms:

1. (sk, pk) := generateKeys(keysize)

2. sig := sign(sk, message)

3. isValid := verify(pk, message, sig)

Two properties:

1. verify(pk, message, sign(sk, message)) == true

2. Signatures are existentially unforgeable
Existential forgery: Given pk, a pair (message, sig) can be constructed, that looks like signed
with sk, although sk is unknown, RSA, eg. is existentially forgeable, however content of
message not controllable

● Public Key Cryptography offers methods with the desired properties

● Best known: RSA, Bitcoin uses Elliptic Curve Cryptography

● Better properties: shorter keys, existential unforgeability

● Very dependent on good source of randomness

https://en.wikipedia.org/wiki/Digital_signature_forgery, 7.11.2017
https://www.youtube.com/watch?v=F3zzNa42-tQ, 9.3.2017
https://blog.cloudflare.com/a-relatively-easy-to-understand-primer-on-elliptic-curve-cryptography/, 9.3.2017

10

https://en.wikipedia.org/wiki/Digital_signature_forgery
https://www.youtube.com/watch?v=F3zzNa42-tQ
https://blog.cloudflare.com/a-relatively-easy-to-understand-primer-on-elliptic-curve-cryptography/

Public keys as Identities

● Public key (pk) used as identity
● Check signatures directly against identities
● New identity easily generated with generatekeys()
● In practice H(pk) used as identity, because public keys are

long
● Basically random numbers, nothing that ties to your real

identity (although using identity will leak real identity),
identity quickly changeable

● Decentralized identity management: Everyone just
generates identity

● Identities unique, as there are so many possible public
keys

● Pseudonymity by using many identities

11

Agenda

1. Cryptocurrency fundamentals
2. Bitcoin - transaction data on the blockchain
3. Ethereum - the programmable blockchain
4. Algorand - scalable distributed consensus & immediate

finality
5. Applications & Market

12

Simple Cryptocurrency

CreateCoin[uniqueId]

signed by sk
Goofy

signed by sk
Goofy

signed by sk
Alice

Pay to pk
Alice

Pay to pk
Bob

● Goofy creates coin by a unique
coin id

● Only Goofy creates coins, his pk is
universally known

● Owner of coin signs transaction
record with recipient and hash
pointer to either creation record
or transaction record with owner
as receiver

● Complete history of ownership
changes, tamper evident due to
hash pointer structure

● Problem: Double spending, what
if Alice signs two transaction
records, both spending the same
coin

● Despite showing some of the key
structures of cryptocurrencies,
Goofycoin can’t deal with double
spending, not good enough!

13

Bitcoin Transaction
Representation

{
 "hash":"f4184fc596403b9d638783cf57adfe4c75c605f6356fbc91338530e9831e9e16",
 "ver":1,
 "vin_sz":1,
 "vout_sz":2,
 "lock_time":0,
 "size":275,
 "in":[
 {
 "prev_out":{
 "hash":"0437cd7f8525ceed2324359c2d0ba26006d92d856a9c20fa0241106ee5a597c9",
 "n":0
 },
 "scriptSig":"..."
 }
],
 "out":[
 {
 "value":"10.00000000",
 "scriptPubKey":"..."
 },
 {
 "value":"40.00000000",
 "scriptPubKey":"..."
 }
]
}

M
et

ad
at

a
In

p
u

ts
O

u
tp

u
ts

Bitcoins with 8 digits
behind decimal point
precision, smallest unit
Satoshi

Bitcoin script: Hash of
public key of signer
plus operation.

14

Scroogecoin: Central Authority
Deals with Double Spending

● Similar transactions like in Goofycoin, but all transactions
stored in append-only blockchain, each block signed by
Scrooge

● Blockchain assures append only property
● Easy to check integrity by looking at hash pointer
● Scrooge checks integrity of transactions (double

spending), and only signs blocks with valid transactions

Tx

H()

Tx

prev:

H()

Tx

prev:

H()

prev:

H()

signed by sk
Scrooge

signed by sk
Scrooge

signed by sk
Scrooge

15

Byzantine Generals

https://cdn-images-1.medium.com/max/800/0*-xCD-El4LZ48dji1.png, 15.3.2017

Leslie Lamport, Robert Shostak, and Marshall Pease. “The Byzantine Generals Problem” ACM TOPLAS, 4(3):382–401, 1982. 16

https://cdn-images-1.medium.com/max/800/0*-xCD-El4LZ48dji1.png

Distributed Consensus
Distributed consensus protocol: n nodes, each with input
value, some faulty, some malicious. Protocol with following
properties:

● Must terminate with all honest nodes in agreement on
the value

● Value must have been generated by honest node

Many applications:

● Reliable distributed systems (distributed transactions,
fault tolerance, etc.)

