
Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie – Prof. Aßmann - Softwaretechnologie II

23. Action-Oriented Design Methods

Prof. Dr. Uwe Aßmann

Technische Universität Dresden

Institut für Software- und Multimediatechnik

http://st.inf.tu-dresden.de/teaching/swt2
WS 17/18 15.01.2018

Lecturer: Dr. Sebastian Götz

http://st.inf.tu-dresden.de/teaching/swt2

Softwaretechnologie II

Obligatory Reading

 S. L. Pfleeger and J. Atlee:
Software Engineering: Theory and Practice.
Pearson. 2009.

• Chapter 5 (Designing the Architecture)

 C. Ghezzi, M. Jazayeri and D. Mandrioli:
Fundamentals of Software Engineering.
Prentice Hall. 1992.

• Chapter 4 (Design and Software Architecture)

 M. Shaw and D. Garlan:
Software Architecture: Perspectives on an Emerging Discipline. Prentice Hall, 1996.

Softwaretechnologie II

23.1 Action-Oriented Design

 Action-oriented design is similar to function-oriented design, but admits that the system has
states.

 It asks for the internals of the system

 Actions require state on which they are performed (imperative, state-oriented style)

 Actions are running in parallel

 Decomposition strategy:

• Divide: finding subactions

• Conquer: grouping to modules and processes

• Result: reducible action system

 Example: all function-oriented design methods can be made to action-oriented ones, if state is
added

• State machine based design for embedded systems; Petrinet based design (with distributed
state)

• Imperative programming

What are the actions the system should perform?

What are the subactions of an action?

Which state does an action change?

Structured Analysis and Design (SA/SD)

 Structured Analysis (SA) is a specific variant of action-oriented design with processes
(process-oriented design, data-flow based design)

[DeMarco, T. Structured Analysis and System Specification, Englewood Cliffs: Yourdon
Press, 1978]

 Notations of SA:

 Function trees (action trees, process trees): decomposition of system functions

 Data flow diagrams (DFD), in which the actions are called processes

 Data dictionary (context-free grammar) describes the structure of the data that
flow through a DFD

 Alternatively, class diagrams can be used

 Pseudocode (minispecs) describes central algorithms (state-based)

 Decision Table and Trees describes conditions (see later)

Why SA is Important

 Usually, action-oriented design is structured, i.e., based on hierarchical stepwise
refinement.

 Resulting systems are

 reducible, i.e., all results of the graph-reducibility techniques apply.

 parallel, because processes talk with streams

 local, because processes write to local shared memory

 easy to distribute, because no global memory exists

Structured Analysis and Design (SA/SD)

● On the highest abstraction level, define the context diagram:

– Elaboration: Define interfaces of entire system by a top-level action tree

– Elaboration: Identify the input-output streams most up in the action hierarchy

– Elaboration: Identify the highest level processes

– Elaboration: Identify stores

● Refinement: Decompose action tree hierarchically

● Change Representation: transform action tree into process diagram
(action/data flow)

● Elaboration: Define the structure of the flowing data in the Data Dictionary

● Check consistency of the diagrams

● Elaboration: Minispecs in pseudocode

Data-Flow Diagrams (Datenflussdiagramme, DFD)

● DFD are a special form of Petri nets

● They are also special workflow languages without repository and global state

– DFD use local stores for data, no global store

– Less conflicts on data for parallel processes

● Good method to model parallel systems

Modeling with DFD

● A data-flow diagram is a reducible (hierarchic) net of processes linked by channels (streams, pipes)

● Context diagram: top-level, with terminators

● Parent diagrams, in which processes are point-wise refined

● Child diagrams are refined processes

● Refinement can be syntactic or semantic

● Data dictionary contains types for the data on the channels

● Mini-specs (Minispezifikationendienen) specify the atomic processes and their transformationen

– with Pseudocode or other high-level languages

15.01.2018

Symbols (SA/Balzert):

name

nr.
Process (Activity)

Data flow channel

(also bidirectional)

(name)

Terminator
(Quelle/Senke) name

Store
(file, repository,
Speicher)

name

Ex.: DFD "treat_Patient" (Original SA Notation)

