t's feasible?

Carl Worms
Softwareentwicklung in der Industriellen Praxis



Contents

Whoaml

Internet of Things — What’s new
Software Engineering Nowadays

What do Other Engineering Disciplines?

Software Engineering Advanced
What’s needed?
Who dares?



Who am |

1975- : Computer Science in Karlsruhe,
Germany

1978- : Lived from programming for 20 years
1991- : Software Quality /Testing
1993: Walter Masing Awardee (DGQ)

1999: IT Architect/SWE Process Architect at a
major Swiss bank for 15 years

2007- : PC member of |IEEE conferences,
Keynotes, Papers

Member of Gl, DGQ, IEEE




Internet of Things - What's New?
o

Overall Architecture [1]

._ ’-4 L-A »)
| ‘ 7.

Devices Gateways Cloud Apps and

* Actuators * Device regqistry visualizations
* Sensors * Sensor data storage

* Tags * Domain algorithms

and analytics



Internet of Things - What's New?

What makes loT development different [1]:
loT devices are just a tiny part of a larger system
loT systems never sleep or shut down in entirety
loT systems are more like cattle than pets

loT devices are often embedded in surroundings and such
physically invisible and unreachable

loT systems are highly heterogeneous
loT systems tend to have weak and unreliable connections

loT system topologies can be highly dynamic and ephemeral



Internet of Things - What's New?

Challenges for software development [1]:
Multidevice programming
The reactive, always-on nature of the system
Heterogeneity and diversity

The distributed, highly dynamic and migratory nature of
software

The general need to write software in a fault tolerant and
defensive manner



Internet of Things - What‘s NOT New?

Eight false assumptions of programmers when
writing software for distributed systems [2]:

The network is reliable

Latency is zero

Bandwidth is infinitive

The network is secure

Topology doesn’t change

There is one administrator

Transport cost is zero



Internet of Things - What's New?

Various implications [2]:
Improper balance between application logic and error code
Underestimated costs of building and maintaining software

Inadequate languages and tools (e.g. JavaScript), which
don’t address programming-in-the-large, support
orchestration of large systems or flexible migration of code

Security risks, e.g. thousands of loT devices still having their
standard security settings incl. the default admin password

Need for appropriate software engineering
technologies, methodologies, abstractions, etc.



Software Engineering - Nowadays
o

Very popular:

N1/
¢
Manual - auvtomated -

Manual

?®

v/

<




Software Engineering - Nowadays
o

((Professional»:
N1/
a1l
Software
Manual . Manual Autom.
Model ®

v/

><

Manual




Software Engineering - Nowadays
o

Very rare:

@ Formally @

> proven
Semi- Model automated

automated @ 2
Semi- !

automated

®



Software Engineering - Old Facts

Software Defect Reduction Top 10 List [12]:

Finding and fixing a software problem after delivery is often 100 times more
expensive than finding and fixing it during the requirements and design phase; for
small, noncritical systems it is more like 5:1

Software projects spend about 40 to 50 % of their effort on avoidable rework

About 80% of avoidable rework comes from 20% of the defects (lower for

smaller, higher for very large ones)

About 80% (median) of the defects come from 20% of the modules, and about
half the modules are defect free

About 90% of the downtime comes from, at most, 10% of the defects



Software Engineering - Old Facts

Software Defect Reduction Top 10 List [12]:

Peer reviews catch 60% of the defects
Perspective-based reviews catch 35% more reviews than nondirected reviews
Disciplined personal practices can reduce defect introduction rates by up to 75%

All other things being equal, it costs 50% more per source instruction to develop
high-dependability software products than to develop low-dependability software

products. However, the investment is more than worth ist if the project involves
I significant maintenance and operations cost. Low-dependability software costs
> about 50% per instruction more to maintain than to develop, whereas high-

dependable software costs 15% less. For a typical life-cycle cost distribution of
30% development and 70% maintenance, both software types become about
the same in cost [...]

