
Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie – Prof. Aßmann - Softwaretechnologie II

2. Modelling Dynamic Behavior with Petri
Nets

Lecturer: Dr. Sebastian Götz

Prof. Dr. U. Aßmann

Technische Universität Dresden

Institut für Software- und Multimediatechnik

Lehrstuhl Softwaretechnologie

http://st.inf.tu-dresden.de/teaching/swt2

WS 2017, 17.10.2017

1

1. Basics
1. Elementary Nets

2. Special Nets

3. Colored Petri Nets

2. Patterns in Petri Nets

3. Application to modelling

Softwaretechnologie II

Obligatory Readings

 Balzert et al. (german)

• Chapter 10.4 (p. 303ff)

 Ghezzi et al. (english)

• Chapter 5.5.4 (p. 185ff)

 http://www.scholarpedia.org/article/Petri_net

2

http://www.scholarpedia.org/article/Petri_net

Softwaretechnologie II

Secondary Literature

 W.M.P. van der Aalst and A.H.M. ter Hofstede. Verification of workflow
task structures: A petri-net-based approach. Information Systems,
25(1): 43-69, 2000.

 Kurt Jensen, Lars Michael Kristensen and Lisa Wells. Coloured Petri Nets
and CPN Tools for Modelling and Validation of Concurrent Systems.
Software Tools for Technology Transfer (STTT). Vol. 9, Number 3-4, pp.
213-254, 2007.

 J. B. Jörgensen. Colored Petri Nets in UML-based Software
Development – Designing Middleware for Pervasive Healthcare.
www.pervasive.dk/publications/files/CPN02.pdf

 Web portal “Petri Net World”
http://www.informatik.uni-hamburg.de/TGI/PetriNets

3

http://www.informatik.uni-hamburg.de/TGI/PetriNets

Softwaretechnologie II

Further Literature

 K. Jensen and L. M. Kristensen. Colored Petri Nets. Springer, 2009.
(http://cs.au.dk/~cpnbook/)

 T. Murata. Petri Nets: properties, analysis, applications. IEEE volume
77, No 4, 1989.

 W. Reisig. Elements of Distributed Algorithms – Modelling and
Analysis with Petri Nets. Springer. 1998.

 W. Reisig, G. Rozenberg. Lectures on Petri Nets I+II, Lecture Notes in
Computer Science, 1491+1492, Springer.

 J. Peterson. Petri Nets. ACM Computing Surveys, Vol 9, No 3, Sept 1977

4

http://cs.au.dk/~cpnbook/

Softwaretechnologie II

Goals

 Understand Untyped (Page/Transition nets) and Colored Petri nets (CPN)

 Understand that PN/CPN are a verifiable and automated technology for
safety-critical systems

 Understand why PN are a good modeling language for parallel systems
simulating the real world

 PN have subclasses corresponding to finite automata and data-flow graphs

 PN can be refined, then reducible graphs result

5

Softwaretechnologie II

The Initial Problem

You work for PowerPlant Inc. Your boss comes in and says:
“Our government wants a new EPR reactor, similarly, in the way Finland has it.”

How can we produce a verified control software?
We need a good modelling language!

How do we produce software for safety-critical systems?

6

Softwaretechnologie II

Projects with Safety-Critical, Parallel Embedded Software

Aerospace

• The WITAS UAV unmanned autonomously flying helicopter from Linköping
http://www.ida.liu.se/~marwz/papers/ICAPS06_System_Demo.pdf

Automotive

• Prometheus: driving in car queues on the motorway
http://www.springerlink.com/content/j06n312r36805683/

Trains

• www.railcab.de Autonomous rail cabs

• The Copenhagen metro (fully autonomous)

 Inauguration seminar
http://www.cowi.com.pl/SiteCollectionDocuments/cowi/en/menu/02.%20Serv
ices/03.%20Transport/5.%20Tunnels/Other%20file%20types/Copenhagen%2
0Metro%20Inauguration%20Seminar.pdf

