
Internet of Things - Engineered

What’s feasible?

Carl Worms
Softwareentwicklung in der Industriellen Praxis

Contents

➢ WhoamI

➢ Internet of Things – What’s new

➢ Software Engineering Nowadays

➢ What do Other Engineering Disciplines?

➢ Software Engineering Advanced

➢ What’s needed?

➢ Who dares?

Who am I

➢ 1975- : Computer Science in Karlsruhe,

Germany

➢ 1978- : Lived from programming for 20 years

➢ 1991- : Software Quality/Testing

➢ 1993: Walter Masing Awardee (DGQ)

➢ 1999: IT Architect/SWE Process Architect at a

major Swiss bank for 15 years

➢ 2007- : PC member of IEEE conferences,

Keynotes, Papers

➢ Member of GI, DGQ, IEEE

Internet of Things - What‘s New?

Devices

• Actuators

• Sensors

• Tags

Gateways

Overall Architecture [1]

Cloud

• Device registry

• Sensor data storage

• Domain algorithms

and analytics

Apps and

visualizations

Internet of Things - What‘s New?

➢ What makes IoT development different [1]:

➢ IoT devices are just a tiny part of a larger system

➢ IoT systems never sleep or shut down in entirety

➢ IoT systems are more like cattle than pets

➢ IoT devices are often embedded in surroundings and such

physically invisible and unreachable

➢ IoT systems are highly heterogeneous

➢ IoT systems tend to have weak and unreliable connections

➢ IoT system topologies can be highly dynamic and ephemeral

Internet of Things - What‘s New?

➢ Challenges for software development [1]:

➢ Multidevice programming

➢ The reactive, always-on nature of the system

➢ Heterogeneity and diversity

➢ The distributed, highly dynamic and migratory nature of

software

➢ The general need to write software in a fault tolerant and

defensive manner

Internet of Things - What‘s NOT New?

➢ Eight false assumptions of programmers when

writing software for distributed systems [2]:

➢ The network is reliable

➢ Latency is zero

➢ Bandwidth is infinitive

➢ The network is secure

➢ Topology doesn’t change

➢ There is one administrator

➢ Transport cost is zero

Internet of Things - What‘s New?

➢ Various implications [2]:

➢ Improper balance between application logic and error code

➢ Underestimated costs of building and maintaining software

➢ Inadequate languages and tools (e.g. JavaScript), which

don’t address programming-in-the-large, support

orchestration of large systems or flexible migration of code

➢ Security risks, e.g. thousands of IoT devices still having their

standard security settings incl. the default admin password

➢ Need for appropriate software engineering

technologies, methodologies, abstractions, etc.

Software Engineering - Nowadays

Very popular:

Requirements

in natural

language

Software

Code

Software

Tests

Binary

Code

☺





Manual automated

Manual

Software Engineering - Nowadays

«Professional»:

Requirements

in natural

language

Software

Code

Software

Validation

Binary

Code

☺





Software

Design

Model



Manual Autom.Manual

Manual Software

Verification

Software Engineering - Nowadays

Very rare:

Requirements

in natural

language

Formally

proven

Model

Software

Validation

Binary

Code

☺

?
Semi-

automated
automated

Semi-

automated ☺





Software Engineering - Old Facts

➢ Software Defect Reduction Top 10 List [12]:
1) Finding and fixing a software problem after delivery is often 100 times more

expensive than finding and fixing it during the requirements and design phase; for

small, noncritical systems it is more like 5:1

2) Software projects spend about 40 to 50 % of their effort on avoidable rework

3) About 80% of avoidable rework comes from 20% of the defects (lower for

smaller, higher for very large ones)

4) About 80% (median) of the defects come from 20% of the modules, and about

half the modules are defect free

5) About 90% of the downtime comes from, at most, 10% of the defects

Software Engineering - Old Facts

➢ Software Defect Reduction Top 10 List [12]:
6) Peer reviews catch 60% of the defects

7) Perspective-based reviews catch 35% more reviews than nondirected reviews

8) Disciplined personal practices can reduce defect introduction rates by up to 75%

9) All other things being equal, it costs 50% more per source instruction to develop

high-dependability software products than to develop low-dependability software

products. However, the investment is more than worth ist if the project involves

significant maintenance and operations cost. Low-dependability software costs

about 50% per instruction more to maintain than to develop, whereas high-

dependable software costs 15% less. For a typical life-cycle cost distribution of

30% development and 70% maintenance, both software types become about

the same in cost […]

10) About 40-50% of user programs contain nontrivial defects. Between 21 and

26% of operational spreadsheets contain defects.

