
Fakultät Informatik, Institut für Software- und Multimediatechnik, Lehrstuhl für Softwaretechnologie

20 Design Methods - An Overview

Prof. Dr. U. Aßmann
Technische Universität Dresden

Institut für Software- und Multimediatechnik

Gruppe Softwaretechnologie

http://st.inf.tu-dresden.de/teaching/swt2

Wintersemester 17/18, 07.01.2018

Lecturer: Dr. Sebastian Götz

1.Design Methods
2.Overview of Design Methods

1.Functional Design
2.Action-Based Design
3.Component-Based Design
4.Data-Oriented Design
5.Object-oriented Design
6.Transformative Design
7.Generative Design
8.Model-Driven Software

Development
9.Formal Methods

3.Architectural Styles
4.Design Heuristics and Best Practices

Obligatory Readings

 S. L. Pfleeger and J. Atlee:
Software Engineering: Theory and Practice.
Pearson. 2009.

• Chapter 5 (Designing the Architecture)

 C. Ghezzi, M. Jazayeri and D. Mandrioli:
Fundamentals of Software Engineering.
Prentice Hall. 1992.

• Chapter 4 (Design and Software Architecture)

TU Dresden, Prof. U. Aßmann Design 2

Secondary Reading

 D. Budgen:
Software Design (2nd Edition).
Addison-Wesley. 2003.

 M. Shaw and D. Garlan:
Software Architecture: Perspectives on an Emerging
Discipline. Prentice Hall, 1996.

TU Dresden, Prof. U. Aßmann Design 3

Goals

 Get an overview on the available design methods to arrive at a

design, starting from a requirements specification

 Understand that software engineers shouldn't get stuck by a

specific design method

TU Dresden, Prof. U. Aßmann Design 4

What is Design?

 “The purpose of design is simply to produce a solution to a
problem.” [Budgen, p. 18]

 "The design is the creative process of figuring out how to implement
all of the customer’s requirements.” [Pfleeger, p. 224]

 “Design is the activity that acts as a bridge between requirements
and the implementation of the software.” [Ghezzi, p. 67]

 Goal: This lecture presents some systematic ways how to come to
a workable solution for a given problem

TU Dresden, Prof. U. Aßmann Design 5

Contents of the Software Requirements Specification (SRS) (rep.)

TU Dresden, Prof. U. Aßmann Design

 Overview of Product

 Background, Environment

 Interfaces of the System (context model)
 I/O interfaces, data formats (screens, protocols, etc.), Commands

 Overview of data flow through system, Data dictionary

 Functional requirements

 Non-functional requirements

 Error handling

 Prioritization

 Possible extensions

 Acceptance test criteria

 Documentation guideline

 Literature

 Glossary

6

20.1 DESIGN METHODS

TU Dresden, Prof. U. Aßmann Design 7

A Software Design Method

… has 2 components:

1. Representation part (notation, language)

 Set of notations in (informal) textual, (semi-formal) diagrammatic, or
mathematic (formal) form

2. Process part (“Vorgehensmodell”, “Prozessmodell”)

 “… describing how […] transformations between the representation forms
are to be organized […].”

… most design methods provide a third component:

1. Set of heuristics

 “[…] provide guidelines on the ways in which the activities defined in the
process part can be organized […]”

TU Dresden, Prof. U. Aßmann Design 8

[Budgen, p. 34]

20.1.1 DESIGN
REPRESENTATION

TU Dresden, Prof. U. Aßmann Design 9

20.1.1 Design Representation

TU Dresden, Prof. U. Aßmann Design

Programming
Languages

Executable
Specification

Languages

Paper
Specification

Languages

Text Diagrams Math

Parseable natural
language

Informal

Natural language

Pseudo-code

Flow chart

Data-flow Diagram

Entity-Relationship

Diagram ER

UML

Structure Diagram

Workflow languages

(BPEL)

Choregraphe

Colored Petri nets

State machines

Vienna Development

Language

Z

B

C

Java

Python

Process algebras

(CSP, CCS)