7

http://www.ida.liu.se/~marwz/papers/ICAPS06_System_Demo.pdf
http://www.springerlink.com/content/j06n312r36805683/
http://www.railcab.de/
http://www.cowi.com.pl/SiteCollectionDocuments/cowi/en/menu/02. Services/03. Transport/5. Tunnels/Other file types/Copenhagen Metro Inauguration Seminar.pdf

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie – Prof. Aßmann - Softwaretechnologie II

3.1 Basics of PN

Petri Net Classes

• Predicate/Transition Nets: simple tokens, no hierarchy.

• Place-Transition Nets: multiple tokens

• High Level Nets: structured tokens, hierarchy

• There are many other variants, e.g., with timing constraints

8

Softwaretechnologie II

Petri Nets

Model introduced by Carl Adam Petri in 1962,
C.A. Petri. Ph.D. Thesis: ”Communication with Automata”.

► Over many years developed within GMD (now Fraunhofer, FhG)

► PNs specify diagrammatically:

► Infinite state systems, regular and non-decidable

► Concurrency (parallelism) with conflict/non-deterministic choice

► Distributed memory (“places” can be distributed)

► Modeling of parallelism and synchronization

► Behavioral modeling, state modeling etc.

9

Softwaretechnologie II10

Integer Place/Transition Nets

Place

Token

Transition

Arc
P = {P1, P2}

T = {T1}

F = {(P1,T1), (T1,P2)}

W = f(x) = 1

m
0
= {P1}

1 1

Weight

(if not present = 1)

P1 P2

T1

Softwaretechnologie II11

Integer Place/Transition Nets

P1 P2T1

P1 P2T1

P1 P2T1

2

Softwaretechnologie II12

Integer Place/Transition Nets

Enabled

2

Not Enabled

2

Enabled

Enabled

Not Enabled

Softwaretechnologie II13

Integer Place/Transition Nets

2

2

FIRE

2

2

FIRE

2

2

Softwaretechnologie II

Ex.: Department of a Train

Train arrived

embarkment
Passenger on train

Passenger at station

Train arrived

embarkment
Passenger on train

Passenger at station

14

Softwaretechnologie II

Elementary Nets: Predicate/Transition Nets

 A Petri Net (PN) is a directed, bipartite graph over two kinds of nodes

• 1. Places (circles)

• 2. Transitions (bars or boxes)

 A Integer PN is a directed, weighted, bipartite graph with integer tokens

• Places may contain several tokens

• Places may contain a capacity (bound=k)

• k tokens in a place indicate that k items are available

15

Softwaretechnologie II

Integer Place/Transitions-Nets

 An Elementary PN (boolean net, predicate/transition or condition/event
nets)

• Boolean tokens
One token per place (bound of place = 1)

• Arcs have no weights

• Presence of a token = condition or predicate is true

• Firing of a transition = from the input the output predicates are concluded

• Thus elementary PN can represent simple forms of logic

16

Softwaretechnologie II

High-Level Nets

 A High-Level PN (Colored PN, CPN) allows for typed places and typed arcs

• For types, any DDL can be used (e.g., UML-CD)

 High-level nets are modular

• Places and transitions can be refined

• A Colored Petri Net is a reducible graph

 The upper layers of a reducible CPN are called channel agency nets

• Places are interpreted as channels between components

O

reactH
H

H2O

17

Softwaretechnologie II

Application Areas of Petri Nets

 Reliable software (quality-aware software)

• PetriNets can be checked on deadlocks, liveness, fairness, bounded resources

 Safety-critical software that require proofs

• Control software in embedded systems or power plants

 Hardware synthesis

• Software/Hardware co-design

 User interface software

• Users and system can be modeled as parallel components

18

Softwaretechnologie II

Application Area I: Behavior Specifications in UML

 Instead of describing the behavior of a class with a statechart, a CPN can be
used