● Coordination in massively parallel systems
● Bitcoin

17

Consensus is possible under
different assumptions
● Consensus problem cannot be solved assuming

○ at least one node failing

○ reliable, asynchronous communication

○ deterministic node behaviour (work correctly or fail)

according to Fisher, Lynch and Patterson in 1985

● Pragmatic solutions exist 2-phase commit, PBFT, Google
Chubby

● Bitcoin violates traditional assumptions:
○ Incentivize nodes to behave honestly (works well for a currency)

○ Randomness, non-deterministic behavior

○ No specific starting and ending point for consensus (eventual

consensus)

● Bitcoin works better in practice than in theory, but
theory would be important

MJ Fischer, NA Lynch, MS Paterson. “Impossibility of distributed consensus with one faulty process”. Journal of the ACM (JACM) 32 (2), 374-382

http://lamport.azurewebsites.net/pubs/paxos-simple.pdf, 18.3.2017
https://angus.nyc/2012/paxos-by-example/, 18.3.2017
http://pmg.csail.mit.edu/papers/osdi99.pdf, 19.4.2017

18

https://scholar.google.com/citations?view_op=view_citation&hl=en&user=YVy_ry8AAAAJ&citation_for_view=YVy_ry8AAAAJ:u5HHmVD_uO8C
http://lamport.azurewebsites.net/pubs/paxos-simple.pdf
https://angus.nyc/2012/paxos-by-example/
http://pmg.csail.mit.edu/papers/osdi99.pdf

Implicit Consensus in Bitcoin

Bitcoin consensus algorithm (assuming random node
selection ability, not vulnerable to sybil attack):

1. Broadcast new transactions to all nodes
2. Each node collects transactions into a block
3. In each round a random node gets to broadcast its block
4. Other nodes accept transactions only if all transactions

are valid (unspent, valid signatures)
5. Nodes express their acceptance by including its hash in

the next block they create.

19

Double Spend Attack

signed by sk
Alice

Pay to pk
Alice’

signed by sk
Alice

Pay to pk
Bob

 C
Alice

 → Bob

 C
Alice

 → Alice’

Alice pays Bob
● Broadcasts transaction with

Bob as receiver pointing to
coin owned by Alice

● Transaction gets included
into latest block by honest
node

● Bob sees transaction
confirmation in blockchain

Double spend
● Next random node to

propose block
controlled by Alice

● Ignores latest block
with payment to Bob

● Creates new block
pointing to previous
block with transaction
benefitting Alice’● Can this attack be successful?

● Depends on whether long-term consensus agrees on the
fraudulent block with the transaction C

Alice
 → Alice’ or

the honest one with C
Alice

 → Bob gets included into the
blockchain.

20

Which Block gets Inserted?

● Temporarily, there may be branches in the blockchain

● Honest nodes extend the longest branch of the blockchain

● Unclear directly after attack, both branches same length, both blocks are

valid at this point in time

● Generally first block detected on network gets accepted, but can be

either due to network latency

● So, potentially fraudulent branch will win and honest block gets orphaned

● May be helped by Alice bribing other nodes to build on her branch

 C
Alice

 → Bob

 C
Alice

 → Alice’

21

How can Bob Protect himself against a
Double Spending Attack?

When does Bob accept transaction as confirmed?

● Sees signed transaction on network → zero confirmation transaction, can easily be
faked by malicious node

● Transaction in one block → single confirmation
● Other blocks point to block with transaction → multiple confirmations

● More confirmations → higher probability that transaction is on consensus chain, ie.
valid, careful payment receiver waits for a number of confirmations

● Probability for block not being on the consensus chain reduces exponentially with
number of confirmations, 6 confirmations are common practice in Bitcoin

 C
Alice

 → Bob

 C
Alice

 → Alice’

22

Can we Incentivize Nodes to
Behave Honestly?

