
Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie – Prof. Aßmann - Softwaretechnologie II

24) Condition-Action-Analysis and
Event-Condition-Action-Based Design

Prof. Dr. U. Aßmann
Technische Universität Dresden
Institut für Software- und

Multimediatechnik
Gruppe Softwaretechnologie
http://st.inf.tu-

dresden.de/teaching/swt2
WS17/18 17.01.2018

Lecturer: Dr. Sebastian Götz

1. Structured decisions: decision
diagrams and decision tables

2. Binary decision diagrams (BDD)
and Reduced Ordered BDD

3. Model Checking ROBDDs
4. Event-Condition Action Design
5. Extensibility of ECA

Prof. U. Aßmann 1

http://st.inf.tu-dresden.de/teaching/swt2

Softwaretechnologie II

Obligatory Reading

► Balzert, Kapitel über Entscheidungstabellen

► Ghezzi 6.3 Decision-table based testing

► Pfleeger 4.4, 5.6

Literature on BDDs and ROBDDs

► C.Y. Lee: Representation of Switching Circuits by Binary-Decision Programs,
Bell System Technical Journal, Vol. 38, July 1959, pp. 985-999.
http://ieeexplore.ieee.org/document/6768525/

► Randal E. Bryant: Graph-Based Algorithms for Boolean Function
Manipulation, IEEE Transactions on Computers, 1986
http://ieeexplore.ieee.org/document/1676819/

P
r
o
f.

 U
.

A
ß

m
a
n

n

2

http://ieeexplore.ieee.org/document/6768525/
http://ieeexplore.ieee.org/document/1676819/

Softwaretechnologie II

Goal

 Decision analysis (Condition analysis) is a very important method to
analyze complex decisions

 Understand that several views on a decision tree exist (tables, BDD,
ROBDD)

 Condition-action analysis can also be employed for requirements
analysis

 Understand how to describe the control-flow of methods and
procedures and their actions on the state of a program

 Event-condition-action-based design (ECA-based design) relies on
condition-action analysis

 Understand the importance of model checking

P
r
o
f.

 U
.

A
ß

m
a
n

n

3

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie – Prof. Aßmann - Softwaretechnologie II

24.1 DECISION ANALYSIS WITH DECISION
TREES AND TABLES
(CONDITION-ACTION ANALYSIS)

Prof. U. Aßmann 4

Softwaretechnologie II

Decision Analysis (Condition-Action Analysis)

 Decision analysis is necessary when complex, intertwined decisions
should be made

• In requirements analysis and elicitation

• In complex business cases, described with business rules

• In testing, for specification of complex test cases

 Decision analysis can be made in a decision algebra

• Boolean functions and their representations:

 Truth tables, decision trees, BDD, ROBDD

 Decision tables

• Static single assignment form (SSA) (not treated here)

• Lattice theory, such as formal concept analysis (FCA) (not treated here)

 Decision trees and tables collect actions based on conditions

 Condition action analysis is a decision analysis that results in actions

 A simple form of event-condition-action (ECA) rules

 However, without events, only conditions

P
r
o
f.

 U
.

A
ß

m
a
n

n

5

Which conditions provoke which actions?

Softwaretechnologie II

Decision Trees

 Decisions can be analyzed with a decision tree, a simple form of a decision
algebra

 A trie (Präfixbaum) is a tree which has an edge marking

 Every path in the trie assembles a word from a language of the marking

 A trie on B = {0,1} is called decision tree

 Paths denote sequences of decisions (a set of vectors over B). A path corresponds
to a vector over B

 A set of actions, each for one sequence of decisions

 Sequences of decisions can be represented in a path in the decision tree

P
r
o
f.

 U
.

A
ß

m
a
n

n

6

0

000 001

01 10 11

1

00

0 1

11

1

0

0

0



A1 A2

A3 A4 A5

Softwaretechnologie II

Decision Trees with Code Actions

► The action may be code

► The inner nodes of a tree layer correspond to a condition E[i]

► Then, a Trie is isomorphic to an If-then-else cascade

P
r
o
f.

 U
.