10

Modelica

Matlab

Simulink

20.1.2 DESIGN
PROCESSES

TU Dresden, Prof. U. Aßmann Design 11

20.1.2 Design Process

 A design process is a structured algorithm (or workflow) to
achieve a workable solution from a requirement specification

 A sequence of steps

 A set of milestones

 The design process starts from the system’s interfaces (context
model) and refines its internals

 Every design process

 Contains several central generic steps

TU Dresden, Prof. U. Aßmann Design 12

[Budgen, p. 29]

Operations/Actions of Design Methods

 Many methods have actions like elaboration, refinement, checking,
and structuring

 Manual operations

 Split (decompose, introduce hierarchies, layers, reducibility)

 Merge (coalesce)

 Automatic operations

 Graph analysis methods

 Graph structuring methods, e.g., by graph transformations or edge addition
rewrite systems

 Remember: text-based specifications can be transformed into graphs

TU Dresden, Prof. U. Aßmann Design 13

The Design Problem

 How to get a workable solution starting with a requirements
specification?

TU Dresden, Prof. U. Aßmann Design 14

Requirements
Specification

Architecture
Specification

Design
Specification

?

?

Architectural Styles

 An architecture style provides

 Certain types of components

 Certain types of connections/connectors

 Invariants/constraints among them

 Architectural styles provide a vocabulary to talk about the coarse-
grain structure of a system

 Good for documentation and comprehension

 Good for maintenance

 Architectural styles compared to design patterns

 Design patterns describe the relationship between several classes or objects
of an application, but not of the entire system

 Architectural styles describe what kinds of building blocks and glue exists

TU Dresden, Prof. U. Aßmann Design 15

What Is In a Style ?

 A style can be approached by answering 7 questions [Shaw/Garlan]

1. What is the design vocabulary/the types of components and connectors?

2. What are the allowable structural patterns?

3. What is the underlying computational model?

4. What are the essential invariants of the style?

5. What are some common examples of its use?

6. What are the advantages and disadvantages of using that style?

7. What are some of the common specializations?

 Example: Pipes and Filters

TU Dresden, Prof. U. Aßmann Design 16

> cat server.log | grep timeout | wc -l

The Design Problem

 How do I derive a design for the system?

 How do I find the best architectural style for the system?

 How do I derive a detailed design?

 In design meetings, the basic design questions are posed in a
structured way

 Select a design method

 Pose the design method's basic question

 Perform the design method's process

 Perform the design method's steps

 If process gets stuck, change design method and try another one

However, be aware, which design method and process you use

TU Dresden, Prof. U. Aßmann Design 17

20.2 OVERVIEW OF
DESIGN METHODS

TU Dresden, Prof. U. Aßmann Design 18

20.2 Overview of Design Methods

 Methods can be grouped according to their focus of decomposition
and the design notation they use.

 Function-oriented: function in focus

 Action-oriented, event-action-oriented: Action in focus

 Data-oriented: A data structure is in focus

 Component-oriented (structure-oriented): parts in focus

 Object-oriented: objects (data and corresp. actions) in focus

 Transformational: basic action is the transformation

 Generative: basic action is a special form of transformation, the
generation. Also using planning.

 Formal methods: correct refinement and formal proofs in focus

 Refinement-based: basic action is the point-wise and regional refinement,
with verification of conformance

 Aspect-oriented methods: refinement according to viewpoints and
concerns

TU Dresden, Prof. U. Aßmann Design 19

Function-Oriented Design (Operation-oriented, Modular Design)

 Design with functional units which transform inputs to outputs

 Minimal system state

 Information is typically communicated via parameters or shared
memory

 No temporal aspect to functions

 Functions/operations are grouped to modules or components

 Divide: finding subfunctions

 Conquer: grouping to modules

 Examples

 Parnas' change-oriented design (information-hiding based design, see ST-1)

 Use: when the system has a lot of different functions

TU Dresden, Prof. U. Aßmann Design

What are the functions of the software?