About 40-50% of user programs contain nontrivial defects. Between 21 and
26% of operational spreadsheets contain defects.



Software Engineering - Nowadays

Other observations after 60 years of SWE:

Error-prone number entry in e.g. medical devices [3]

Still ‘bare-metal programming’ (without IDE) for embedded
or safety-related software [4]

Quality of Service (QoS) of distributed systems only
partially matches with the latest software quality standard

ISO/IEC 25010 [5][6]
A new hot spot of QoS is energy consumption [7][8][?]

Internet App research with concerning results [10]



Software Engineering - Nowadays

Real Engineering practice SW Engineering status
Well-codified knowledge, © We have some guidance for design
preferentially scientifically-founded, decisions, but not nearly enough nor
shapes design decisions systematic enough
Reference materials make knowledge @ Reference materials and documen-
and experience available tation are widely neglected. We have

scientific papers, [...] and searchable
APIs for specific systems — but well

curated reference are sorely lacking
Analysis of a design predicts © We have a rich set of analysis technics,

properties of ist implementation but most focus on the code rather than the

design. We have rich simulations systems
in certain areas. But we still lack [...]
exploring design alternatives before
implementation [11]



Software Engineering - Nowadays

What are your

pros and cons
regarding present
software engineering?

What's missing?



What Do Other Disciplines?

~ Mechatronics (easy):
~ Use e.g. Fritzing

~ Use domain specific
part collections (via
standardized
interfaces)

~ Use domain specific
simulation

~ Build the system really

Fritzing - An.Introduction

Fritzing Intro



https://youtu.be/Hxhd4HKrWpg

What Do Other Disciplines?

Electronics (for Pro’s):

Use e.g. LTSPICE (since
20 years)

LTspice

= = Free Analog Circuit
Simulator

Use domain specific

— 4 aUnlimited Nodes/Nets

part collections (via

m Fast Simulations

standardized

interfaces)

Use domain specific LTSPICE Overview

simulation

Build the system really


http://cds.linear.com/videos/LTspice_Overview.mp4

What Do Other Disciplines?

Mechanics:

Use Computer Aided
Design (CAD)

Use domain specific
part collections (via
standardized
interfaces)

Use domain specific
simulation (e.g. finite
elements)

Build the system really

sssss

MIT InstantCAD



https://www.youtube.com/watch?time_continue=9&v=45YLK7vbL3M
http://www.destaco.ch/pdf/modular/1bodybuilder_cpi/1_bodybuilder.pdf

What Do Other Disciplines?

~ Civil Engineering:

~ Define domain specific

fargets

~ Use Computer Aided
Design (CAD)

~ Use domain specific

simulation
| ' \‘\L
> Conned‘ W”h Other IT Prédsentation Hochschui“e uze
systems

~ Build the system



https://www.energie-cluster.ch/admin/data/files/file/file/1382/11.-berechnungstool-gebaeudebereich-bim-kompatibilitaet_-prof-gerhard-zweifel_hslu-.pdf?lm=1472110387

What Do Other Disciplines?

Summary

Design: CA* tools and part collections including all

relevant physical parameters for the domain, based on

formal methods and empirical natural sciences

Process: design and verify /validate with domain-
specific software, than build

People: only accept formal education and certificates
Education: teach math adapted for the discipline
Research: focus on new physics/materials /simulations

Regulators: improve and develop standards/rules



What Do Other Disciplines NOT?

Summary
Process: do what you like

People: accept experience as replacement for formal
education and certificates

Education: teach math not applied for their discipline

Research:
Mix of the core discipline and business analysis/operations

E.g. observe communication between designers to find out
properties of the parts they work on



loT - Software vs. Other Engineering

Personal conclusion:

SWE maturity after 60 years is probably similar than
mechanics and civil engineering after 60 years — who
remembers broken gothic churches or bridges from many
years ago or exploding steam engines (sometimes explode
chemical plants even in Europe and the US ...)