A
ß

m
a
n

n

7

0

000 001

01 10 11

1

00

0 1

11

1

0

0

0



A1 A2

A3 A4 A5

E0

E1

E2

E3

if (E0) then // case E0 === true

if (E1) then

if(E2) then A5

else A4

else // case E0 === false

if (E1) then

if(E2) then A3

else

if (E3) then A2

else A1

Softwaretechnologie II

Decision Tables

► An alternative representation of decision trees are decision tables

► Conditions and actions can be entered in a table

P
r
o
f.

 U
.

A
ß

m
a
n

n

8

0

01 10 11

1

00

0 1

110 0



A1 A2 A1 A2

E0

E1

Condition E0 yes yes no no

Condition E1 yes no yes no

Action A1 X X

Action A2 X X

Multiple choice

quadrant

Boolean

cross product

Softwaretechnologie II

Process: How to Construct A Decision Table

1) Elaborate decisions

2) Elaborate actions

3) Enter into table

4) Elaborate: Construct a cross boolean product as upper right quadrant (set
of boolean vectors)

5) Elaborate: Construct a multiple choice quadrant (lower right) by
associating actions to boolean vectors

6) Consolidate

■ Coalesce yes/no to “doesn’t matter”

■ Introduce Else rule

P
r
o
f.

 U
.

A
ß

m
a
n

n

9

Softwaretechnologie II

Applications of Decision Tables and Trees

 Requirements analysis:

• Deciding (decision analysis, case analysis)

• Complex case distinctions (more than 2 decisions)

 Design:

• Describing the behavior of methods

• Describing business rules

 Before programming if-cascades, better make first a nice decision tree or
table

 Formal design methods

 CASE tools can generate code automatically

 Configuration management of product families:

 Decisions correspond here to configuration variants

 Processor=i486?

 System=linux?

 Same application as #ifdefs in C preprocessor

P
r
o
f.

 U
.

A
ß

m
a
n

n

10

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie – Prof. Aßmann - Softwaretechnologie II

24.2 NORMALIZING CONTROL FLOW
WITH BINARY DECISION DIAGRAMS

Prof. U. Aßmann 11

Softwaretechnologie II

Truth Tables

► With action = {true, false}, boolean decision tables are truth tables

► Truth table:

P
r
o
f.

 U
.

A
ß

m
a
n

n

12

E0 E1 F

Yes Yes 0

Yes No 1

No Yes 0

No No 1

Condition E0 Yes Yes No No

Condition E1 Yes No Yes No

Value of F = 0 X X

Value of F = 1 X X

Softwaretechnologie II

BDDs (Binary Decision Diagrams) [Lee‘59]

► BDD are DAGs that result by merging the same subtrees of a decision tree
into one (common subtree elimination)

► If the action is just a boolean value boolean functions f: Bn
 B can be

represented

► The decisions E[i] are regarded as boolean variables

P
r
o
f.

 U
.

A
ß

m
a
n

n

13

0

000 001

01 10 11

1

00

0 1

11

1

0

0

0



A1 A2

E0

E1

E2

E3

[C.Y. Lee, Representation of Switching Circuits by Binary-Decision Programs, Bell System Technical Journal, Vol. 38, July 1959, pp. 985-999.]

Softwaretechnologie II

ROBDDs (Reduced Ordered Binary Decision Diagrams) [Bryant’86]

 Problem: for one boolean function there are many BDDs, depending on
the order of the variables

 Idea: introduce a standardized order for the variables

 Result: ordered binary decision diagrams (OBDD)

 Common subtree elimination (as in BDDs) leads to ROBDD

 In all OBDD holds:

 for all children u of parents v ord(u) > ord(v).

 For one order of variables there is one ROBDD for all BDDs representing
the same boolean function

 Using this canonical form the answer to the question whether two BDDs
represent the same boolean function becomes trivial!

P
r
o
f.

 U
.

A
ß

m
a
n

n

14

[Randal E. Bryant: Graph-Based Algorithms for Boolean Function Manipulation, IEEE Transactions on Computers, 1986]

Softwaretechnologie II

Complex BDD
P

r
o
f.