20

Action-Oriented Design

 Action-oriented design is similar to function-oriented design, but
actions require state on which they are performed (imperative,
state-oriented style)

 Divide: finding subactions

 Conquer: grouping to modules

 Examples:

 Petri Nets

 Use-case-based development

 Data-flow based development SA, SADT

 Use: when the system maps to a state space, in which actions form
the transitions

TU Dresden, Prof. U. Aßmann Design

What are the actions the system should perform?

21

Result 1: Call-Based Architectural Style

 Components denote procedures that call each other

 Control flow is symmetric (calls and symmetric returns)

 Data-flow can be

 parallel to the call (push-based system): caller pushes data into callee

 antiparallel, i.e., parallel to the return (pull-based system): caller drags out
data from callee

 Aka “Client-Server” in loosely coupled or distributed systems

TU Dresden, Prof. U. Aßmann Design

Module

Module

Module

System

call

return

call

return

call
return

call

return

call

return

22

Result 2: Data-Flow Based Systems (Pipe-and-Filter,
Channels, Streams)

 If data flows in streams, call-based systems are extended to stream-based
systems

 Components: processes, connectors: streams

 Control flow is asynchronous, continuous

 Data-flow graph of connections, static or dynamic binding

 Data-flow can be parallel to the control-flow (push-based system) or
antiparallel (pull-based system)

TU Dresden, Prof. U. Aßmann Design

architectural glue code

Filter

Pipe

Example: Linux shell: cat server.log | grep timeout | wc -l

23

Examples

Data-flow based systems:

 Image processing systems

 Microscopy, object recognition

 Digital signal processing systems

 Video and audio processing, e.g., telephony

 Batch-processing systems

Call-based systems:

 Object-oriented frameworks

TU Dresden, Prof. U. Aßmann Design 24

Event-Condition-Action-Oriented Design

 Event-condition-action rules (ECA rules)

 On which event, under which condition, follows which action?

 Divide: finding rules for contexts

 Conquer: grouping of rules to rule modules

 Example:

 Business-rule-based design

 Use: when the system maps to a state space, in which actions form
the transitions and the actions are guarded by events

TU Dresden, Prof. U. Aßmann Design

What are the events that may occur and

how does my software react on them?

25

Arch. Style: Event-based Architectural Style (Implicit
Invocation Style)

 Components: processes or procedures

 Connectors: Anonymous communication by events

 Asynchronous communication

 Dynamic topology: Listeners can dynamically register and unregister

 Listeners are implicitly invoked by events

TU Dresden, Prof. U. Aßmann Design

On Event
If Condition
then Action

On Event
If Condition
then Action

On Event
If Condition
then Action

26

JBoss Rules

<rule name="Free Fish Food Sample">

<parameter identifier="cart">

<java:class>org.drools.examples.java.petstore.ShoppingCart</java:class>

</parameter>

<parameter identifier="item">

<java:class>org.drools.examples.java.petstore.CartItem</java:class>

</parameter>

<java:condition>cart.getItems("Fish Food Sample").size() == 0</java:condition>

<java:condition>cart.getItems("Fish Food").size() == 0</java:condition>

<java:condition>item.getName().equals("Gold Fish")</java:condition>

<java:consequence>

System.out.println("Adding free Fish Food Sample to cart");

cart.addItem(new org.drools.examples.java.petstore.CartItem("Fish Food Sample", 0.00)
);

drools.modifyObject(cart);

</java:consequence>

</rule>

TU Dresden, Prof. U. Aßmann Design 27

Event-Bus

 Basis of many interactive application frameworks (XWindows, Java
AWT, Java InfoBus,)

 See design pattern Observer with Change Manager

TU Dresden, Prof. U. Aßmann Design

EventBus (Mediator)

Subject Subject Subject

Observer Jrules-
based
Observer

ECA-rule
based
Observer

28

Arch. Style: Workflow-Based Systems

 A workflow describes the actions on certain events and conditions

 Formed by a decision analysis, described by ECA rules

 Instead of a data-flow graph as in pipe-and-filter systems, or a
control-flow graph as in call-based systems

 A control-and-data flow graph steers the system

 The data-flow graph contains control-flow instructions (if, while, ..)

