
Softwaretechnologie II, © Prof. Uwe Aßmann 1

3. Formal Features of Petri Nets
for Static Verification of Dynamic
Behavior

Lecturer: Dr. Sebastian Götz

Prof. Dr. U. Aßmann

Technische Universität
Dresden

Institut für Software- und
Multimediatechnik

Softwaretechnologie

http://st.inf.tu-dresden.de

Oct 23, 2017

1) Reachability Graph

2) Boundedness

3) Liveness

4) Liveness with T-
invariants

http://st.inf.tu-dresden.de/

Prof. U. Aßmann, Softwaretechnologie II 2

Content

► Behavioral properties
 Reachability
 Liveness
 Boundedness

► Liveness checking

Prof. U. Aßmann, Softwaretechnologie II 3

Obligatory Readings

► T. Murata. Petri Nets: properties, analysis, applications. IEEE
volume 77, No 4, 1989.

► Ghezzi Chapter 5
► J. B. Jörgensen. Colored Petri Nets in UML-based Software

Development – Designing Middleware for Pervasive Healthcare.
www.pervasive.dk/publications/files/CPN02.pdf

http://www.pervasive.dk/publications/files/CPN02.pdf

Prof. U. Aßmann, Softwaretechnologie II 4

Literature

► K. Jensen, Colored Petri Nets. Vol. I-III. Springer, 1992-96.
Landmark book series on CPN.

► W. Reisig. Elements of Distributed Algorithms – Modelling and
Analysis with Petri Nets. Springer. 1998.

► W. Reisig, G. Rozenberg: Lectures on Petri Nets I+II, Lecture
Notes in Computer Science, 1491+1492, Springer.

► J. Peterson. Petri Nets. ACM Computing Surveys, Vol 9, No 3,
Sept 1977

► H. Balzert. Lehrbuch der Softwaretechnik. Verlag Spektrum der
Wissenschaft. Heidelberg, Germany.

Prof. U. Aßmann, Softwaretechnologie II 5

Goals

► Understand the isomorphism between finite automata
(statecharts) and bounded Petri nets

► Understand why matrix algebra solves
 deadlock and liveness questions
 protocol questions

Softwaretechnologie II, © Prof. Uwe Aßmann 6

3.1 Behavioral Properties of PN

Prof. U. Aßmann, Softwaretechnologie II 7

Reachability of Markings

► If t is enabled in M, we write M[t)
► A marking M

n
 is said to be reachable from a marking M

0
 if there

exists a firing sequence s that transforms M
0
 to M

n
.

 We write this M
0
[s) M

n

► A firing sequence is denoted by a sequence of transitions
s = M

0
 [t1) M

1
 [t2) M

2
 ... [tn) M

n
 or simply

s = t1 t2 t3 ... tn.
► The set of all possible markings reachable from M

0
 is denoted

R(M
0
).

 R(M
0
) is spanning up a state automaton, the state space,

reachability graph, or occurrence graph
 Every marking of the PN is a state in the reachability graph

► The set of all possible firing sequences in a net (N,M
0
) is

denoted L(M
0
). This is the language of the automaton R(M

0
).

Prof. U. Aßmann, Softwaretechnologie II 8

M5=M4

Reachability Tree of the 2 Robots

Robot 1 free S1

Piece equipped
S4

Taking
up T1

Taking
up T3

Piece
moving

T0

Piece equipped
S2

Robot 2 free
S3

Piece
available

S0

Piece
ready

S5

Laying
down T2

Laying
down T4

Piece
moving

T5

M0 = (0 1 0 1 0 0)

T0

M1 = (1 1 0 1 0 0)

T3

M3 = (0 1 0 0 1 0)

T1

M2 = (0 0 1 1 0 0)

T4T2

Upper part of net (S1, S2)

Lower part of net (S3, S4)

T5

M4 = (0 1 0 1 0 1)

M0

T5

M0

Prof. U. Aßmann, Softwaretechnologie II 9

Folding the Tree to the Reachability Graph
(Common Subtree Elimination)

Robot 1 free S1

Piece equipped
S4

Taking
up T1

Taking
up T3

Piece
moving

T0

Piece equipped
S2

Robot 2 free
S3

Piece
available

S0

Piece
ready

S5

Laying
down T2

Laying
down T4

Piece
moving

T5

M0 = (0 1 0 1 0 0)

T0

M1 = (1 1 0 1 0 0)

T3

M3 = (0 1 0 0 1 0)

T1

M2 = (0 0 1 1 0 0)

T4

M4 = (0 1 0 1 0 1)