● Block reward
○ Node creating a block can include a special transaction creating

coins

○ Block reward only valuable, if included in consensus branch (like

other transactions)

○ Network follows longest branch rule, block reward incentivizes

nodes to extend longest (consensus) branch

● Transaction fee
○ Payers can choose to leave a small difference between coins spent

and paid

○ Nodes including transaction into block can pay this difference to

themselves

○ Will users include transaction fees to get good service? Unclear yet!

○ Transaction fee will have to take over as incentives, when block

rewards run out in 2034

23

Proof of Work

● Why wouldn’t everybody create as many nodes as
possible, get the incentives, or worse monopolize the
consensus mechanism?

● We still don’t know how to select a random node from an
unknown set of nodes, no node ids, permissionless
distributed ledger

● Approximate random selection by selecting nodes in
proportion to an overall resource nobody can
monopolize (we hope!)

○ Compute power: Proof of work

○ Ownership of currency: Proof of stake

● As opposed to permissioned distributed ledger, with
identified node, and different consensus protocols (eg.
PBFT for Hyperledger)

24

Proof of Work in Bitcoin:
Hash Puzzles

Find nonce such that:

H(nonce ǁ prev_hash ǁ tx ǁ tx ǁ … ǁ tx) < target

● Puzzle-friendlyness → try different nonces one-by-one
until condition satisfied

● “target” defines how hard the puzzle is
● No need to centrally select random node, nodes

independently compete in finding nonce satisfying
condition

● Nodes will statistically “win” proportionally to their
power computing hashes

25

Bitcoin Blocks

● Block consists of block header, hash pointer to previous
block, hash pointer to transaction tree

● Block header contains nonce, difficulty, timestamp, etc.

H()

prev:

H()

prev: prev:

H()

trans:

H()

trans:

H()

trans:

H()

H() H()

H() H() H() H()

trans trans trans trans

Hash chain of
blocks (blockchain)

Hash tree of
transactions
(Merkle tree)

26

Bringing it Together ...

Value of currency

Security of
blockchain

Health of the
mining ecosystem

Makes sure that miners
get rewarded in fiat
currency to pay their
expenses

Protection against 51%
attack jeopardizing
consensus protocol

General trust in
security of system, not
to lose money

● Bootstrap problem: At the beginning Nakamoto was the only miner,

bitcoin had little value, chain in secure

● Unclear, why bitcoin took off, probably good story, publicity

27

Bitcoin Summary

create transaction distribute

Every 10 minutes collect valid transactions, form block, and publish block
when nonce is found.

Check for validity of transaction
in the blockchain

Accept new block as head of the
blockchain

1 2

3 4

5
at the client

at the mining node

28

Agenda

1. Cryptocurrency fundamentals
2. Bitcoin - transaction data on the blockchain
3. Ethereum - the programmable blockchain
4. Algorand - scalable distributed consensus & immediate

finality
5. Applications & Market

29

Bitcoin & Ethereum
Similar:

● Blockchain

● Built-in cryptocurrency

● Proof-of-work-mining

● Public, permissionless

Differencies:

● Smaller blocks (~70 vs. ~2000 tx), lower block time (~14 s vs. ~10 m)

● Memory-bound (ETHHASH) vs. compute-bound proof of work

(SHA-256)

● Fully programmable smart contracts vs. simple scripts / fixed

transactions

● Unlimited ETH supply (some pre-mined) vs. limited BTC supply, no

pre-mining

● Gas & gas price

● Accounts & transactions vs. transactions & UTXOs

https://bitsonblocks.net/2016/10/02/a-gentle-introduction-to-ethereum/, 8.11.2107
30

https://bitsonblocks.net/2016/10/02/a-gentle-introduction-to-ethereum/

Ethereum accounts and
transactions

● Ethereum accounts
○ External accounts, controlled through private key, balance in ether

(ETH), can send transactions (transfer ETH or trigger contract

code), state: balance

○ Contract accounts, has code (smart contract), code execution

triggered by transactions or messages from other contract

accounts, state: balance, can send messages to other accounts

● Transaction
○ Value, data, gas & gas price

https://www.coindesk.com/information/how-ethereum-works/, 8.11.2017
https://medium.com/@preethikasireddy/how-does-ethereum-work-anyway-22d1df506369, 8.11.2017 31

https://www.coindesk.com/information/how-ethereum-works/
https://medium.com/@preethikasireddy/how-does-ethereum-work-anyway-22d1df506369