 This workflow graph is similar to a UML activity diagram, with pipes and
switch nodes

 Often transaction-oriented

TU Dresden, Prof. U. Aßmann Design

Workflow

?

?

29

Application Domains of Workflow Architectures

 Business software

 The big frameworks of SAP, Peoplesoft, etc. all organize workflows in
companies

 Production planning software

 Web services are described by workflow languages (BPEL)

 More in course “Component-based Software Engineering”

TU Dresden, Prof. U. Aßmann Design 30

Arch. Style: Communicating State Machines

 Processes can be modeled with state machines that react on
events, perform actions, and communicate

 Model checking can be used for validation of specifications

 Languages:

 Esterelle, Lotos, SDL

 UML and its statecharts

 Heteregenous Rich Components (HRC)

 EAST-ADL

TU Dresden, Prof. U. Aßmann Design 31

Applications

 Protocol engineering

 Automatic derivation of tests for systems

 Telecommunication software

 Embedded software

 In cars

 In planes

 In robots

TU Dresden, Prof. U. Aßmann Design 32

Data-Oriented Design

 Data-oriented design is grouped around an input/output/inner data
structure

 or a language for a data structure (regular expressions, finite automata,
context-free grammars, ...)

 The algorithm of the system is isomorphic to the data and can be
derived from the data

 Input data (input-data driven design)

 Output data (output-data driven design)

 Inner data

 Divide: finding sub-data structures

 Conquer: grouping of data and algorithms to modules

 Example:

 Jackson Structured Programming (JSP)

 ETL processing in information systems

TU Dresden, Prof. U. Aßmann Design

How does the data look like?

33

Data-Flow Style: Regular Batch Processing
(ETL Processing)

 Regular Batch Processing is a specific batch-processing style. In
such an application, regular domains are processed:

 Regular string languages, regular action languages, or regular state spaces

 The form of the data can be described by a

 Regular expression, regular grammar, statechart, or JSP diagram tree

 Often transaction-oriented

 Example:

 Record processing in bank and business applications:

 Bank transaction software

 Database transaction software for business

 Business report generation for managers (controlling)

TU Dresden, Prof. U. Aßmann Design 34

Arch. Style: Repository Systems

 Processing is data-oriented

 Free coordination of components

 Can be combined with call-based style

 Often also state-oriented

TU Dresden, Prof. U. Aßmann Design

Repository

Read/write

35

Example: Repository Style in a Compiler

 The algorithms are structured along the syntax of the programs

 The Design Pattern “Visitor” separates data structures from
algorithms

TU Dresden, Prof. U. Aßmann Design

Lexical
Analyser

Parser

Semantic
Analysis

Optimizer

Transformation
Phase

Code
generator

Repository

36

Repository Style in a Integrated Development Environment

 IDE store programs, models, tests in their repository

TU Dresden, Prof. U. Aßmann Design

Lexical
Analyser

Parser

Semantic
Analysis Refactoring

Pretty
Printer

Repository

Diagram
Visualizer

Unit Testing

37

Information Systems – Queries on a Repository

 Algorithms are structured along the relational data

 Data warehouse applications provide querying on multidimensional
data

TU Dresden, Prof. U. Aßmann Design

Query 1 Query
Optimizer

Query3

Repository

Query 2

38

Blackboard Style

 The blackboard is an active repository (i.e., an active component)
and coordinates the other components

 by event notification or call

 Dominant style in expert systems

TU Dresden, Prof. U. Aßmann Design

Blackboard

Read/write

39

Fire/trigger

Component-Based Design

 Focus is on the HAS-A (PART-OF) relation

 Focus is on parts, i.e., on an hierarchical structure of the system

 Divide: finding subcomponents (parts)

 Conquer: grouping of components to larger components

 Example:

 Design with architectural languages (such as EAST-ADL)

 Design with classical component systems (components-off-the-shelf, COTS),
such as CORBA, EJB or AutoSAR

 However, many component models exist

 Separate course “Component-based software engineering (CBSE)”

TU Dresden, Prof. U. Aßmann Design

What are the components (parts) of the system,

their structure, and their relations?

