
1) Mismatch Problems

2) Adapter Pattern

3) Facade

4) Mediator

5. Architectural Glue Patterns

Patterns for Architectural Mismatch
Software Technology Group / Dr. Sebastian Götz
Design Patterns and Frameworks // 01.11.2018

Folie 2

Literature (To Be Read)

 D. Garlan, R. Allen, J. Ockerbloom. Architectural mismatch – or why it is so hard to
build systems out of existing parts. In Proceedings of the 17th International
Conference on Software Engineering, ACM, 1995, pp. 179-185
https://dl.acm.org/citation.cfm?doid=225014.225031

 D. Garlan, R. Allen, J. Ockerbloom. Architectural Mismatch: Why Reuse is Still So
Hard. IEEE Software 26:4, July/August 2009, pp. 66-69.
https://ieeexplore.ieee.org/abstract/document/5076461

 GOF – Adapter, Mediator, Facade

https://dl.acm.org/citation.cfm?doid=225014.225031
https://ieeexplore.ieee.org/abstract/document/5076461

Patterns for Architectural Mismatch
Software Technology Group / Dr. Sebastian Götz
Design Patterns and Frameworks // 01.11.2018

Folie 3

Goal

 Understand architectural mismatch

 Understand design patterns that bridge architectural mismatch

Patterns for Architectural Mismatch
Software Technology Group / Dr. Sebastian Götz
Design Patterns and Frameworks // 01.11.2018

Folie 4

5.1 Architectural Mismatch

Patterns for Architectural Mismatch
Software Technology Group / Dr. Sebastian Götz
Design Patterns and Frameworks // 01.11.2018

Folie 5

Roots of Architectural Mismatch

 Different Assumptions about the component model

 Infrastructure

 Control model

 Data model

 Different assumptions about the connectors

 Protocols

 Data models

 Different assumptions about the global architectural structure

 Different assumptions about the construction process

Patterns for Architectural Mismatch
Software Technology Group / Dr. Sebastian Götz
Design Patterns and Frameworks // 01.11.2018

Folie 6

Different Assumptions about the Component Model

 A component model assembles information and constraints about the
nature of components

 Nature of interfaces

 Substitutability of components

 Components assume they have a certain infrastructure, but it might not
be available

 For example, one component assumes an Windows infrastructure, while another
assumes Linux

 More in “Component-Based Software Engineering”, summer semester

Patterns for Architectural Mismatch
Software Technology Group / Dr. Sebastian Götz
Design Patterns and Frameworks // 01.11.2018

Folie 7

jExam DB

Assumptions on Control Model

 Components think differently in which components have the main control

 Multiple components might each have an ever-running event loop inside

jExam Web jExam Server

Secretary
Client

Reporting

Exam
Office
Client

Patterns for Architectural Mismatch
Software Technology Group / Dr. Sebastian Götz
Design Patterns and Frameworks // 01.11.2018

Folie 8

Assumptions on Data Model

 Different assumptions about the data

SELMA HIS S-Plus

jExam

SLMs Room Planning

Import

Patterns for Architectural Mismatch
Software Technology Group / Dr. Sebastian Götz
Design Patterns and Frameworks // 01.11.2018

Folie 9

Connectors: Protocol Mismatch

Some tools work asynchronously; which superimposes concurrency to tools, when
messages of different tools are crossing

Asynchronous ToolTool 1 Tool 3

Request A

Reply A

Notify B

Notify B

Concurrency

Patterns for Architectural Mismatch
Software Technology Group / Dr. Sebastian Götz
Design Patterns and Frameworks // 01.11.2018

Folie 10

Data Format Mismatch

 Components also have different assumptions what comes over a channel (a
connection).

 Strings

 C data

 C++ data

 Requires translation components

 This can easily become a performance bottleneck

Patterns for Architectural Mismatch
Software Technology Group / Dr. Sebastian Götz
Design Patterns and Frameworks // 01.11.2018

Folie 11

Assumptions about the Global Architecture

 For example,

 a database-centered architecture (repository style) versus

 A shared-nothing architecture

Patterns for Architectural Mismatch
Software Technology Group / Dr. Sebastian Götz
Design Patterns and Frameworks // 01.11.2018

Folie 12

Assumptions about the Building Process

 Assumptions about the library infrastructure

 Assumptions about a generic language (C++)

 Assumptions about a tool specific language

 Combination is fatal:

 Some component A may have other expectations on the generated code of
another component B as B itself

 Then, the developer has to patch the generated code of A with patch scripts
(another translation component)

Patterns for Architectural Mismatch
Software Technology Group / Dr. Sebastian Götz
Design Patterns and Frameworks // 01.11.2018

Folie 13

Proposed Solutions of [Garlan et al. 1995]

 Make all architectural assumptions explicit

 Problem: how to document or specify them?