Smart Contracts
contract ProofOfExistence {

 // key/value store mapping doc hashes to booleans
 mapping (bytes32 => bool) private proofs;

 // calculate document hash and store the proof for a document
 // state changing function
 function notarize(string document) {

 proofs[sha256(document)] = true;
 }

 // check if a document has been notarized
 // non-state changing function

 function checkDocument(string document) constant returns (bool) {
 return proofs[sha256(document)]; //unmapped value is always 0 (=false)
 }

}

https://blog.zeppelin.solutions/the-hitchhikers-guide-to-smart-contracts-in-ethereum-848f08001f05, 8.11.2017

● Contract programming Language: Solidity
● Contracts similar to classes: combining state and functionality
● Ethereum virtual machine (EVM)
● Uses gas for execution, gas price x amount of gas pays miner
● Limited gas amount ensures termination despite turing

completeness of language

32

https://blog.zeppelin.solutions/the-hitchhikers-guide-to-smart-contracts-in-ethereum-848f08001f05

Merkle Patricia Tree for State Key
Value Store

https://easythereentropy.wordpress.com/2014/06/04/understanding-the-ethereum-trie/, 7.11.2017
https://en.wikipedia.org/wiki/Radix_tree, 7.11.2017
https://ethereum.stackexchange.com/questions/6415/eli5-how-does-a-merkle-patricia-trie-tree-work, 7.11.2017

Nonce

Amount: 12.0

Codehash

Storage

Nonce

Amount: 12.0

Codehash

Storage

Nonce

Amount: 12.0

Codehash

Storage

Nonce

Amount: 12.0

Codehash

Storage

a 7 1 1 3 5 5 a 7 7 d 3 3 7 a 7 7 d 3 9 7 a 7 f 9 3 6 5

“a7”

“7”

“d3”

“9”“3”

“7” “7”

“1” “f”

“9365”“1355”

state

33

https://easythereentropy.wordpress.com/2014/06/04/understanding-the-ethereum-trie/
https://en.wikipedia.org/wiki/Radix_tree
https://ethereum.stackexchange.com/questions/6415/eli5-how-does-a-merkle-patricia-trie-tree-work

Ethereum Blocks

● Trees linked between blocks on a node, efficient changes
just for changed state

prev:

H()

prev:

H()

state:
H()

state:
H()

Blockchain with
block headers

tx:
H()

tx:
H()

receipts:
H()

receipts:
H()

Merkle-Patricia
trees for state,
transactions, and
receipts

34

Agenda

1. Cryptocurrency fundamentals
2. Bitcoin - transaction data on the blockchain
3. Ethereum - the programmable blockchain
4. Algorand - scalable distributed consensus & immediate

finality
5. Applications & Market

35

Limitations of Bitcoin & Co.

● Enormous waste of compute resources / energy
● Concentration of power with large miners / mining pools
● Scalability (Bitcoin 7 Tx/s), others faster but limited
● Forks, eventual consistency
● Anonymity

Various approaches to improve:

● Permissioned ledgers
● Alternative mining puzzles
● Different block parameters
● Sidechains
● Fundamental: Algorand

https://www.coindesk.com/information/what-is-the-difference-between-open-and-permissioned-blockchains/
http://faculty.cs.tamu.edu/bettati/Courses/489CryptoCurrencies/2017A/Slides/AlternativeMiningPuzzles.pdf
https://blockstream.com/sidechains.pdf

36

https://www.coindesk.com/information/what-is-the-difference-between-open-and-permissioned-blockchains/
http://faculty.cs.tamu.edu/bettati/Courses/489CryptoCurrencies/2017A/Slides/AlternativeMiningPuzzles.pdf
https://blockstream.com/sidechains.pdf

Algorand: High-level structure

...

1 random user, proposes next
block

...