• Statecharts, data flow diagrams, activity diagrams are subsets of CPNs

 CPN have several advantages:

• They model parallel systems (with a fixed net) naturally

• They are compact and modular, they can be reducible

• They are suitable for aspect-oriented composition, in particular of parallel protocols

• They can be used to generate code, also for complete applications

 Informal: for CPN, the following features can be proven

• Liveness: The net can fire at least n times

• Fairness: All parts of the net are equally “loaded” with activity

• K-boundedness: The number of tokens, a place can contain, are bound by k

• Deadlock: The net cannot proceed but did not terminate correctly

• Deadlock-freeness: The net contains no deadlocks

19

Softwaretechnologie II

Application Area II:
Contract checking (Protocol Checking) for Components

 Petri Nets describe behavior of components (dynamic semantics)

• They can be used to check whether components fit to each other

 Problem: General fit of components is undecidable

• The protocol of a component must be described with a decidable language

• Due to complexity, context-free or -sensitive protocol languages are required

 Algorithm:

• Describe the behavior of two components with two CPN

• Link their ports

• Check on liveness of the unified CPN

• If the unified net is not live, components will not fit to each other…

 Liveness and fairness are very important criteria in safety-critical systems

20

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie – Prof. Aßmann - Softwaretechnologie II

3.1.1 Elementary Nets

(Predicate/Transition Nets)

21

Softwaretechnologie II

Meaning of Places and Transitions in Elementary Nets

► Predicate/Transition (Condition/Event-, State/Transition) Nets:

■ Places represent conditions, states, or predicates

■ Transitions represent the firing of events:

 if a transition has one input place,
the event fires immediately if a token arrives in that place

 If a transition has several input places,
the event fires when all input places have tokens

► A transition has input and output places (pre- and postconditions)

■ The presence of a token in a place is interpreted as the condition is true

22

Softwaretechnologie II

Taking Up

Example of 2 Robots as Predicate/Transition Net

 [Balzert]

 Cmp. BMW factory
in Leipzig with
robot
manufactoring
cells for i3

Laying Down

Taking Up Laying Down

Piece moving Taking Up
Piece

available
Piece

ready

Piece equipped

Piece equipped

Robot 1 free

Robot 2 free

23

Softwaretechnologie II

Taking Up

Example of 2 Robots as Predicate/Transition Net

 Places represent predicates

 Tokens show validity

Laying Down

Taking Up Laying Down

Piece moving Taking Up
Piece

available
Piece

ready

Piece equipped

Robot 2 free

Piece equipped

Robot 1 free

24

Softwaretechnologie II25

Taking Up

Example of 2 Robots as Predicate/Transition Net

25

Laying Down

Taking Up Laying Down

Piece moving Taking Up
Piece

available
Piece

ready

Piece equipped

Robot 2 free

Piece equipped

Robot 1 free

Softwaretechnologie II26

Taking Up

Example of 2 Robots as Predicate/Transition Net

26

Laying Down

Taking Up Laying Down

Piece moving Taking Up
Piece

available
Piece

ready

Piece equipped

Robot 2 free

Piece equipped

Robot 1 free

Softwaretechnologie II27

Taking Up

Example of 2 Robots as Predicate/Transition Net

27

Laying Down

Taking Up Laying Down

Piece moving Taking Up
Piece

available
Piece

ready

Piece equipped

Robot 2 free

Piece equipped

Robot 1 free

Softwaretechnologie II

Comparing PN to Automata

Petri Nets

► Tokens encode parallel “distributed” global state

► Can be switched “distributedly”

Automata

► Sequential

► One global state (one token)

► Can only be switched “centrally”

28

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie – Prof. Aßmann - Softwaretechnologie II

3.1.2 Special Nets (Special Syntactic forms of PN)

29

Softwaretechnologie II

3.1.2.a Marked Graphs (MG) are DFD with Distributed
Memory

 A Marked Graph (MG) is a PN such that:

1. Each place has only 1 incoming arc
2. Each place has only 1 outgoing arc

• Then the places can be abstracted (identified with one flow edge)

• Transitions may split and join, however

• No shared memories between transitions (distributed memory)

 Marked Graphs correspond to a special class of data-flow graphs
(Data flow diagrams with non-shared, distributed memory, dm-DFD)

• MG provide deterministic parallelism without confusion

• Transitions correspond to processes in DFD, places to stores

• States can be merged with the ingoing and outcoming arcs → DFD without stores

• Restriction: Stores have only one producer and consumer

• But activities can join and split

 All theory for CPN holds for marked graph - DFD, too [BrozaWeide]

30

Softwaretechnologie II

Taking Up

3.1.2.a Marked Graphs (MG)

 Is the production PN a MG ?

Laying Down

Taking Up Laying Down

Piece moving Taking Up
Piece

available
Piece

ready

Piece equipped

Robot 2 free

Piece equipped

Robot 1 free

31

Softwaretechnologie II

Taking Up

3.1.2.a Marked Graphs (MG)

 The production PN is no MG

 Some places have more than 1 incoming/outgoing arc

Laying Down

Taking Up Laying Down

Piece moving Taking Up
Piece

available
Piece

ready

Piece equipped

Robot 2 free

Piece equipped

Robot 1 free

32

Softwaretechnologie II

Taking Up

3.1.2.a Marked Graphs (MG)

 However, the production robot PN is a MG

Laying Down

Piece moving Taking Up
Piece

available
Piece

ready

Piece equipped

Robot 2 free

33

Softwaretechnologie II

More General Data-Flow Diagrams

 General DFD without restriction can be modeled by PN, too.

• However, places cannot be abstracted

• They correspond to stores with 2 feeding or consuming processes

 Example: the full robot has places with 2 ingoing or outgoing edges,

• They cannot be abstracted

34

Softwaretechnologie II

For DFD, Many Notations Exist

 Notation from Structured Analysis [Balzert]

Pot

WaterGreenTea

TeaDrink

put tea

in pot

add

boiling

water

Produce tea

Cup

wait

Process
Data flow

Data

Store

35

Softwaretechnologie II

3.1.2.b State Machines are PN with Cardinality Restrictions

 A Finite State Machine PN is an elementary PN such that:

1. Each transition has only 1 incoming arc
2. Each transition has only 1 outgoing arc

• Then, it is equivalent to a finite automaton or a statechart

• From every class-statechart that specifies the behavior of a class, a State Machine
can be produced easily

 Flattening the nested states

• Transitions correspond to transitions in statecharts, states to states

• Transitions can be merged with the ingoing and outcoming arcs

• In a FSM there is only one token

 All theory for CPN holds for Statecharts, too

36

Softwaretechnologie II

Taking Up Laying Down

Taking Up Laying Down

Piece moving Taking Up
Piece

available
Piece

ready

Piece equipped

Robot 2 free

Piece equipped

Robot 1 free

3.1.2.b State Machines

 Is the production PN a FSM ?

37

Softwaretechnologie II

Taking Up Laying Down

Taking Up Laying Down

Piece moving Taking Up
Piece

available
Piece

ready

Piece equipped

Robot 2 free

Piece equipped

Robot 1 free

3.1.2.b State Machines

 The production PN is no FSM

 Some transitions have more than 1 incoming/outgoing arc

38

Softwaretechnologie II

Taking Up Laying Down

Piece equipped

Robot 2 free

3.1.2.b State Machines

 One Robot is a FSM but not with incoming/outgoing arc

39

Softwaretechnologie II

Hierarchical StateCharts from UML

 States can be nested in StateCharts

 This corresponds to hierarchical StateMachine-PN, in which states can be
refined and nested

