
Softwaretechnologie II, © Prof. Uwe Aßmann 1

3. Formal Features of Petri Nets
for Static Verification of Dynamic
Behavior

Lecturer: Dr. Sebastian Götz

Prof. Dr. U. Aßmann

Technische Universität
Dresden

Institut für Software- und
Multimediatechnik

Softwaretechnologie

http://st.inf.tu-dresden.de

Oct 23, 2017

1) Reachability Graph

2) Boundedness

3) Liveness

4) Liveness with T-
invariants

http://st.inf.tu-dresden.de/

Prof. U. Aßmann, Softwaretechnologie II 2

Content

► Behavioral properties
 Reachability
 Liveness
 Boundedness

► Liveness checking

Prof. U. Aßmann, Softwaretechnologie II 3

Obligatory Readings

► T. Murata. Petri Nets: properties, analysis, applications. IEEE
volume 77, No 4, 1989.

► Ghezzi Chapter 5
► J. B. Jörgensen. Colored Petri Nets in UML-based Software

Development – Designing Middleware for Pervasive Healthcare.
www.pervasive.dk/publications/files/CPN02.pdf

http://www.pervasive.dk/publications/files/CPN02.pdf

Prof. U. Aßmann, Softwaretechnologie II 4

Literature

► K. Jensen, Colored Petri Nets. Vol. I-III. Springer, 1992-96.
Landmark book series on CPN.

► W. Reisig. Elements of Distributed Algorithms – Modelling and
Analysis with Petri Nets. Springer. 1998.

► W. Reisig, G. Rozenberg: Lectures on Petri Nets I+II, Lecture
Notes in Computer Science, 1491+1492, Springer.

► J. Peterson. Petri Nets. ACM Computing Surveys, Vol 9, No 3,
Sept 1977

► H. Balzert. Lehrbuch der Softwaretechnik. Verlag Spektrum der
Wissenschaft. Heidelberg, Germany.

Prof. U. Aßmann, Softwaretechnologie II 5

Goals

► Understand the isomorphism between finite automata
(statecharts) and bounded Petri nets

► Understand why matrix algebra solves
 deadlock and liveness questions
 protocol questions

Softwaretechnologie II, © Prof. Uwe Aßmann 6

3.1 Behavioral Properties of PN

Prof. U. Aßmann, Softwaretechnologie II 7

Reachability of Markings

► If t is enabled in M, we write M[t)
► A marking M

n
 is said to be reachable from a marking M

0
 if there

exists a firing sequence s that transforms M
0
 to M

n
.

 We write this M
0
[s) M

n

► A firing sequence is denoted by a sequence of transitions
s = M

0
 [t1) M

1
 [t2) M

2
 ... [tn) M

n
 or simply

s = t1 t2 t3 ... tn.
► The set of all possible markings reachable from M

0
 is denoted

R(M
0
).

 R(M
0
) is spanning up a state automaton, the state space,

reachability graph, or occurrence graph
 Every marking of the PN is a state in the reachability graph

► The set of all possible firing sequences in a net (N,M
0
) is

denoted L(M
0
). This is the language of the automaton R(M

0
).

Prof. U. Aßmann, Softwaretechnologie II 8

M5=M4

Reachability Tree of the 2 Robots

Robot 1 free S1

Piece equipped
S4

Taking
up T1

Taking
up T3

Piece
moving

T0

Piece equipped
S2

Robot 2 free
S3

Piece
available

S0

Piece
ready

S5

Laying
down T2

Laying
down T4

Piece
moving

T5

M0 = (0 1 0 1 0 0)

T0

M1 = (1 1 0 1 0 0)

T3

M3 = (0 1 0 0 1 0)

T1

M2 = (0 0 1 1 0 0)

T4T2

Upper part of net (S1, S2)

Lower part of net (S3, S4)

T5

M4 = (0 1 0 1 0 1)

M0

T5

M0

Prof. U. Aßmann, Softwaretechnologie II 9

Folding the Tree to the Reachability Graph
(Common Subtree Elimination)

Robot 1 free S1

Piece equipped
S4

Taking
up T1

Taking
up T3

Piece
moving

T0

Piece equipped
S2

Robot 2 free
S3

Piece
available

S0

Piece
ready

S5

Laying
down T2

Laying
down T4

Piece
moving

T5

M0 = (0 1 0 1 0 0)

T0

M1 = (1 1 0 1 0 0)

T3

M3 = (0 1 0 0 1 0)

T1

M2 = (0 0 1 1 0 0)

T4

M4 = (0 1 0 1 0 1)