40

Object-Oriented Design

 Data and actions are grouped into objects, and developed together

 Divide: finding actions with their enclosing objects

 Conquer: group actions to objects

TU Dresden, Prof. U. Aßmann Design

What are the "objects" of the system?

What are the actions and attributes of the objects?

41

Object-Oriented Design Methods

 CRC cards (ST-1)

 Verb substantive analysis (ST-1)

 Collaboration-based design and CRRC (ST-1)

 Booch method

 Rumbaugh method (OMT)

 (Rational) Unified Process (RUP, or Unified Method)

 uses UML as notation

 Often, OO is used, when the real world should be simulated
(simulation programs)

TU Dresden, Prof. U. Aßmann Design 42

Arch. Style: Object-Oriented Call-Based Architectural Style

 Control flow is symmetric (calls and returns)

 Control flow is not fixed (dynamic architecture via polymorphism)

 Control-flow can be sequential or parallel

 Data-flow can be parallel the call (push-based system) or
antiparallel, i.e., parallel to the return (pull-based system)

TU Dresden, Prof. U. Aßmann Design

Class

Subclass

Subclass

System

call

return

call

return

call

return

dispatch

43

Arch. Style: Object-Oriented Process Systems

 Object-oriented systems can be parallel

 Actors are parallel communicating processes

 Processes talk directly to each other

 Unstructured communications

TU Dresden, Prof. U. Aßmann Design 44

Arch. Style: Process Tree Systems (UNIX-Like)

 Processes (parallel objects) are organized in a tree

 and talk only to their descendants

TU Dresden, Prof. U. Aßmann Design 45

Transformational Design

 We start with an initial, abstract design that meets the
requirements
 The context model and the top-level architecture

 The implementation is achieved by an iterative transformation
process, starting from an initial design

 Refinement-based development

 Refactoring-based development uses symmetry operations (refactorings)

 Semi-automatically deriving a final design

 Divide: find steps from the initial to the final design

 Conquer: chain the steps

 Note: this design method is orthogonal to the others, because it
can be combined with all of them

TU Dresden, Prof. U. Aßmann Design

How should I transform the current design to a better version and

finally, the implementation?

46

Model-Driven Architecture as Transformational Design Method

TU Dresden, Prof. U. Aßmann Design

Domain model,
Requirements specification

Platform Independent Model (PIM)

Platform Specific Model (PSM)

Implementation

Model mappings

Computationally Independent
Model (CIM)

47

Generative Design

 (aka Generative Programming)

 Specify the solution in

 a "formal method", a specification language

 a template which is expanded (generic programming)

 In UML, which is generated into code by a CASE tool

 Generate a solution with a generator tool that plans the solution

 Planning the composition of the solution from components

 Synthesizing the solution

 Divide: depends on the specification language

 Conquer: also

 Fully generative programming is called Automatic Programming

TU Dresden, Prof. U. Aßmann Design

How can I derive the implementation from the design automatically?

48

Generative Specifications

 Developing a specification in one of these languages is simpler than
writing the code

 Grammar-oriented development (grammarware)

Finite automata from regular grammars

Large finite automata from modal logic (model checkers)

Parsers from Context-free grammars

Type checkers, type inferencers from Attribute grammars

Type checkers and interpreters from Natural semantics

TU Dresden, Prof. U. Aßmann Design

Specification

Code

49

Automatic Programming

 In automatic programming, a planner plans a way to generate the
code from the requirement specifications

• Using a path of transformations

 A.P. is generative, and transformative, and formal method.

TU Dresden, Prof. U. Aßmann Design 50

Model-Driven Software Development (MDSD)

 MDSD blends Transformational and Generative design

 Models

• represent partial information about the system

• Are not directly executable

• But can be used to generate parts of the code of a system

 Model-driven architecture (MDA® of OMG) blends
Transformational Design and Generative Design

 See also Chapter “Model-Driven Architecture”

TU Dresden, Prof. U. Aßmann Design 51

Formal Methods

 A formal method is a design method that

 Has a formal (mathematical) specification of the requirements

 Develops a formal specification of the design

 The design can be verified against the requirements specification

 A formal method allows for proving a design correct

 Very important for safety-critical systems

 Formal methods are orthogonal to the other methods: every
method has the potential to be formal

 Important in safety-critical application areas (power plants, cars,
embedded and real-time systems)

 Ex. Petri nets (separate chapter), B, Z, VDM, CSP, CML, …

TU Dresden, Prof. U. Aßmann Design

How can I prove that my design is correct with regard to the

requirements?

