3. Formal Features of Petri Nets for Static Verification of Dynamic Behavior

Lecturer: Dr. Sebastian Götz

Prof. Dr. U. Aßmann Technische Universität Dresden Institut für Software- und Multimediatechnik Softwaretechnologie http://st.inf.tu-dresden.de Oct 23, 2017

- 1) Reachability Graph
- 2) Boundedness
- 3) Liveness
- 4) Liveness with Tinvariants



## Content

- Behavioral properties
  - Reachability
  - Liveness
  - Boundedness
- Liveness checking

# **Obligatory Readings**

- T. Murata. Petri Nets: properties, analysis, applications. IEEE volume 77, No 4, 1989.
- Ghezzi Chapter 5
- J. B. Jörgensen. Colored Petri Nets in UML-based Software Development – Designing Middleware for Pervasive Healthcare. www.pervasive.dk/publications/files/CPN02.pdf



#### Literature

- K. Jensen, Colored Petri Nets. Vol. I-III. Springer, 1992-96.
  Landmark book series on CPN.
- W. Reisig. Elements of Distributed Algorithms Modelling and Analysis with Petri Nets. Springer. 1998.
- W. Reisig, G. Rozenberg: Lectures on Petri Nets I+II, Lecture Notes in Computer Science, 1491+1492, Springer.
- J. Peterson. Petri Nets. ACM Computing Surveys, Vol 9, No 3, Sept 1977
- H. Balzert. Lehrbuch der Softwaretechnik. Verlag Spektrum der Wissenschaft. Heidelberg, Germany.



# Goals

- Understand the isomorphism between finite automata (statecharts) and bounded Petri nets
- Understand why matrix algebra solves
  - deadlock and liveness questions
  - protocol questions



# **Reachability of Markings**

- If t is enabled in M, we write M[t)
- A marking M<sub>n</sub> is said to be *reachable* from a marking M<sub>0</sub> if there exists a firing sequence s that transforms M<sub>0</sub> to M<sub>n</sub>.
  - We write this M<sub>0</sub>[s) M<sub>n</sub>
- A firing sequence is denoted by a sequence of transitions s = M<sub>0</sub> [t1) M<sub>1</sub> [t2) M<sub>2</sub> ... [tn) M<sub>n</sub> or simply s = t1 t2 t3 ... tn.
- The set of all possible markings reachable from M<sub>0</sub> is denoted R(M<sub>0</sub>).
  - R(M<sub>0</sub>) is spanning up a state automaton, the state space, reachability graph, or occurrence graph
  - Every marking of the PN is a state in the reachability graph
- The set of all possible firing sequences in a net (N,M<sub>0</sub>) is denoted L(M<sub>0</sub>). This is the language of the automaton R(M<sub>0</sub>)





# Folding the Tree to the Reachability Graph (Common Subtree Elimination)



# **Example: The Reachability Tree and Graph**





# **Boundedness and Safety**

- A PN (N,M<sub>0</sub>) is *k-bounded* or simply *bounded* if every place is size-restricted by k
  - $M(p) \le k$  for every place p and every marking M in  $R(M_0)$ .
- A PN is safe if it is 1-bounded.
- Bounded nets can have only finitely many states, since the number of tokens and token combinations is limited
  - The reachability graph of bounded nets is finite, it corresponds to a finite automaton (which is much larger)
  - The PN is much more compact, it *abbreviates* the automaton



# **Applications of Boundedness**

- The markings of a state can express the number of available resources
  - Operating Systems: number of memory blocks, number of open devices, number of open files, number of processes
  - Workflows: number of actors, number of workpieces that flow
- Boundedness can be used to prove that a system only consumes k resources
  - Important for systems with resource constraints



#### **Example: Unbounded net**

**ST** 



| 3.3 Liveness                                |
|---------------------------------------------|
|                                             |
|                                             |
| Softwaretechnologie II. @ Dref. Live A@mann |

15

# **3.3 Liveness of Nets**

- Liveness is closely related to the complete absence of deadlocks in operating systems.
- A PN (N,M<sub>0</sub>) is **live** if, no matter what marking has been reached from M<sub>0</sub>,
  - all transitions are live
  - i.e., it is possible to fire any transition of the net by progressing through some further firing sequence.