T2

Upper part of net (S1, S2)

Lower part of net (S3, S4)

T5

Prof. U. Aßmann, Softwaretechnologie II 10

Example: The Reachability Tree and Graph

p1

t1

t0

p3

t3

t2

p2

M0 = (1 0 0)

”old”

M1 = (0 0 1)
”old”

M1 = (0 0 1) M3 = (1 1 0)

t2

t3

t3t1

M0 = (1 0 0)

M1 = (0 0 1) M3 = (1 1 0)

t3t1

M4 = (0 1 1)

t1

t3

Object sink

t1

M4 = (0 1 1) t2

M5 = (1 1 0)

Softwaretechnologie II, © Prof. Uwe Aßmann 11

3.2 Boundedness

Prof. U. Aßmann, Softwaretechnologie II 12

Boundedness and Safety

► A PN (N,M
0
) is k-bounded or simply bounded if every place is

size-restricted by k
 M(p) ≤ k for every place p and every marking M in R(M

0
).

► A PN is safe if it is 1-bounded.

► Bounded nets can have only finitely many states, since the
number of tokens and token combinations is limited
 The reachability graph of bounded nets is finite, it corresponds to a

finite automaton (which is much larger)
 The PN is much more compact, it abbreviates the automaton

Prof. U. Aßmann, Softwaretechnologie II 13

Applications of Boundedness

► The markings of a state can express the number of available
resources
 Operating Systems: number of memory blocks, number of open

devices, number of open files, number of processes
 Workflows: number of actors, number of workpieces that flow

► Boundedness can be used to prove that a system only consumes
k resources
 Important for systems with resource constraints

Prof. U. Aßmann, Softwaretechnologie II 14

Example: Unbounded net

p1

t1

t0

p3

t3

t2

p2

M0 = (1 0 0)

M1 = (0 0 1)
”old”

M1 = (0 0 1) M3 = (1 1 0)

t2

t3

t3t1

M0 = (1 0 0)

M1 = (0 0 1) M3 = (1 1 0)

t3t1

M4 = (0 1 1)

t1

t3

Object sink

t1

M4 = (0 1 1)

t2

M5 = (1 2 0)

M6 = (1 3 0)

M7 = (1 4 0)

……

M5 = (1 2 0) …

Softwaretechnologie II, © Prof. Uwe Aßmann 15

3.3 Liveness

Prof. U. Aßmann, Softwaretechnologie II 16

3.3 Liveness of Nets

► Liveness is closely related to the complete absence of deadlocks
in operating systems.

► A PN (N,M
0
) is live if, no matter what marking has been reached

from M
0
,

 all transitions are live
 i.e., it is possible to fire any transition of the net by progressing

through some further firing sequence.

Prof. U. Aßmann, Softwaretechnologie II 17

Liveness of Transitions

► Liveness expresses whether a transition stays active or not

A transition t is called:

► Dead (L0-live) if t can never be fired in any firing sequence in R(M0).
(not fireable)

► L1-live (potentially fireable) if t can be at least fired once in some
firing sequence in R(M0). (firing at least once from the start
configuration)

► L2-live (k-fireable) if t can be fired at least k times in some firing
sequence in R(M0), given a positive integer k. (firing k times from
the start configuration)

► L3-live (inf-fireable) if t appears infinitely often in some firing
sequence in R(M0). (firing infinitely often from the start
configuration)

► live (L4-live) if t is L1-live for every marking M in R(M
0
). (This is

more: t is always fireable again in a reachable marking)

Prof. U. Aßmann, Softwaretechnologie II 18

Liveness of Markings and Nets

► A marking is dead if non of its transitions are enabled.
► A marking is live if no reachable marking is dead (equivalent: all

transitions are live)

► A net is live if M0 is live (every t is always fire-able again from
every reachable marking of M0)

Prof. U. Aßmann, Softwaretechnologie II 19

Example: Liveness

t0

p2

p3

t1

p1

t2

t3

► t1 L1-live (fireable only once,
bridge)

► Hence, t3 is L3-live (on a
cycle), but not L4-live, since it
cannot be activated anymore
once t

1
 is crossed

► t0 is L0-live (dead, since t
1
 is

bridge and either p
1
 or p

3
 is

filled)

► t2 L2-live (fireable when t1 is
crossed)