Internet of Things bears the clash of quite different
maturities between SWE vs. Mechatronics — if regulations
and quality expectations don’t decrease too much, this will
force SWE to higher maturity



Software Engineering - Advanced

What further progress
could SWE make?

Your ideas?



Software Engineering - Advanced

Topics [13]:

Verification of physical systems as they work in the real
world

Formal methods will be a key enabling technology

SWE ... has become more about the composition of existing
functionality while adding some innovative functions ...

... new strategies to blend traditional testing, new advances
in formal methods, modeling and simulation and automated
testing, and continued data collection after fielding.



Software Engineering - Advanced

Composition of existing functionality

Zhu, Bayley [16]: Composition of design patterns

Jatoth et al. [17]: Literature Review on QoS-Aware Web Service
Composition

Andreou, Papatheocharous [25]: Automated matching of component

requirements

New advances in formal methods:

Abrial [18][19]: Event-B method and toolset, industrial applied in
Railway engineering [20]

Real Time Operating System Memory Manager [21] (an excellent example
of the application of Event-B)

Morales, Capel [22]: Model checking for critical systems



Software Engineering - Advanced

Modeling
ThingML approach for loT [14]
loT Reference Architectures [15] and comparison
Code generation
On-the fly for scientific computing [23]
Safety-critical avionics software [24]
Simulation
Comparison of performance prediction methods [25]

Etc., etc.



Software Engineering - Advanced

Missing
Domain-specific standard sets of a software
components runtime parameters
E.g.:
Min/mid /max response time

Consumption of CPU/storage /network on a reference
platform/in a reference network

Correctness proven yes/no



Software Engineering - Advanced
e

~ Interesting: focus of QoS practice and research

Cloud /Web Services @

Applications /Components @

Mapping SW <-> @
Multicore Hardware




What's needed?

Education:

Math lectures (logic, set theory, statistics)
adapted to software engineer’s needs

Tutorials /exercises in formal methods and
present tool sets

Research:

Improvement of formal methods and tools for
large distributet systems

Refocus on Software Empirics vs. the Software
Engineer

Industry: the «Innovative Formal Guerilla»



Who dares to ...¢

.. develop formal correct Linux drivers?
.. develop the first formal proven App?

.. develop a formal correct Linux FC 1.02
.. develop a better RODIN for students?

.. found a commercial company to produce
formal proven only systems and software?



A Last Word

Thank you



References

[1] A. Taivalsaari, T. Mikkonen, " A Roadmap to the Programmable World. Software Challenges in the
loT Era"; IEEE Software, Januar/February 2017

[2] A. Rotem-Gal-Oz, "Fallacies of Distributed Computing Explained";
www.rgoarchitects.com/Files/fallacies.pdf

[3] H. Thimbleby, "Safer User Interfaces: A Case Study in Improving Number Entry"; IEEE Trans. on
Softw. Eng., Vol. 41, No. 7, July 2015

[4] G. H. Holzmann, "Tiny Tools"; IEEE Software, January/February 2016

[5] J. Kiruthika, S. Khaddaj, "Software Quality Issues and Challenges of Internet of Things"; 2015 14th
International Symposium on Distributed Computing and Application for Business Engineering and
Science, pp. 176-179, 2015

[6] T. Bianchi, D. S. Santos, and K. R. Felizardo, "Quality Attributes of Systems-of-Systems: A
Systematic Literature Review"; 2015 IEEE/ACM 3rd International Workshop on Software Engineering
for Systems-of-Systems (SESo0S), pp. 23-30, 2015

[7] K.-Y. Chen, J. M. Chang, and T.-W. Hou, "An Energy-Efficient Java Virtual Machine"; IEEE Trans.
on Cloud Computing, vol. 5, pp. 263-275, April-June 2017