!

Software Engineering - Nowadays

➢ Other observations after 60 years of SWE:

➢ Error-prone number entry in e.g. medical devices [3]

➢ Still ‘bare-metal programming’ (without IDE) for embedded

or safety-related software [4]

➢ Quality of Service (QoS) of distributed systems only

partially matches with the latest software quality standard

ISO/IEC 25010 [5][6]

➢ A new hot spot of QoS is energy consumption [7][8][9]

➢ Internet App research with concerning results [10]

Software Engineering - Nowadays

Real Engineering practice

➢ Well-codified knowledge,

preferentially scientifically-founded,

shapes design decisions

➢ Reference materials make knowledge

and experience available

➢ Analysis of a design predicts

properties of ist implementation

SW Engineering status

 We have some guidance for design

decisions, but not nearly enough nor

systematic enough

 Reference materials and documen-

tation are widely neglected. We have

scientific papers, […] and searchable

APIs for specific systems – but well

curated reference are sorely lacking

 We have a rich set of analysis technics,

but most focus on the code rather than the

design. We have rich simulations systems

in certain areas. But we still lack […]

exploring design alternatives before

implementation [11]

Software Engineering - Nowadays

What are your

pros and cons

regarding present

software engineering?

What‘s missing?

What Do Other Disciplines?

➢ Mechatronics (easy):

➢ Use e.g. Fritzing

➢ Use domain specific

part collections (via

standardized

interfaces)

➢ Use domain specific

simulation

➢ Build the system really
Fritzing Intro

https://youtu.be/Hxhd4HKrWpg

What Do Other Disciplines?

➢ Electronics (for Pro’s):

➢ Use e.g. LTSPICE (since

20 years)

➢ Use domain specific

part collections (via

standardized

interfaces)

➢ Use domain specific

simulation

➢ Build the system really

LTSPICE Overview

http://cds.linear.com/videos/LTspice_Overview.mp4

What Do Other Disciplines?

➢ Mechanics:

➢ Use Computer Aided

Design (CAD)

➢ Use domain specific

part collections (via

standardized

interfaces)

➢ Use domain specific

simulation (e.g. finite

elements)

➢ Build the system really MIT InstantCAD

Destaco BodyBuilder

https://www.youtube.com/watch?time_continue=9&v=45YLK7vbL3M
http://www.destaco.ch/pdf/modular/1bodybuilder_cpi/1_bodybuilder.pdf

What Do Other Disciplines?

➢ Civil Engineering:

➢ Define domain specific

targets

➢ Use Computer Aided

Design (CAD)

➢ Use domain specific

simulation

➢ Connect with other IT

systems

➢ Build the system

Präsentation Hochschule Luzern

https://www.energie-cluster.ch/admin/data/files/file/file/1382/11.-berechnungstool-gebaeudebereich-bim-kompatibilitaet_-prof-gerhard-zweifel_hslu-.pdf?lm=1472110387

What Do Other Disciplines?

➢ Summary

➢ Design: CA* tools and part collections including all

relevant physical parameters for the domain, based on

formal methods and empirical natural sciences

➢ Process: design and verify/validate with domain-

specific software, than build

➢ People: only accept formal education and certificates

➢ Education: teach math adapted for the discipline

➢ Research: focus on new physics/materials/simulations

➢ Regulators: improve and develop standards/rules

What Do Other Disciplines NOT?