► If net is boolean,

Prof. U. Aßmann, Softwaretechnologie II 20

Example: Liveness

p6

p
5

p3

t4

p4

t3

p2

t1

p2

p1

t
6

fork

► A safe, live PN. M0 can be reproduced again, e.g.,
t
1
 t

4
 t

3
 t

6
 reproduces a filled p

1
 and p

2

p1, t1, t2 form a fork

Prof. U. Aßmann, Softwaretechnologie II 21

Example: Liveness

p6

P5

p3

t4

p4

t3

p2

t1

p2

p1

p6

P5

p3

t4

p4

t3

p2

t1

p2

p1

p2 is a synchronization dependency; process p5 can run earlier, p2 has to wait.
Note: the content of p2 must be reproduced again
Net is unbounded, due to the reproduction facilities of t6

t
6

t
6

Prof. U. Aßmann, Softwaretechnologie II 22

Example: Liveness

p6

P5

p3

t4

p4

t3

p2

t1

p2

p1

p6

P5

p3

t4

p4

t3

p2

t1

p2

p1

t
6

t
6

Prof. U. Aßmann, Softwaretechnologie II 23

Well, everything: Safe, Live

t1 t2

p1

p2

Softwaretechnologie II, © Prof. Uwe Aßmann 24

3.4 Liveness of PN with the
Incidence Matrix and T-Invariants

Prof. U. Aßmann, Softwaretechnologie II 25

The Relation to Matrices

► Bounded Petri nets have a direct mapping to matrices
► Via matrix algebra, an algorithm can be derived which tests the

liveness of a PN
► That is the basis of the check tools

Prof. U. Aßmann, Softwaretechnologie II 26

Incidence Matrix

► The incidence matrix (transition matrix, switching matrix)
represents a PN in matrix form
 Markings are represented as vectors
 Firing sequences are represented as vectors (firing vectors)
 Matrix-vector multiplication shows the influence of the PN on a

marking
 Multiplying indicence matrix with a firing vector gives new marking

► A PN with n transitions and m places, the incidence matrix
A = [aij] is a n x m matrix of integers
 rows: transitions
 columns: places

Prof. U. Aßmann, Softwaretechnologie II 27

Weights and the Incidence Matrix

► Weights on edges become entries in the matrix as follows

► An entry of the incidence matrix shows the effect a
ij
 on a place I

by adding the incoming tokens and subtracting the outgoing
tokens from transition j:

a
ij
 = w(t

j
, s

i
) - w(s

i
, t

j
):

w(t
j
, s

i
), the weight of the arc from transition j to output place i (incoming

weight to place)

w(s
i
, t

j
), the weight of the arc from input place i to (outgoing) transition j.

(outgoing weight from place)

► Transition i is enabled at a marking M iff
a

ij
 ≤ M(j), j = 1, 2, ... , m.

► After firing, a marking
m’ = m+(w(t

j
, s

i
) - w(s

i
, t

j
)) results.

i
2

2

j

Prof. U. Aßmann, Softwaretechnologie II 28

Example: Computing the Incidence Matrix

p1

t2

2

p4

t3

t1

2

2

p2

p3

-11t2

-101t3

11-2t1

p3p2p1

-2

2

0

p4

p1 looses 2 to t1; p1 gets 1 from t2; p1 gets 1 from t3
p2 looses 1 to t2; p2 gets 1 from t1

…

0

Prof. U. Aßmann, Softwaretechnologie II 29

A System of n Processes Sharing k
Resources

ReadingWriting

P0 (inactive
Processes)

P2
(reading processes)

P1 (read waiting)P3 (write waiting)

P4 (writing)

P5 (#permits)

t5

t4

t3 t0

t2

t1

k

n

k

k

Prof. U. Aßmann, Softwaretechnologie II 30

Incidence Matrix Transposed

k

-1

1

t5

-11p1

-k1-1p5

1p4

-11P3

-11p2

-11-1p0

t4t3t2t1t0

p0 looses 1 to t0; p1 gets one from t0;
p1 looses one from t1; p2 gets 1 from t1 …

p5 looses k to t4; p5 gets k from t5

AT=

Prof. U. Aßmann, Softwaretechnologie II 31

Firing Vectors

► Marking M
k
 is written as an m x 1 column vector.

 The j-th entry of M
k
 denotes the number of tokens in place j after the

k-th firing.