T2

Upper part of net (S1, S2)

Lower part of net (S3, S4)

T5

Prof. U. Aßmann, Softwaretechnologie II 10

Example: The Reachability Tree and Graph

p1

t1

t0

p3

t3

t2

p2

M0 = (1 0 0)

”old”

M1 = (0 0 1)
”old”

M1 = (0 0 1) M3 = (1 1 0)

t2

t3

t3t1

M0 = (1 0 0)

M1 = (0 0 1) M3 = (1 1 0)

t3t1

M4 = (0 1 1)

t1

t3

Object sink

t1

M4 = (0 1 1) t2

M5 = (1 1 0)

Softwaretechnologie II, © Prof. Uwe Aßmann 11

3.2 Boundedness

Prof. U. Aßmann, Softwaretechnologie II 12

Boundedness and Safety

► A PN (N,M
0
) is k-bounded or simply bounded if every place is

size-restricted by k
 M(p) ≤ k for every place p and every marking M in R(M

0
).

► A PN is safe if it is 1-bounded.

► Bounded nets can have only finitely many states, since the
number of tokens and token combinations is limited
 The reachability graph of bounded nets is finite, it corresponds to a

finite automaton (which is much larger)
 The PN is much more compact, it abbreviates the automaton

Prof. U. Aßmann, Softwaretechnologie II 13

Applications of Boundedness

► The markings of a state can express the number of available
resources
 Operating Systems: number of memory blocks, number of open

devices, number of open files, number of processes
 Workflows: number of actors, number of workpieces that flow

► Boundedness can be used to prove that a system only consumes
k resources
 Important for systems with resource constraints

Prof. U. Aßmann, Softwaretechnologie II 14

Example: Unbounded net

p1

t1

t0

p3

t3

t2

p2

M0 = (1 0 0)

M1 = (0 0 1)
”old”

M1 = (0 0 1) M3 = (1 1 0)

t2

t3

t3t1

M0 = (1 0 0)

M1 = (0 0 1) M3 = (1 1 0)

t3t1

M4 = (0 1 1)

t1

t3

Object sink

t1

M4 = (0 1 1)

t2

M5 = (1 2 0)

M6 = (1 3 0)

M7 = (1 4 0)

……

M5 = (1 2 0) …

Softwaretechnologie II, © Prof. Uwe Aßmann 15

3.3 Liveness

Prof. U. Aßmann, Softwaretechnologie II 16

3.3 Liveness of Nets

► Liveness is closely related to the complete absence of deadlocks
in operating systems.

► A PN (N,M
0
) is live if, no matter what marking has been reached

from M
0
,

 all transitions are live
 i.e., it is possible to fire any transition of the net by progressing

through some further firing sequence.

Prof. U. Aßmann, Softwaretechnologie II 17

Liveness of Transitions

► Liveness expresses whether a transition stays active or not

A transition t is called:

► Dead (L0-live) if t can never be fired in any firing sequence in R(M0).
(not fireable)

► L1-live (potentially fireable) if t can be at least fired once in some
firing sequence in R(M0). (firing at least once from the start
configuration)

► L2-live (k-fireable) if t can be fired at least k times in some firing
sequence in R(M0), given a positive integer k. (firing k times from
the start configuration)

► L3-live (inf-fireable) if t appears infinitely often in some firing
sequence in R(M0). (firing infinitely often from the start
configuration)

► live (L4-live) if t is L1-live for every marking M in R(M
0
). (This is

more: t is always fireable again in a reachable marking)

Prof. U. Aßmann, Softwaretechnologie II 18

Liveness of Markings and Nets

► A marking is dead if non of its transitions are enabled.
► A marking is live if no reachable marking is dead (equivalent: all

transitions are live)

► A net is live if M0 is live (every t is always fire-able again from
every reachable marking of M0)

Prof. U. Aßmann, Softwaretechnologie II 19

Example: Liveness

t0

p2

p3

t1

p1

t2

t3

► t1 L1-live (fireable only once,
bridge)

► Hence, t3 is L3-live (on a
cycle), but not L4-live, since it
cannot be activated anymore
once t

1
 is crossed

► t0 is L0-live (dead, since t
1
 is

bridge and either p
1
 or p

3
 is

filled)

► t2 L2-live (fireable when t1 is
crossed)