 U
.

A
ß

m
a
n

n

15

© Dirk Beyer, CC BY-SA 3.0

Softwaretechnologie II

Complex BDD
P

r
o
f.

 U
.

A
ß

m
a
n

n

16

X1

X3

X5

X7

X2

X4

X6

X8

© Dirk Beyer, CC BY-SA 3.0

Softwaretechnologie II

Reduced Ordered BDD
P

r
o
f.

 U
.

A
ß

m
a
n

n

17

© Dirk Beyer, CC BY-SA 3.0

© Dirk Beyer, CC BY-SA 3.0

Softwaretechnologie II

If-cascade, BDD, ROBDD, factorized if-cascade

if x1 then

if x3 then

if x5 then

…

else

if x3 then

…

P
r
o
f.

 U
.

A
ß

m
a
n

n

18

E.g., Implementation in Python:
https://pyeda.readthedocs.io/en/latest/bdd.html

if x1 then

if x2 then return true

if x3 then

if x4 then return true

if x5 then

if x6 then return true

if x7 then

if x8 return true

return false;

https://pyeda.readthedocs.io/en/latest/bdd.html

Softwaretechnologie II

Normalizing Wild Procedures: Normalized If-Structures
with ROBDD

 There is only one canonical ROBDD for one order

 Develop normalized and factorized if-structures with it:

1. Elaborate arbitrary decision tree

2. Choose a variable order

3. Transform to ROBDD

4. Transform to If structure

5. Factor out common subtrees by subprograms

P
r
o
f.

 U
.

A
ß

m
a
n

n

19

Acyclic control flow can be represented canonically by a ROBDD

Softwaretechnologie II

Applications

 Requirements analysis

 Design

• Normalized control-flow structures

• Complex case analyses

 Reengineering

 Structuring of legacy procedures: read in control-flow; construct control-flow
graph

 Produce a canonical OBDD for all acyclic parts of control-flow graph

 Pretty-print again

 Or: produce a statechart

 Configuration management

 Development of canonical versions of C preprocessor nestings

 Help to master large systems

P
r
o
f.

 U
.

A
ß

m
a
n

n

20

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie – Prof. Aßmann - Softwaretechnologie II

24.3 MODEL CHECKING LARGE
STATE SPACES

Prof. U. Aßmann 21

Softwaretechnologie II

Model Checking on BDD

► ROBDD are a very compact representation for state machines, boolean
functions, predicate logic, and modal logic

► They build a basis for checking state transition systems with modal logic
(model checking)

■ System is modeled as a state transition system and encoded as ROBDD

■ Features of the system (predicates, logic formulas) are encoded as ROBDD, too

■ Important: System and predicates to be checked are both encoded as ROBDD

■ Model checking:

■ Then, a model checker compares the ROBDDs and checks whether a feature holds
in a state

■ Effectively, the model checker only compares normalized representations of
boolean functions, the ROBDD

P
r
o
f.

 U
.

A
ß

m
a
n

n

22

Softwaretechnologie II

The Use of Model Checking

► State spaces up to 2**120 can be handled

► Model checking checks whether features hold in states of large state spaces

■ Used in hardware verification

♦ Proving circuits correct

■ Software verification

♦ Safety-critical systems

♦ Minimization of boolean circuits

► Very important technique for verification of safety-critical hard- and
software

P
r
o
f.

 U
.

A
ß

m
a
n

n

23

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie – Prof. Aßmann - Softwaretechnologie II

24.4 EVENT-CONDITION-ACTION
BASED DESIGN (ECA)

Prof. U. Aßmann 24

Softwaretechnologie II

Event-Condition-Action Design

 Decision analysis is invoked when events occur

 Event-condition-action (ECA) based design uses

• ECA rules with condition-action analysis

• Complex event processing (CEP) for recognition of complex events

P
r
o
f.

 U
.

A
ß

m
a
n

n

25

Given some (complex) events, which conditions provoke which actions?