➢ Summary

➢ Process: do what you like

➢ People: accept experience as replacement for formal

education and certificates

➢ Education: teach math not applied for their discipline

➢ Research:

➢Mix of the core discipline and business analysis/operations

➢ E.g. observe communication between designers to find out

properties of the parts they work on

IoT - Software vs. Other Engineering

➢ Personal conclusion:

➢ SWE maturity after 60 years is probably similar than

mechanics and civil engineering after 60 years – who

remembers broken gothic churches or bridges from many

years ago or exploding steam engines (sometimes explode

chemical plants even in Europe and the US …)

➢ Internet of Things bears the clash of quite different

maturities between SWE vs. Mechatronics – if regulations

and quality expectations don’t decrease too much, this will

force SWE to higher maturity

Software Engineering - Advanced

What further progress

could SWE make?

Your ideas?

Software Engineering - Advanced

➢ Topics [13]:

➢ Verification of physical systems as they work in the real

world

➢ Formal methods will be a key enabling technology

➢ SWE … has become more about the composition of existing

functionality while adding some innovative functions …

➢ … new strategies to blend traditional testing, new advances

in formal methods, modeling and simulation and automated

testing, and continued data collection after fielding.

Software Engineering - Advanced

➢ Composition of existing functionality

➢ Zhu, Bayley [16]: Composition of design patterns

➢ Jatoth et al. [17]: Literature Review on QoS-Aware Web Service

Composition

➢ Andreou, Papatheocharous [25]: Automated matching of component

requirements

➢ New advances in formal methods:

➢ Abrial [18][19]: Event-B method and toolset, industrial applied in

➢ Railway engineering [20]

➢ Real Time Operating System Memory Manager [21] (an excellent example

of the application of Event-B)

➢ Morales, Capel [22]: Model checking for critical systems

Software Engineering - Advanced

➢ Modeling

➢ ThingML approach for IoT [14]

➢ IoT Reference Architectures [15] and comparison

➢ Code generation

➢ On-the fly for scientific computing [23]

➢ Safety-critical avionics software [24]

➢ Simulation

➢ Comparison of performance prediction methods [25]

➢ Etc., etc.

Software Engineering - Advanced

➢ Missing

➢ Domain-specific standard sets of a software

components runtime parameters

➢ E.g.:

➢Min/mid/max response time

➢ Consumption of CPU/storage/network on a reference

platform/in a reference network

➢ Correctness proven yes/no

➢…

Software Engineering - Advanced

➢ Interesting: focus of QoS practice and research

Cloud/Web Services

Mapping SW <->

Multicore Hardware

Applications/Components

☺



☺

What‘s needed?

➢ Education:

➢ Math lectures (logic, set theory, statistics)

adapted to software engineer‘s needs

➢ Tutorials/exercises in formal methods and

present tool sets

➢ Research:

➢ Improvement of formal methods and tools for

large distributet systems

➢ Refocus on Software Empirics vs. the Software

Engineer

➢ Industry: the «Innovative Formal Guerilla»

Who dares to …?

… develop formal correct Linux drivers?

… develop the first formal proven App?

… develop a formal correct Linux FC 1.0?

… develop a better RODIN for students?

… found a commercial company to produce

formal proven only systems and software?

A Last Word

Thank you

References

[1] A. Taivalsaari, T. Mikkonen, " A Roadmap to the Programmable World. Software Challenges in the

IoT Era"; IEEE Software, Januar/February 2017

[2] A. Rotem-Gal-Oz, "Fallacies of Distributed Computing Explained";

www.rgoarchitects.com/Files/fallacies.pdf

[3] H. Thimbleby, "Safer User Interfaces: A Case Study in Improving Number Entry"; IEEE Trans. on

Softw. Eng., Vol. 41, No. 7, July 2015

[4] G. H. Holzmann, "Tiny Tools"; IEEE Software, January/February 2016

[5] J. Kiruthika, S. Khaddaj, "Software Quality Issues and Challenges of Internet of Things"; 2015 14th

International Symposium on Distributed Computing and Application for Business Engineering and

Science, pp. 176-179, 2015

[6] T. Bianchi, D. S. Santos, and K. R. Felizardo, "Quality Attributes of Systems-of-Systems: A

Systematic Literature Review"; 2015 IEEE/ACM 3rd International Workshop on Software Engineering

for Systems-of-Systems (SESoS), pp. 23-30, 2015

[7] K.-Y. Chen, J. M. Chang, and T.-W. Hou, "An Energy-Efficient Java Virtual Machine"; IEEE Trans.