► If net is boolean,

Prof. U. Aßmann, Softwaretechnologie II 20

Example: Liveness

p6

p
5

p3

t4

p4

t3

p2

t1

p2

p1

t
6

fork

► A safe, live PN. M0 can be reproduced again, e.g.,
t
1
 t

4
 t

3
 t

6
 reproduces a filled p

1
 and p

2

p1, t1, t2 form a fork

Prof. U. Aßmann, Softwaretechnologie II 21

Example: Liveness

p6

P5

p3

t4

p4

t3

p2

t1

p2

p1

p6

P5

p3

t4

p4

t3

p2

t1

p2

p1

p2 is a synchronization dependency; process p5 can run earlier, p2 has to wait.
Note: the content of p2 must be reproduced again
Net is unbounded, due to the reproduction facilities of t6

t
6

t
6

Prof. U. Aßmann, Softwaretechnologie II 22

Example: Liveness

p6

P5

p3

t4

p4

t3

p2

t1

p2

p1

p6

P5

p3

t4

p4

t3

p2

t1

p2

p1

t
6

t
6

Prof. U. Aßmann, Softwaretechnologie II 23

Well, everything: Safe, Live

t1 t2

p1

p2

Softwaretechnologie II, © Prof. Uwe Aßmann 24

3.4 Liveness of PN with the
Incidence Matrix and T-Invariants

Prof. U. Aßmann, Softwaretechnologie II 25

The Relation to Matrices

► Bounded Petri nets have a direct mapping to matrices
► Via matrix algebra, an algorithm can be derived which tests the

liveness of a PN
► That is the basis of the check tools

Prof. U. Aßmann, Softwaretechnologie II 26

Incidence Matrix

► The incidence matrix (transition matrix, switching matrix)
represents a PN in matrix form
 Markings are represented as vectors
 Firing sequences are represented as vectors (firing vectors)
 Matrix-vector multiplication shows the influence of the PN on a

marking
 Multiplying indicence matrix with a firing vector gives new marking

► A PN with n transitions and m places, the incidence matrix
A = [aij] is a n x m matrix of integers
 rows: transitions
 columns: places

Prof. U. Aßmann, Softwaretechnologie II 27

Weights and the Incidence Matrix

► Weights on edges become entries in the matrix as follows

► An entry of the incidence matrix shows the effect a
ij
 on a place I

by adding the incoming tokens and subtracting the outgoing
tokens from transition j:

a
ij
 = w(t

j
, s

i
) - w(s

i
, t

j
):

w(t
j
, s

i
), the weight of the arc from transition j to output place i (incoming

weight to place)

w(s
i
, t

j
), the weight of the arc from input place i to (outgoing) transition j.

(outgoing weight from place)

► Transition i is enabled at a marking M iff
a

ij
 ≤ M(j), j = 1, 2, ... , m.

► After firing, a marking
m’ = m+(w(t

j
, s

i
) - w(s

i
, t

j
)) results.

i
2

2

j

Prof. U. Aßmann, Softwaretechnologie II 28

Example: Computing the Incidence Matrix

p1

t2

2

p4

t3

t1

2

2

p2

p3

-11t2

-101t3

11-2t1

p3p2p1

-2

2

0

p4

p1 looses 2 to t1; p1 gets 1 from t2; p1 gets 1 from t3
p2 looses 1 to t2; p2 gets 1 from t1

…

0

Prof. U. Aßmann, Softwaretechnologie II 29

A System of n Processes Sharing k
Resources

ReadingWriting

P0 (inactive
Processes)

P2
(reading processes)

P1 (read waiting)P3 (write waiting)

P4 (writing)

P5 (#permits)

t5

t4

t3 t0

t2

t1

k

n

k

k

Prof. U. Aßmann, Softwaretechnologie II 30

Incidence Matrix Transposed

k

-1

1

t5

-11p1

-k1-1p5

1p4

-11P3

-11p2

-11-1p0

t4t3t2t1t0

p0 looses 1 to t0; p1 gets one from t0;
p1 looses one from t1; p2 gets 1 from t1 …

p5 looses k to t4; p5 gets k from t5

AT=

Prof. U. Aßmann, Softwaretechnologie II 31

Firing Vectors

► Marking M
k
 is written as an m x 1 column vector.

 The j-th entry of M
k
 denotes the number of tokens in place j after the

k-th firing.