Softwaretechnologie II

ECA with State-Based Specifications

► An event-condition-action (ECA) system listens on channel(s) for events,
analyses a condition, and executes an action

■ Statecharts (see course ST)

■ Petri Nets (see corr. Chapter)

■ ECA rules

■ Condition analysis can
be done by BDD

■ Verification
by model
checking

■ Process:

■ Collect all ECA rules

■ Collect all states

■ Link states with ECA rules
as transitions

P
r
o
f.

 U
.

A
ß

m
a
n

n

26

Tür

abgesperrt

verriegeln/
amp.rotesLicht

An()

entriegeln/
amp.grünesLi

chtAn()

geschlossen

schließen/
amp.gelbesLic

htAn()

öffnen()/
-öffnen(),

verriegeln()
,

entriegeln()
/
-

öffnen,
schließen

,
verriegeln

/
-

entriegeln(),
schließen()/

beep()

offen

öffnen()
schließen()
verriegeln()
entriegeln()

<<Steuerungsmachine>>

Softwaretechnologie II

ECA with Petri Nets

► In a Petri Net, an event-generating channel is a transition with fan-in=0

► Listening to the events, the Petri Net can do condition-action analysis

P
r
o
f.

 U
.

A
ß

m
a
n

n

27

Tür

öffnen()
schließen()
verriegeln()
entriegeln()

<<Steuerungsmachine>>

Schließknopf

drückenoffe

n

Öffne-Knopf

drücken

öffnen(),
verriegeln(),
entriegeln()

geschl

ossen

öffnen()

schließen

entriegeln(),
schließen()

Schließknopf drücken
Öffne-Knopf drücken

■ Process:

■ Collect all ECA

rules

■ Collect all states

■ Link states with
ECA rules as

subnets reacting

on event-
generating

channels

Softwaretechnologie II

ECA-based Blackboard Style

 The ECA-blackboard has two repositories: a fact/object base and a rule base

 The rule base is an active repository (i.e., an active component) that
coordinates all other components

 It investigates the state of the repository. If an event has occured by entering
something in the repository (modify), components are fired/triggered to work on
or modify the repository

P
r
o
f.

 U
.

A
ß

m
a
n

n

28

C1
C3C2

C4

Fire/trigger

Rule base
Repository

(fact base,

object base)

modify

Softwaretechnologie II

Other Application Areas

 Event-based Web systems (AJAX systems)

• Scripts in Javascript react on user-triggered events on the client side

• Server actions are called

 Interactive Systems

• Event-reaction tables record event-condition-action rules

 Complex event processing in clouds and embedded systems

P
r
o
f.

 U
.

A
ß

m
a
n

n

29

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie – Prof. Aßmann - Softwaretechnologie II

24.5 EXTENSIBILITY OF ECA RULES

Prof. U. Aßmann 30

Softwaretechnologie II

Extensibility of ECA Rule Systems

 Extensibility means to add more ECA rules

 Rules are open constructs

 Problem: new rules should be conflict-free with the old rules

 Harmless extension is usually not provable

 In general, contracts of the old system cannot be retained

P
r
o
f.

 U
.

A
ß

m
a
n

n

31

ECA-Systems are extensible, but harmlessness of

extensions are hard to prove

Softwaretechnologie II

What Have We Learned

► Decision analysis (Condition-Action analysis) is an important analysis

■ to describe requirements,

■ to describe complex behavior of a procedure

■ Decision analysis must be encoded in a decision algebra

► Boolean functions, decision trees, relations, graphs, automata can be encoded in
ROBDD

► The control-flow of a procedure can be normalized with a ROBDD

► Conditions in large state spaces can be encoded in ROBDD and efficiently checked

► ECA-based design reacts on events and conditions with actions

P
r
o
f.

 U
.

A
ß

m
a
n

n

32

Softwaretechnologie II

The End

 Explain the difference of decision trees, tables, BDD and ROBDD.

 Why is a BDD an „optimized“ decision tree?

 Explain how to encode a subset of a finite set with a BDD

 Explain how to encode a relation over two finite sets with a BDD

 How would you reengineer a program with a wild, spaghetti-like control
flow structure?

P
r
o
f.

 U
.

A
ß

m
a
n

n

33