Randomly selected committee
runs distributed consensus, signs
consensus block, propagates
signatures

https://people.csail.mit.edu/nickolai/papers/gilad-algorand-eprint.pdf
37

Self selecting committees
● Committee selects itself through cryptographic lottery

(fair, winner can proof he won)
● User i part of committee r if and only if:

. H(sign(sk
i
, Q

r
)) < p

● No communication needed: scalable
● Only user i knows, he is on committee
● Can proof by propagating sign(sk

i
, Q

r
)

probability to be on committee (in practice
weighted with owned assets)

quantity shared by all users based on last block

digital signature of Q
i
 with secret key sk

i
 (users are

identified by their public keys)

hash of signature to get good random distribution

binary decimal point (result is between 0 and 1)

38

Scalable distributed consensus

● 9 communication steps needed to reach consensus on
block, or return 0 block

● Committee can be different in each round (cannot be
bribed)

● ⅔ of money needs to be honest
● Forks with negligible probability
● Fulfills all properties of distributed consensus
● Speed depends on network latency, but 100x bitcoin tx

throughput seems feasible
● x000 committee size, round requires each member to

send/revieve short message
● practical tx conformation below 60s

Scalable, permission-less, but consensus-driven, no forks,
finality, low-latency
https://www.youtube.com/watch?v=mqqEjzmQva8 (explained in a video by Silvio Micali)

39

https://www.youtube.com/watch?v=mqqEjzmQva8

Agenda

1. Cryptocurrency fundamentals
2. Bitcoin - transaction data on the blockchain
3. Ethereum - the programmable blockchain
4. Algorand - scalable distributed consensus & immediate

finality
5. Applications & Market

40

BTC/ETH
market

https://coinmarketcap.com/, 9.11.2017

● Total market cap all
currencies: ~200 · 109 $

● Total volume 24h: ~10 · 109 $
● Money supply M1 Germany:

2 · 1012 $
● TARGET2 (ECB) volume 24h:

1.8 · 1012 €

41

https://coinmarketcap.com/

Blockchain venture capital

http://architectpartners.com/ecosystem_thoughts/top-20-vc-backed-blockchain-companies/, 8.11.2017
42

http://architectpartners.com/ecosystem_thoughts/top-20-vc-backed-blockchain-companies/

Largest blockchain startups

http://architectpartners.com/ecosystem_thoughts/top-20-vc-backed-blockchain-companies/, 8.11.2017
43

http://architectpartners.com/ecosystem_thoughts/top-20-vc-backed-blockchain-companies/

DACH startups

https://paymentandbanking.com/infografik-dlt-blockchain-crypto-overview-dach/
44

https://paymentandbanking.com/infografik-dlt-blockchain-crypto-overview-dach/

Zürich startups

https://procivis.ch/ https://modum.io/

https://www.finews.ch/news/banken/29100-ubs-blockchain-handelsfinanzierung-batavia
https://otc-blockchain.ch/

● E-Government on blockchain
● Digital identity
● E-Voting
● Collaboration with university of

Zürich

● Quality-ensured pharmaceutics
delivery chain

● Blockchain and IoT
● Spin-off from university of Zürich

● Trade finance on smart contracts
● Project batavia
● UBS & IBM founding partner
● Today with Caixa, Erste Bank, Bank

of Montreal, Commerzbank

● Clearing and settlement for OTC
financial instruments in Switzerland

● Partnering with Hochschule Luzern

45

https://procivis.ch/
https://modum.io/
https://www.finews.ch/news/banken/29100-ubs-blockchain-handelsfinanzierung-batavia
https://otc-blockchain.ch/

Initial Coin Offering

● Initial Coin Offering (like Initial Public Offering / IPO)

● Basically Crowdfunding / collecting donations in digital currency

● Founders of new currency sell digital tokens of a future currency or

promises for future services agains established digital currencies (BTC,

ETH) or fiat currencies

● Buyers speculate on fast value increase of the new coins

● In contrast to classical capital market transactions, this is unregulated

● Example TEZOS:

○ Breitman couple founds company to build new, better blockchain

○ ICO results in 232M$ for Zug based foundation (today > 400M)

○ Breitmans get substantial amount for preliminary work

○ Conflict between founders and foundation jeopardizes project,

money potentially lost

https://tokenmarket.net/
https://www.tezos.com/
https://www.finews.com/news/english-news/29275-tezos-swiss-foundation-zug-battle-arthur-breitman-kathleen-breitman-johann-gevers-crypto-ico

46

https://tokenmarket.net/
https://www.tezos.com/

Conclusion

● Overview of a fascinating field in computer science, that
has developed only in the last 10 years

● Core technology for Fintech
● Huge economic potential
● Towards the transactional Internet
● Elegant link between very theoretical results and very

meaningful applications in key fields of computer science
● Something every young computer scientist should

understand as it will be important for future jobs in IT,
particularly:

○ Finance / Fintech

○ IT Security

47

Danke!

48