Autopilot

On

Autopilot

Autopilot

OnOff

SwitchOn

SwitchOff

Controlling

Non

Controlling

Move Quiet
Off

SwitchOff

SwitchOn

40

Softwaretechnologie II

3.1.2.c Free-Choice Nets

 Two transitions are in conflict if the firing of one transition deactivates
another

• R1: no conflicts (t1 and t3 activated)  in this example t1 fires

• R2: t2 and t3 are in conflict  in this example t2 fires

• R3: t3 is deactivated because of t2

t1 t2 t3s1 s2 s3

t1 t2 t3s1 s2 s3

t1 t2 t3s1 s2 s3

R1

R2

R3

41

Softwaretechnologie II

3.1.2.c Free-Choice Nets

 Free-Choice Petri Net provides deterministic parallelism

• Choice between transitions never influence the rest of the system („free choice“)

• Rule conflicts out

• AND-splits and AND-joins

 Keep places with more than one output transitions away from transitions
with more than one input places (forbidden are “side actions”)

• outdegree(place)  in(out(place)) = {place}

OK OK NOT OK

42

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie – Prof. Aßmann - Softwaretechnologie II

3.1.3 Colored Petri Nets as Example of High
Level Nets

Modularity

Refinement

Reuse

Preparing “reducible graphs”

43

Softwaretechnologie II

Colored Petri Nets, CPN

 Colored (Typed) Petri Nets (CPN) refine Petri nets:

• Tokens are typed (colored)

• Types are described by data structure language
(e.g.,Java, ML, UML class diagrams, data dictionaries, grammars)

• Concept of time can be added

 Full tool support

• Fully automated code generation in Java and ML (in contrast to UML)

• Possible to proof features about the PN

• Net simulator allows for debugging

 Much better for safety-critical systems than UML, because proofs can be
done

44

Softwaretechnologie II

Annotations in CPN

 Places are annotated by

• Token types
(STRING x STRING)

• Markings of objects and the cardinality in which they occur:
2'(“Uwe”,”Assmann”)

 Edges are annotated by

• Type variables which are unified by unification against the token objects
(X,Y)

• Guards
[X == 10]

• If-Then-Else statements
if X < 20 then Y := 4 else Y := 7

• Switch statements

• Boolean functions that test conditions

45

Softwaretechnologie II

CPN are Modular

 A subnet is called a page (module)

• Every page has ports

• Ports mark in- and out-going transitions/places

 Transition page: interface contains transitions (transition ports)

 Place page (state page): interface contains place (place ports)

 Net class: a named page that is a kind of ”template” or ”class”

• It can be instantiated to a net ”object”

 Reuse of pages and templates possible

• Libraries of CPN ”procedures” possible

46

Softwaretechnologie II47

Taking Up

Robots with Transition Pages, Coupled by Transition Ports

47

Laying Down

Taking Up Laying Down

Piece moving Taking Up
Piece

available
Piece

ready

Robot 2 free

Robot 1 free

Transition Page

Reused

Transition Page

Transitions replicated

Softwaretechnologie II48

Taking Up

Robots with Place (State) Pages, Coupled by Replicated State Ports

48

Laying Down

Taking Up Laying Down

Piece moving Taking Up
Piece

available
Piece

ready

Robot 2 free

Robot 1 free

Place Page

Reused

Place Page

Port states replicated

Softwaretechnologie II

CPN are Hierarchical

► Places and transitions may be hierarchically refined

■ Two pointwise refinement operations:

. Replace a transition with a transition page

. Replace a state with a state page

■ Refinement condition: Retain the embedding (embedding edges)

► CPN can be arranged as hierarchical graphs (reducible graphs, see later)

■ Large specifications possible, overview is still good

■ Subnet stemming from refinements are also place or transition pages

49

Softwaretechnologie II

Point-wise Refinement Example

Pointwise refinement:

■ Transition refining page: refines a transition, transition ports

■ Place refining page (state refining page):
refines a place, place ports

50

Softwaretechnologie II

Point-wise Refinement Example

Hyperedge refinement:

• Hyperedges and regions in PN can be refined

51

Softwaretechnologie II

Modularity is Important for Scaling –
Industrial Applications of CPN

► Large systems are constructed as reducible specifications

■ They have 10-100 pages, up to 1000 transitions, 100 token types

► Example: ISDN Protocol specification

■ Some page templates have more than 100 uses

■ Corresponds to millions of places and transitions in the expanded, non-hierarchical
net

■ Can be done in several person weeks

52

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie – Prof. Aßmann - Softwaretechnologie II

3.2 Patterns in and Transformations of Petri Nets

• Petri Nets have a real advantage when
parallel processes and synchronization must be modelled
– Many concepts can be expressed as PN patterns or with PN complex operators

• Analyzability: Petri Nets can be analyzed for patterns (by

pattern matching)

• Transformation: Petri Nets can be simplified by automatic

transformations

53

Softwaretechnologie II54

Simple PN Buffering Patterns

54

Reservoir Place
Does not generate objects

Permanently active

transaction
Generates objects

(Object source, Event source)

Archive
Stores objects.

Can be k-bounded

Sink
Deletes/Destroys objects

Process
Sequential

Intermediate Archive
Buffer

Softwaretechnologie II

Patterns for Synchronization (Barrier)

 Coupling processes with parallel continuation

Both there?

55

Softwaretechnologie II

Patterns for Synchronization (n-Barrier)

 Bridges: Transitions between phases

All there?

56

Softwaretechnologie II

Adding Delays in Transitions by Feedback Loops

 Adding a delay token

 Behaves like a semaphore
(lock – unlock critical
region)

57

Softwaretechnologie II

Adding Delays in Transitions by Feedback Loops

 Adding a circular delay net

 Behaves like a splitter

58

1

2

Softwaretechnologie II

Simpler Specification with Special Operators (Transitions)
in Workflow Nets

 In languages for Workflow nets, such as

• ARIS workflow language

• YAWL Yet another workflow language

• BPMN Business Process Modeling Notation

• BPEL Business Process Execution Language

 Specific transitions have been designed (specific operators) for simpler
specification

59

Softwaretechnologie II60

AND

XOR

OR

Complex Transition Operators in Workflow Nets:
Join and Split Operators of YAWL

AND

XOR

OR

AND-Join
All ingoing places

are ready

(conjuctive input)

XOR-Join
Exactly one of n ingoing

places is ready

(disjunctive input)

OR-Join
At least one of n

ingoing places is ready

(selective input)

AND-Split
All outgoing places

are filled

(conjuctive output)

XOR-Split
Exactly one of the outgoing

places are filled

(disjunctive output)

OR-Split

(IOR-Split)
Some of the outgoing

places are filled

(selective output)

Softwaretechnologie II

OR

Book

Football

Tickets

Simple YAWL example

 OR-Booking of travel activities

 Indeterministic choice possible

Book

Hotel

Book

Flight

OR

61

Softwaretechnologie II62

AND

OR

Parallelism Patterns – Transitional Operators

AND

OR

Joining Parallelism
Synchronization Barrier

AND-Join

Collecting Objects
From parallel processes

OR-Join

Replication and

Distribution
Forking

(AND-Split)

Decision
Indeterministically

(OR-Split)

Softwaretechnologie II

Example: Reduction Semantics of OR-Join Operator

 Complex operators refine to special pages with multiple transition ports

OR

63

Softwaretechnologie II

Example: Reduction Semantics of XOR-Join Operator

 XOR-Join with bound state (only 1 token can go into a place)

XOR

1

64

Softwaretechnologie II

Parallelism Patterns – Transitional Operators (2)

Ordering

AND

Join

Ordering Synchronization

Barrier
Ordering-AND-Join

65

2

1

Softwaretechnologie II

Parallelism Patterns – Transitional Operators (2)