on Cloud Computing, vol. 5, pp. 263-275, April-June 2017

[8] S. Wang, A. Zhou, C.-H.Hsu, X. Xiao, and F. Yang, "Provision of Data-Intensive Services Through

Energy- and QoS-Aqare Virtual Machine Placement in National Cloud Data Centers"; IEEE Trans. on

Emerging Topics in Comp., vol. 4, no. 2, June 2016

http://www.rgoarchitects.com/Files/fallacies.pdf

References

[9] M. Wan, Y. Jin, D. Li., and W. G. Halfond, "Detecting Display Energy Hotspots in Android Apps"; in

Proc. IEEE 8th Int. Conf. Softw. Testing, Verification and Validation, pp. 1-10, 2015

[10] W. Martin, F. Sarro, Y. Jia, Y. Zhang, and M. Harmann, "A Survey of App Store Analysis for

Software Engineering"; IEEE Trans. on Softw. Engineering, vol. 43, no. 9, September 2017

[11] M. Shaw, “Progress Toward an Engineering Discipline of Software (Keynote)“; 2016 IEEE/ACM

38th Int. Conf. on Softw. Eng. Compagnion, p. 3

[12] Victor R. Basili, Barry Boehm, "Software Defect Reduction Top 10 List", Computer, vol. 34, pp.

135-137, January 2001

[13] A. Moore, T.O’Reilly, P. D. Nielsen, and K. Fall, “Four Thought Leaders on Where the Industry is

Headed“; IEEE Software, pp. 36-39, January/February 2016

[14] B. Morin, N. Harrand, and F. Fleurey, “Model-Based Software-Engineering to Tame the IoT

Jungle“; IEEE Software, pp. 30-36, January/February 2017

[15] M Weyrich, C. Ebert, “Reference Architectures for the Internet of Things“; IEEE Software, pp.

112-116, January/February 2016

[16] H. Zhu, I. Bayley, “On the Composability of Design Patterns“; IEEE Trans. On Softw. Eng., vol.

41, no. 11, November 2015

[17] C. Jatoth, G. R. Gangadharan, and R. Buyya, “Computational Intelligence Based QoS-Aware

Web Service Composition: A Systematic Literature Review“; IEEE Trans. On Services Comp., vol. 10,

no. 3, May/June 2017

References

[18] J.-R. Abrial, “Faultless Systems: Yes, we can!“, Computer, pp. 30-36, September 2009

[19] J.-R. Abrial, "Formal Methods in Industry: Achievements, Problems, Future", Software

Engineering, International Conference on, pp. 761-768, 2006

[20] T. Fischer, “Rodin in the Field of Railway System Engineering“; 6th Rodin User and Developer

Workshop 2016, http://wiki.event-b.org/index.php/Rodin_Workshop_2016

[21] W. Su, J.-R. Abrial, G. Pu, and B. Fang, “Formal Develoment of a Real-Time Operating System

Memory Manager“; 2015 20th Int. Conf. On Eng. Of Compl. Comp. Syst., 2015

[22] L. E. Mendoza Morales, M. I. Capel, “Checking Critical Software Systems: A Formal Proposal“;

2016 10th Int. Conf. On the Quality of Inf. and Comm. Techn., 2016

[23] A. Heinecke, G. Henry, M. Hutchinson, and H. Pabst, “LIBXSMM: Accelerating Small Matrix

Multiplications by Runtime Code Generation“; SC '16: Proceedings of the International Conference for

High Performance Computing, Networking, Storage and Analysis, 2016

[24] A. Wölfl, N. Siegmund, S. Apel, H. Kosch, J. Krautlager, and G. Weber-Urbina, “Generating

Qualifiable Avionics Software: An Experience Report“; 2015 30th Int. Conf. on Autom. Softw. Eng.,

2015

[25] A. S. Andreou, E. Papatheocharous, “Automatic Matching of Software Component Requirements

Using Semi-Formal Specifications and a CBSE Ontology“; 2015 International Conference on

Evaluation of Novel Approaches to Software Engineering (ENASE)

http://wiki.event-b.org/index.php/Rodin_Workshop_2016