► The firing vector u
k
 is a n x 1 column unit vector of n – 1 zeros

and one nonzero entry,
 1 in the i-th position indicates that transition i fires at the k-th firing
 The firing vector characterizes a firing transition

► The recurrence for incidence matrix A is a matrix equation over
firing vectors:
M

k
 = M

k-1
 + ATu

k
, k = 1, 2

 This equation summarizes all reachable states

Prof. U. Aßmann, Softwaretechnologie II 32

► Suppose M
d
 is reachable from M

0
 through a firing sequence {u

1
,

u
2
, ... , u

d
}

► The state equation to compute M
d
 from M

0
 is:

► Which can be rewritten as ATx = ΔM
 Where ΔM = M

d
 – M

0
 and

► x is an n x 1 column vector (firing count vector)
 The i-th entry of x denotes the number of time transition i must fire to

transform M
0
 to M

d
.

 A firing count vector characterizes a firing sequence

State Equation and
Firing Count Vectors

M d=M 0A
T∑
k=1

d

uk

x=∑k=1

d
uk

Prof. U. Aßmann, Softwaretechnologie II 33

Example: Incidence matrix

P1

t2

2

p4

p2

t3

t1

p3

2

2

A PN with initial marking (2 0 1 0)T.
The state equation is shown, where
t3 fires to result in M1 = (3 0 0 2)T.

[
3
0
0
2
]=[

2
0
1
0
][

−2 1 1
1 −1 0
1 0 −1
0 −2 2

][001]
M

k
 = M

k-1
 + ATu

k

Prof. U. Aßmann, Softwaretechnologie II 34

Invariants of Transition Matrices

► A null evaluation of the transposed incidence matrix, ATx = 0, is
called a T-invariant (transition invariant)
 A T-invariant is a firing count vector (firing sequence) that transforms

a marking into itself
 Does not specify the order, but the number of firings for each

transition

► A null evaluation of the incidence matrix, Ay = 0 is called an S-
invariant (state invariant)

► The invariants are used for studying structural properties.

Prof. U. Aßmann, Softwaretechnologie II 35

Structural properties with T-Invariants

► An invariant (vector) y is minimal if there is no other invariant y1
such that y1(p) ≤ y(p) for all p.
 An invariant can be written as linear combinations of minimal support

invariants
 A minimal T-invariant is a minimal firing sequence that transfers a

marking into itself

Theorem: An n-vector x ≥ 0 is a T-invariant iff there exists a marking M
0
 such

that its firing sequence σ leads from M
0
 back to M

0

Theorem: An n-vector x ≥ 0 is a T-invariant iff there exists a marking M
0
 such

that its firing sequence σ leads from M
0
 back to M

0

Prof. U. Aßmann, Softwaretechnologie II 36

T-Invariants

► For the matrix from above, x
1

T = (1,1,1,0,0,0) and x
2

T = (0,

0,0,1,1,1) are T-invariants. They are minimal.

k

-1

1

t5

-11p1

-k1-1p5

1p4

-11p3

-11p2

-11-1p0

t4t3t2t1t0

AT=

Prof. U. Aßmann, Softwaretechnologie II 37

T-Invariants and Liveness

► The theorem delivers directly a check procedure to check
liveness of a PN
 Switch vector: the sum of all minimal T-invariants.
 Calculate minimal T-invariants as elementary null evaluations
 Check that switch vector does not have null entries

 Build the reachability graph, and test whether the initial marking M
0
 is

reachable from all reachable configurations.

Theorem: A P/T net is live if every transition occurs in at least one elementary
T-invariant.

Theorem: A P/T net is live if every transition occurs in at least one elementary
T-invariant.

Prof. U. Aßmann, Softwaretechnologie II 38

Repeat: Purpose of Liveness:
Protocol Checking for Components

► Describe the behavior of two components with two PN
► Link their ports
► Check on liveness of the unified PN

 If the unified net is not live, components will not fit to each other…

► Check on boundedness:
 Estimate consumed resources

Prof. U. Aßmann, Softwaretechnologie II 39

The End

► Thanks to Björn Svensson who did many of the slides,
summarizing [Murata]

	Petri Nets
	Content
	Folie 3
	Literature
	Folie 5
	Folie 6
	Reachability
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Boundedness and Safety
	Folie 13
	Folie 14
	Folie 15
	Liveness
	Liveness of Transitions
	Liveness of Markings and Nets
	Folie 19
	Example: Liveness
	Folie 21
	Folie 22
	Well, everything: BLR
	Incidence Matrix and Invariants
	Incidence matrix
	Folie 26
	Weights and the Incidence Matrix
	Example: Incidence matrix
	A System of n Processes
	Incidence Matrix
	Firing Vectors and State Equation
	Firing Count Vectors
	Folie 33
	Invariants
	Structural properties with S- and T-invariants
	T-Invariants
	T-Invariants and Liveness
	Repeat: Purpose: Protocol Checking for Components
	Folie 39