Ordering

AND

Split

Output Ordering Generator
Ordering-AND-Split

66

2

1

Softwaretechnologie II

Patterns for Communication
Direct Producer-Consumer

no message

message available

produce send

message

received

message

store

ready

receive

67

Softwaretechnologie II

Patterns for Communication
Direct Producer-Consumer

no message

message available

produce send

message

received

message

store

demand

receive

68

Softwaretechnologie II

Patterns for Communication
Direct Producer-Consumer

no message

message available

produce send

message

received

message

store

demand

receive

69

Softwaretechnologie II

Patterns for Communication
Direct Producer-Consumer

no message

message available

produce send

message

received

message

store

demand

receive

70

Softwaretechnologie II

Patterns for Communication
Direct Producer-Consumer

no message

message available

produce send

message

received

message

store

demand

receive

71

Softwaretechnologie II

Patterns for Communication

 Producer Consumer with Buffer

no message

message available

produce send

buffer

received

message

store

demand

receive

72

Softwaretechnologie II

Patterns for Communication

 Producer Consumer with Buffer

no message

message available

produce send

buffer

received

message

store

demand

receive

73

Softwaretechnologie II

Patterns for Communication

 Producer Consumer with Buffer

no message

message available

produce send

buffer

received

message

store

demand

receive

74

Softwaretechnologie II

Patterns for Communication

 Producer Consumer with Buffer

no message

message available

produce send

buffer

received

message

store

demand

receive

75

Softwaretechnologie II

Patterns for Communication

 Producer Consumer with Buffer

no message

message available

produce send

buffer

received

message

store

demand

receive

76

Softwaretechnologie II

Patterns for Communication

 Producer Consumer with Buffer

no message

message available

produce send

buffer

received

message

store

demand

receive

77

Softwaretechnologie II

Patterns for Communication

 Producer Consumer with Buffer

no message

message available

produce send

buffer

received

message

store

demand

receive

78

Softwaretechnologie II

Patterns for Communication

 Producer Consumer with Buffer

no message

message available

produce send

buffer

received

message

store

demand

receive

79

Softwaretechnologie II

Patterns for Communication

 Producer Consumer with Buffer (size 1 message)

no message

message available

produce send

buffer

received

message

store

demand

receive1

80

Softwaretechnologie II

Patterns for Communication

 Producer Consumer with Buffer (size n message)

no message

message available

produce send

buffer

received

message

store

demand

receiven

81

Softwaretechnologie II

Patterns for Communication

 Producer Consumer with Buffer
and indeterministic delivery

 OR Split

no message

message available

produce send

buffer

received

message

store

demand

receive

received

message

store

demand

receive

82

Softwaretechnologie II

Patterns for Communication

 Producer Consumer with Buffer
and broadcast communication

 AND-Split

no message

message available

produce send

buffer

received

message

store

demand

receive

received

message

store

demand

receive

83

Softwaretechnologie II

Semaphores For Mutual Exclusion

 Binary or counting semaphores offer their lock and free operations as
transitions

 Distinguished by the capacity of the semaphore place

Lock

Free Free

Lock

84

Softwaretechnologie II

Semaphores For Mutual Exclusion

 Binary or counting semaphores offer their lock and free operations as
transitions

 Distinguished by the capacity of the semaphore place

Lock

Free Free

Lock

85

Softwaretechnologie II

Semaphores For Mutual Exclusion

Lock

Free Free

Lock

86

Softwaretechnologie II

Semaphores For Mutual Exclusion

Lock

Free Free

Lock

87

Softwaretechnologie II

Dining Philosophers (Shared Resources)

Lock

Free

Lock

Free

start eating

Getting hungry

eating

waiting for fork1 waiting for fork2

88

Softwaretechnologie II

Advantage

► Patterns can be used to model specific requirements

► PN can be checked for patterns by Pattern Matching (context-free Graph
Rewriting)

■ Patterns can be restructured (refactorings)

■ Patterns can be composed (composition)

■ PN can be simplified by graph transformation rules

► Further semantic analysis of PN: Parallel, indeterministic systems can be
checked for

■ Absence of deadlocks: will the parallel system run without getting stuck?