52

20.3 ARCHITECTURAL
STYLES SPECIFIC TO
LAYERS

TU Dresden, Prof. U. Aßmann Design 53

Layered Architecture

 A general approach to reduce the complexity of large systems is to
decompose it into layers

 Layers can be combined with many architectural styles

 Dominating style for large systems

TU Dresden, Prof. U. Aßmann Design 54

Example: 4-Tier Architectures in GUI-based Applications

 Already presented in ST-1

 Acyclic USES Relation, divided into 3 (resp. 4) layers:

 GUI (graphic user interface)

 Middle layer (Application logic and middleware, transport layer)

 Data repository (database)

TU Dresden, Prof. U. Aßmann Design

Data Repository Layer (database, memory)

Middleware (memory access, distribution)

Graphical user interface

Application logic (business logic)

55

Example: Operating Systems

TU Dresden, Prof. U. Aßmann Design

Kernel

User SpaceUNIX:

Kernel

User Space
Apple-UNIX:

Microkernel (Mach)

Kernel

User SpaceWindows NT/XP:

Hardware Abstraction Layer (HAL)

56

Architectural Styles Can Be Layer Specific

TU Dresden, Prof. U. Aßmann Design 57

Data Repository Layer (database, memory)

Middleware (memory access, distribution)

Graphical user interface

Application logic (business logic)

Event-based

Data-based

Action-based
Test-

driven

Trans-

formative

MDA

Aspect-

oriented

Formal methods

Domain-Specific Architectural Styles

 Often an application domain needs its own style, its reference
architecture

 It's hard to say something in general about those

TU Dresden, Prof. U. Aßmann Design 58

Important

 An architectural style results from a specific development method

 Functional, modular design: call-based style

 Action design: data-flow style, workflow style, regular processing, process
trees

 Object-oriented design: object-oriented call-based systems, client-server,
actors (process systems)

 Uses-oriented design: layered systems

 Specific layers need specific styles

 Reliable systems need specific styles

 The dedicated engineer knows when to apply what

TU Dresden, Prof. U. Aßmann Design 59

Summary: Most Important Architecture Styles

 Data flow styles

 Sequential pipe-and-filter

 Data flow graph/network

 Workflow systems (mixed with
control flow)

 Call-style

 Modular systems

 Abstract data types

 Object-oriented systems

 Client/service provider

 Hierarchical styles

 Layered architecture

 Interpreter

 Checker-based Architectures

TU Dresden, Prof. U. Aßmann Design

 Interacting processes (actors)

 Threads in a shared memory

 Distributed objects

 Event-based systems

 Agenda parallelism

 Data-oriented (Repository
architectures)

 Transaction systems (data bases)

 Query-based systems

 Blackboard (expert systems)

 Transformation systems (compilers)

 Generative systems (generators)

 Data based styles

 Compound documents

 Hypertext-based

60

What Have We Learned?

 There is no single “way to the system”

 Every project has to find its path employing an appropriate design method

 The basic design questions are posed over and over again, until a
design is found

 Select a design method

 Pose the design method's basic question

 Perform the design method's process

 Perform the design method's steps: elaborate, refine, structure, change
representation, ...

 If process gets stuck, change design method and try another one!

 Architectural styles are the result of a design process

 They give us a way to talk about a system on a rather abstract level

 Architectural styles can be distinguished by the relation of data-flow and
control-flow (parallel vs antiparallel)

 .. and the type of system structuring relation they use

TU Dresden, Prof. U. Aßmann Design 61

The End

TU Dresden, Prof. U. Aßmann Design 62