## **Liveness of Transitions**

- Liveness expresses whether a transition stays active or not A transition t is called:
- Dead (L0-live) if t can never be fired in any firing sequence in  $R(M_o)$ . (not fireable)
- L1-live (potentially fireable) if t can be at least fired once in some firing sequence in  $R(M_0)$ . (firing at least once from the start configuration)
- L2-live (k-fireable) if t can be fired at least k times in some firing sequence in R(M<sub>o</sub>), given a positive integer k. (firing k times from the start configuration)
- L3-live (inf-fireable) if t appears infinitely often in some firing sequence in  $R(M_o)$ . (firing infinitely often from the start configuration)
- ▶ *live (L4-live)* if t is L1-live for every marking M in  $R(M_o)$ . (This is more: t is always fireable again in a reachable marking)



#### **Liveness of Markings and Nets**

- A marking is *dead* if non of its transitions are enabled.
- A marking is *live* if no reachable marking is dead (equivalent: all transitions are live)
- A net is *live* if M<sub>0</sub> is live (every t is always fire-able again from every reachable marking of M<sub>0</sub>)



- t<sub>1</sub> L1-live (fireable only once, bridge)
- Hence, t<sub>3</sub> is L3-live (on a cycle), but not L4-live, since it t<sub>3</sub> cannot be activated anymore once t<sub>1</sub> is crossed
- t<sub>0</sub> is L0-live (dead, since t<sub>1</sub> is bridge and either p<sub>1</sub> or p<sub>3</sub> is filled)
- t<sub>2</sub> L2-live (fireable when t<sub>1</sub> is t<sub>2</sub> crossed)
- If net is boolean,





**ST** 

- A safe, live PN. M0 can be reproduced again, e.g.,
  - $t_1 t_4 t_3 t_6$  reproduces a filled  $p_1$  and  $p_2$





p2 is a synchronization dependency; process p5 can run earlier, p2 has to wait. Note: the content of p2 must be reproduced again Net is unbounded, due to the reproduction facilities of t6









# Well, everything: Safe, Live







## **The Relation to Matrices**

- Bounded Petri nets have a direct mapping to matrices
- Via matrix algebra, an algorithm can be derived which tests the liveness of a PN
- That is the basis of the check tools

## **Incidence Matrix**

- The incidence matrix (transition matrix, switching matrix) represents a PN in matrix form
  - Markings are represented as vectors
  - Firing sequences are represented as vectors (firing vectors)
  - Matrix-vector multiplication shows the influence of the PN on a marking
    - Multiplying indicence matrix with a firing vector gives new marking
- A PN with n transitions and m places, the incidence matrix
  A = [a<sub>ij</sub>] is a n x m matrix of integers
  - rows: transitions
  - columns: places



# Weights and the Incidence Matrix

- Weights on edges become entries in the matrix as follows
- An entry of the incidence matrix shows the effect a<sub>ij</sub> on a place I by adding the incoming tokens and subtracting the outgoing tokens from transition j:

$$a_{ij} = w(t_j, s_i) - w(s_i, t_j)$$
:

w(t<sub>j</sub>, s<sub>i</sub>), the weight of the arc from transition j to output place i (*incoming weight to place*)

w(s<sub>i</sub>, t<sub>j</sub>), the weight of the arc from input place i to (outgoing) transition j. (*outgoing weight from place*)

- ► Transition i is enabled at a marking M iff  $a_{ij} \le M(j), j = 1, 2, ..., m$ .
- After firing, a marking m' = m+(w(t<sub>i</sub>, s<sub>i</sub>) - w(s<sub>i</sub>, t<sub>j</sub>)) results.





# **Example: Computing the Incidence Matrix**

p1 looses 2 to t1; p1 gets 1 from t2; p1 gets 1 from t3 p2 looses 1 to t2; p2 gets 1 from t1



|    | р1 | p2 | р3 | p4 |  |  |
|----|----|----|----|----|--|--|
| t1 | -2 | 1  | 1  | 0  |  |  |
| t2 | 1  | -1 | 0  | -2 |  |  |
| t3 | 1  | 0  | -1 | 2  |  |  |
|    |    |    |    |    |  |  |



28

# A System of n Processes Sharing k **Resources**



p0 looses 1 to t0; p1 gets one from t0; p1 looses one from t1; p2 gets 1 from t1 ... p5 looses k to t4; p5 gets k from t5