■ Liveness: will all parts of the system work forever?

■ Fairness: will all parts of the system be loaded equally?

■ Bounded resources: will the system use limited memory, and how much?
(important for embedded systems)

■ Whether predicates hold in certain states (model checking)

89

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie – Prof. Aßmann - Softwaretechnologie II

3.3 The Application to Modelling

90

Softwaretechnologie II

Petri Nets Generalize UML Behavioral Diagrams

Activity Diagrams

► Activity Diagrams are similar to Marked Graphs, but not formally grounded

■ Without markings

■ No liveness analysis

■ No resource consumption analysis with boundness

■ No correspondence to UML-Statechart

► Difficult to prove something about activity diagrams and difficult to generate
parallel code

Data-flow diagrams

► DFD are special form of activity diagrams

► Non-shared-memory DFD correspond to Marked Graphs

Statecharts

► Finite automata are restricted form of Petri nets

► Hierarchical structuring in Statecharts is available in High-Level Petri Nets
(e.g., CPN)

91

Softwaretechnologie II

Petri Nets Generalize UML Sequence Diagrams

 The life lines of a sequence diagram can be grouped into state such that a
PN results

 All of a sudden, liveness conditions can be studied

• Is there a deadlock in the sequence diagram?

• Are objects treated fair?

Customer
Service
Station

Credit Card
System

Purchase Refuel

refuel()

verify()

not ok
denied

payCash()

refuel()

92

Softwaretechnologie II

Petri Nets Generalize UML Sequence Diagrams

 The life lines of a sequence diagram can be grouped into state such that a
PN results

 All of a sudden, liveness conditions can be studied

• Is there a deadlock in the sequence diagram?

• Are objects treated fair?

Customer
Service
Station

Credit Card
System

Purchase Refuel

refuel()

verify()

not ok
denied

payCash()

refuel()

93

Softwaretechnologie II

A Simple Modelling Process for Safety-Critical Software with
CPN

► Elaboration:

1. Identify active and passive parts of the system

. Active become transitions, passive to places

2. Find the relations between places and transitions

3. How should the tokens look like: boolean? Integers? Structured data?

. Active become transitions, passive to places

► Restructure: Group out subnets to separate ”pages”

► Refactor: Simplify by reduction rules

► Verify: Analyse the specification on liveness, boundedness, reachability
graphs, fairness. Use a model checker to verify the CPN

► Transform Representation: Produce views as statecharts, sequence,
collaboration, and activity diagrams.

94

Softwaretechnologie II

How to Solve the Reactor Software Problem?

► Specify the reactor core with UML and CPN

► Map the static parts to the net

► Map the flow of things to tokens

► Map the state chances to token flow

► Think about synchronizations

► Specify in PN views

■ Verify it with a model checker

■ Let a prototype be generated

■ Test it

■ Freeze the assembler

► Verify the assembler, because you should not trust the CPN tool nor the
compiler

■ Any certification agency in the world will require a proof of the assembler!

► However, this is much simpler than programming reactors by hand...

95

Softwaretechnologie II

The Gloomy Future of PN

► PN will become the major tool in a future CASE tool or IDEs

■ Different views on the PN: state chart view, sequence view, activity view,
collaboration view!

► Many isolated tools for PN exist, and the world waits for a full integration
into UML

► CPN will be applied in scenarios where parallelism is required

■ Architectural languages

■ Web service langauges (BPEL, BPMN, ...)

■ Workflow languages

■ Coordination languages

96

Softwaretechnologie II

The End

 Thanks to Björn Svensson for help to summarize [Murata] in slides

97