► The firing vector u
k
 is a n x 1 column unit vector of n – 1 zeros

and one nonzero entry,
 1 in the i-th position indicates that transition i fires at the k-th firing
 The firing vector characterizes a firing transition

► The recurrence for incidence matrix A is a matrix equation over
firing vectors:
M

k
 = M

k-1
 + ATu

k
, k = 1, 2

 This equation summarizes all reachable states

Prof. U. Aßmann, Softwaretechnologie II 32

► Suppose M
d
 is reachable from M

0
 through a firing sequence {u

1
,

u
2
, ... , u

d
}

► The state equation to compute M
d
 from M

0
 is:

► Which can be rewritten as ATx = ΔM
 Where ΔM = M

d
 – M

0
 and

► x is an n x 1 column vector (firing count vector)
 The i-th entry of x denotes the number of time transition i must fire to

transform M
0
 to M

d
.

 A firing count vector characterizes a firing sequence

State Equation and
Firing Count Vectors

M d=M 0A
T∑
k=1

d

uk

x=∑k=1

d
uk

Prof. U. Aßmann, Softwaretechnologie II 33

Example: Incidence matrix

P1

t2

2

p4

p2

t3

t1

p3

2

2

A PN with initial marking (2 0 1 0)T.
The state equation is shown, where
t3 fires to result in M1 = (3 0 0 2)T.

[
3
0
0
2
]=[

2
0
1
0
][

−2 1 1
1 −1 0
1 0 −1
0 −2 2

][001]
M

k
 = M

k-1
 + ATu

k

Prof. U. Aßmann, Softwaretechnologie II 34

Invariants of Transition Matrices

► A null evaluation of the transposed incidence matrix, ATx = 0, is
called a T-invariant (transition invariant)
 A T-invariant is a firing count vector (firing sequence) that transforms

a marking into itself
 Does not specify the order, but the number of firings for each

transition

► A null evaluation of the incidence matrix, Ay = 0 is called an S-
invariant (state invariant)

► The invariants are used for studying structural properties.

Prof. U. Aßmann, Softwaretechnologie II 35

Structural properties with T-Invariants

► An invariant (vector) y is minimal if there is no other invariant y1
such that y1(p) ≤ y(p) for all p.
 An invariant can be written as linear combinations of minimal support

invariants
 A minimal T-invariant is a minimal firing sequence that transfers a

marking into itself

Theorem: An n-vector x ≥ 0 is a T-invariant iff there exists a marking M
0
 such

that its firing sequence σ leads from M
0
 back to M

0

Theorem: An n-vector x ≥ 0 is a T-invariant iff there exists a marking M
0
 such

that its firing sequence σ leads from M
0
 back to M

0

Prof. U. Aßmann, Softwaretechnologie II 36

T-Invariants

► For the matrix from above, x
1

T = (1,1,1,0,0,0) and x
2

T = (0,

0,0,1,1,1) are T-invariants. They are minimal.

k

-1

1

t5

-11p1

-k1-1p5

1p4

-11p3

-11p2

-11-1p0

t4t3t2t1t0

AT=

Prof. U. Aßmann, Softwaretechnologie II 37

T-Invariants and Liveness

► The theorem delivers directly a check procedure to check
liveness of a PN
 Switch vector: the sum of all minimal T-invariants.
 Calculate minimal T-invariants as elementary null evaluations
 Check that switch vector does not have null entries

 Build the reachability graph, and test whether the initial marking M
0
 is

reachable from all reachable configurations.

Theorem: A P/T net is live if every transition occurs in at least one elementary
T-invariant.

Theorem: A P/T net is live if every transition occurs in at least one elementary
T-invariant.

Prof. U. Aßmann, Softwaretechnologie II 38

Repeat: Purpose of Liveness:
Protocol Checking for Components

► Describe the behavior of two components with two PN
► Link their ports
► Check on liveness of the unified PN

 If the unified net is not live, components will not fit to each other…

► Check on boundedness:
 Estimate consumed resources

Prof. U. Aßmann, Softwaretechnologie II 39

The End

► Thanks to Björn Svensson who did many of the slides,
summarizing [Murata]

	Petri Nets
	Content
	Folie 3
	Literature
	Folie 5
	Folie 6
	Reachability
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Boundedness and Safety
	Folie 13
	Folie 14
	Folie 15
	Liveness
	Liveness of Transitions
	Liveness of Markings and Nets
	Folie 19
	Example: Liveness
	Folie 21
	Folie 22
	Well, everything: BLR
	Incidence Matrix and Invariants
	Incidence matrix
	Folie 26
	Weights and the Incidence Matrix
	Example: Incidence matrix
	A System of n Processes
	Incidence Matrix
	Firing Vectors and State Equation
	Firing Count Vectors
	Folie 33
	Invariants
	Structural properties with S- and T-invariants
	T-Invariants
	T-Invariants and Liveness
	Repeat: Purpose: Protocol Checking for Components
	Folie 39