A<sup>⊤</sup>=

30

# **Firing Vectors**

- Marking  $M_k$  is written as an m x 1 column vector.
  - The j-th entry of M<sub>k</sub> denotes the number of tokens in place j after the k-th firing.
- The firing vector u<sub>k</sub> is a n x 1 column unit vector of n 1 zeros and one nonzero entry,
  - 1 in the i-th position indicates that transition i fires at the k-th firing
  - The firing vector characterizes a firing transition
- The recurrence for incidence matrix A is a matrix equation over firing vectors:

$$M_{k} = M_{k-1} + A^{T}u_{k}, k = 1, 2 \dots$$

• This equation summarizes all reachable states



# State Equation and Firing Count Vectors

- Suppose M<sub>d</sub> is reachable from M<sub>0</sub> through a firing sequence {u<sub>1</sub>, u<sub>2</sub>, ..., u<sub>d</sub>}
- The state equation to compute  $M_d$  from  $M_0$  is:

$$M_d = M_0 + A^T \sum_{k=1}^{n} u_k$$

- Which can be rewritten as  $A^T x = \Delta M$ 
  - Where  $\Delta M = M_d M_0$  and
- x is an n x 1 column vector (*firing count vector*)
  - The i-th entry of x denotes the number of time transition i must fire to transform M<sub>0</sub> to M<sub>d</sub>.
  - A firing count vector characterizes a firing sequence

$$x = \sum_{k=1}^{a} u_k$$

#### **Example: Incidence matrix**



A PN with initial marking  $(2\ 0\ 1\ 0)^{T}$ . The state equation is shown, where  $t_3$  fires to result in  $M_1 = (3\ 0\ 0\ 2)^{T}$ .

$$M_{k} = M_{k-1} + A^{T}u_{k}$$





## **Invariants of Transition Matrices**

- A null evaluation of the transposed incidence matrix, A<sup>T</sup>x = 0, is called a *T-invariant (transition invariant)* 
  - A T-invariant is a firing count vector (firing sequence) that transforms a marking into itself
  - Does not specify the order, but the number of firings for each transition
- A null evaluation of the incidence matrix, Ay = 0 is called an Sinvariant (state invariant)
- The invariants are used for studying structural properties.



Theorem: An n-vector  $x \ge 0$  is a T-invariant iff there exists a marking  $M_0$  such that its firing sequence  $\sigma$  leads from  $M_0$  back to  $M_0$ 

- An invariant (vector) y is *minimal* if there is no other invariant y1 such that y1(p) ≤ y(p) for all p.
  - An invariant can be written as linear combinations of minimal support invariants
  - A *minimal T-invariant* is a minimal firing sequence that transfers a marking into itself



#### **T-Invariants**

For the matrix from above,  $x_1^T = (1,1,1,0,0,0)$  and  $x_2^T = (0, 0,0,1,1,1)$  are T-invariants. They are minimal.

|    | tO | t1 | t2 | t3 | t4 | t5 |
|----|----|----|----|----|----|----|
| p0 | -1 |    | 1  | -1 |    | 1  |
| p1 | 1  | -1 |    |    |    |    |
| p2 |    | 1  | -1 |    |    |    |
| р3 |    |    |    | 1  | -1 |    |
| p4 |    |    |    |    | 1  | -1 |
| р5 |    | -1 | 1  |    | -k | k  |

А<sup>⊤</sup>=



36

Theorem: A P/T net is live if every transition occurs in at least one elementary T-invariant.

- The theorem delivers directly a check procedure to check liveness of a PN
  - *Switch vector:* the sum of all minimal T-invariants.
  - Calculate minimal T-invariants as elementary null evaluations
  - Check that switch vector does not have null entries
  - Build the reachability graph, and test whether the initial marking M<sub>0</sub> is reachable from all reachable configurations.



# Repeat: Purpose of Liveness: Protocol Checking for Components

- Describe the behavior of two components with two PN
- Link their ports
- Check on liveness of the unified PN
  - If the unified net is not live, components will not fit to each other...
- Check on boundedness:
  - Estimate consumed resources



 Thanks to Björn Svensson who did many of the slides, summarizing [Murata]