[8] S. Wang, A. Zhou, C.-H.Hsu, X. Xiao, and F. Yang, "Provision of Data-Intensive Services Through
Energy- and QoS-Aqgare Virtual Machine Placement in National Cloud Data Centers"; IEEE Trans. on
Emerging Topics in Comp., vol. 4, no. 2, June 2016


http://www.rgoarchitects.com/Files/fallacies.pdf

References

[9] M. Wan, Y. Jin, D. Li., and W. G. Halfond, "Detecting Display Energy Hotspots in Android Apps"; in
Proc. IEEE 8th Int. Conf. Softw. Testing, Verification and Validation, pp. 1-10, 2015

[10] W. Martin, F. Sarro, Y. Jia, Y. Zhang, and M. Harmann, "A Survey of App Store Analysis for
Software Engineering"”; IEEE Trans. on Softw. Engineering, vol. 43, no. 9, September 2017

[11] M. Shaw, “Progress Toward an Engineering Discipline of Software (Keynote)“; 2016 IEEE/ACM
38th Int. Conf. on Softw. Eng. Compagnion, p. 3

[12] Victor R. Basili, Barry Boehm, "Software Defect Reduction Top 10 List", Computer, vol. 34, pp.
135-137, January 2001

[13] A. Moore, T.O'Reilly, P. D. Nielsen, and K. Fall, “Four Thought Leaders on Where the Industry is
Headed®; IEEE Software, pp. 36-39, January/February 2016

[14] B. Morin, N. Harrand, and F. Fleurey, “Model-Based Software-Engineering to Tame the loT
Jungle®; IEEE Software, pp. 30-36, January/February 2017

[15] M Weyrich, C. Ebert, “Reference Architectures for the Internet of Things®; IEEE Software, pp.
112-116, January/February 2016

[16] H. Zhu, I. Bayley, “On the Composability of Design Patterns®; IEEE Trans. On Softw. Eng., vol.
41, no. 11, November 2015

[17] C. Jatoth, G. R. Gangadharan, and R. Buyya, “Computational Intelligence Based QoS-Aware
Web Service Composition: A Systematic Literature Review"; IEEE Trans. On Services Comp., vol. 10,
no. 3, May/June 2017



References

[18] J.-R. Abrial, “Faultless Systems: Yes, we can!”, Computer, pp. 30-36, September 2009

[19] J.-R. Abrial, "Formal Methods in Industry: Achievements, Problems, Future", Software
Engineering, International Conference on, pp. 761-768, 2006

[20] T. Fischer, “Rodin in the Field of Railway System Engineering®; 6th Rodin User and Developer
Workshop 2016, http://wiki.event-b.org/index.php/Rodin_Workshop 2016

[21] W. Su, J.-R. Abrial, G. Pu, and B. Fang, “Formal Develoment of a Real-Time Operating System
Memory Manager®; 2015 20th Int. Conf. On Eng. Of Compl. Comp. Syst., 2015

[22] L. E. Mendoza Morales, M. I. Capel, “Checking Critical Software Systems: A Formal Proposal’;
2016 10th Int. Conf. On the Quality of Inf. and Comm. Techn., 2016

[23] A. Heinecke, G. Henry, M. Hutchinson, and H. Pabst, “LIBXSMM: Accelerating Small Matrix
Multiplications by Runtime Code Generation®; SC '16: Proceedings of the International Conference for
High Performance Computing, Networking, Storage and Analysis, 2016

[24] A. WOIfl, N. Siegmund, S. Apel, H. Kosch, J. Krautlager, and G. Weber-Urbina, “Generating
Qualifiable Avionics Software: An Experience Report”; 2015 30% Int. Conf. on Autom. Softw. Eng.,
2015

[25] A. S. Andreou, E. Papatheocharous, “Automatic Matching of Software Component Requirements
Using Semi-Formal Specifications and a CBSE Ontology“; 2015 International Conference on
Evaluation of Novel Approaches to Software Engineering (ENASE)



http://wiki.event-b.org/index.php/Rodin_Workshop_2016