15.01.2018

unter-

suchen

_Patient

1.33

schreiben

_Unterlagen

1.34

TerminePatient

WartelistePatient

empfangen

_Patient

1.31

aufrufen

_Patient

1.32

Patient

Function Trees, Action Trees and DFDs

Action trees can be derived from function trees and function nets

DFD are homomorphic to Action trees, but add stores and streams

RepresentationChange: Construct an action tree and transform it to the
processes of a DFD

produce
tea

put tea
in TeaPot

add
boiling

water
wait

composition

produce tea

store/file

action

fetch
tea from

tea box

open
TeaPot

close
TeaPot

put tea
in TeaPot

wait

add
boiling

water

TeaPot

Cup

Pointwise Refinement of Actions

●Subtrees in the function tree lead to reducible subgraphs in the DFD

●UML action trees can be formed from activities and aggregation

●Activity diagrams can specify dataflow

–UML 2.0 offers reducible activity diagrams

Fetch tea
from
tea box

Open
TeaPot

Close
TeaPot

put tea
in TeaPot

TeaPot

put tea
in TeaPot

TeaPot

put tea
in TeaPot

open
TeaPot

TeaPot

close
TeaPot

fetch
tea from

tea box

Typing Edges with Types from the Data Dictionary

In an SA, the data dictionary collects data types describing the context free structure of
the data flowing over the edges. To this end, a data definition language (DDL) is required:

•Grammar: For every edge in the DFDs, the context-free grammar contains a non-terminal
that describes the flowing data items

•Entity-Relationship Diagram (or its object-oriented variant MOF)

•UML class diagram: classes describe the data items

Grammars are written in Extended Backus-Naur Form (EBNF) with the following rules:

Notation Meaning Example

::= or = Consists of A ::= B.

Sequence + Concatenation A ::= B+C.

Sequence <blank> Concatenation A ::= B C.

Selection I or [|] Alternative A ::= [B | C].

Repetition { }^n A ::= { B }^n.

Limited repetition m { } n Repetition from m to n A ::= 1{ B }10.

Option () Optional part A ::= B (C).

Example Grammar in Data Dictionary

●Describes types for channels

DataInPot ::= TeaPortion WaterPortion.

TeaAutomatonData ::= Tea | Water | TeaDrink.

Tea ::= BlackTea | FruitTea | GreenTea.

TeaPortion ::= { SpoonOfTea }.

SpoonOfTea ::= Tea.

WaterPortion ::= { Water }.

Exc. Read every rule aloud!

Adding Types to DFDs

●Nonterminals from the data dictionary become types on flow edges

●Alternatively, classes from a UML class diagram can be annotated

Tea

TeaDrink

Fetch tea
from
tea box

Open
TeaPot

Close
TeaPot

put tea
in TeaPot

TeaPot

TeaPot

Water

Minispecs in Pseudocode

Minispecs describes the processes in the nodes of the DFD in pseudo code. They
describe the data transformation of every process

Here: specification of the minispec attachment process:

procedure: AddMinispecsToDFDNodes

target.bubble := select DFD node;

do while target-bubble needs refinement

if target.bubble is multi-functional

then decompose as required;

select new target.bubble;

add pseudocode to target.bubble;

else no further refinement needed

endif

enddo

end

Difference to Functional and Modular Design

●SA focusses on actions (parallel activities, processes), not functions

–Describe the continuous data-flow through a system

–Describe stream-based systems with pipe-and-filter architectures

●Actions are parallel processes

–SA can easily describe parallel systems

●Function trees are interpreted as action trees (process trees) that treat streams of data

Result: Data-Flow-Based Architectural Style

●SA/SD design leads to dataflow-based architectural style with continuous data flow forward
through the system

●Processes exchanging streams of data via ports

●Components are called filters, connections are pipes (channels, streams)

Filter

Filter

Filter

System
pipe

pipe

Application Areas are Manifold

●Shell programming with pipes-and-filters

–tcsh, bash, zsh (Linux)

–Microsoft Powershell

●LabView programming for engineers

–Integration and differenciation possible, simulation of continuous variables

●Image processing systems

–Image operators are filters in image data-flow diagrams

●Signal processing systems (DSP-based embedded systems)

–The satellite radio

–Video processing systems

–Car control

–Process systems (powerplants, production control, …)

●Content management systems (CMS)

–Content data is piped through XML operators until a html page is produced

●Stream-based business workflows for data-intensive business applications

What Have We Learned

● Besides object-oriented design, structured, action-oriented design is a major design
technique

– It will not vanish, but always exist for certain application areas

– If the system will be based on stream processing, system-oriented design methods are
appropriate

– System-oriented design methods lead to reducible systems

● Don't restrict yourself to object-oriented design