 Many of the aforementioned problems are not formalized

 Implicit assumptions are a violation of the information hiding principle, and
hamper variability

 Make components more independent of each other

 Provide bridging technology

 For building language translation components (compiler construction, compiler
generators, XML technology)

 Distinguish architectural styles (architectural patterns) explicitly

 Distinguish connectors explicitly

 Solution: design patterns serve all of these purposes

Patterns for Architectural Mismatch
Software Technology Group / Dr. Sebastian Götz
Design Patterns and Frameworks // 01.11.2018

Folie 14

Usability of Extensibility Patterns

 All extensibility patterns can be used to treat architectural mismatch

 Behavior adaptation

 ChainOfResponsibility as filter for objects, to adapt behavior

 Proxy for translation between data formats

 Observer for additional behavior extension, listening to the events of the subject

 Visitor for extension of a data structure hierarchy with new algorithms

 Bridging data mismatch

 Decorator for wrapping, to adapt behavior, and to bridge data mismatch, not for
protocol mismatch

 Bridge for factoring designs on different platforms (making abstraction and
implementation components independent)

Patterns for Architectural Mismatch
Software Technology Group / Dr. Sebastian Götz
Design Patterns and Frameworks // 01.11.2018

Folie 15

5.2 Adapter

Patterns for Architectural Mismatch
Software Technology Group / Dr. Sebastian Götz
Design Patterns and Frameworks // 01.11.2018

Folie 16

Object Adapter

 An object adapter is a proxy that maps one interface to another

 Or a protocol

 Or a data format

 An adapter cannot easily map control flow to each other

 Since it is passed once when entering the adapted class

Patterns for Architectural Mismatch
Software Technology Group / Dr. Sebastian Götz
Design Patterns and Frameworks // 01.11.2018

Folie 17

Object Adapter

Object adapters use delegation

Goal

operation()

Client

AdaptedClass

specificOperation()

Adapter

operation()

adaptedObject.specificOperation()

adapted

ObjectDecorator-like

inheritance

Adapted class does

not inherit from goal

Patterns for Architectural Mismatch
Software Technology Group / Dr. Sebastian Götz
Design Patterns and Frameworks // 01.11.2018

Folie 18

Class Adapter

Instead of delegation, class adapters use multiple inheritance

GoalClass

operation()

Client AdaptedClass

specificOperation()

Adapter

operation()

(Implementation)

specificOperation()

Can also be

interface

Patterns for Architectural Mismatch
Software Technology Group / Dr. Sebastian Götz
Design Patterns and Frameworks // 01.11.2018

Folie 19

Example: Use of Legacy Systems:
Using External Class Library For Texts

GraficObject

frame()

createManipulator()

DrawingEditor

TextDisplay

largeness()

return text.largeness()

Linie

frame()

createManipulator()

Text

frame()

createManipulator()

return new TextManipulator

External Library

*

Patterns for Architectural Mismatch
Software Technology Group / Dr. Sebastian Götz
Design Patterns and Frameworks // 01.11.2018

Folie 20

Adapters and Decorators

 Similar to a decorator, an adapter inherits its interface from the goal class

 but adapts the interface

 Hence, adapters can be inserted into inheritance hierarchies later on

Library

New

Extensions

Library

Adapter with

New Features

Adapted

Class

Patterns for Architectural Mismatch
Software Technology Group / Dr. Sebastian Götz
Design Patterns and Frameworks // 01.11.2018

Folie 21

5.3 Facade

Patterns for Architectural Mismatch
Software Technology Group / Dr. Sebastian Götz
Design Patterns and Frameworks // 01.11.2018

Folie 22

Facade

 A facade is an object adapter that hides a complete set of objects
(subsystem)

 Or: a proxy that hides a subsystem

 The facade has to map its own interface to the interfaces of the
hidden objects

Patterns for Architectural Mismatch
Software Technology Group / Dr. Sebastian Götz
Design Patterns and Frameworks // 01.11.2018

Folie 23

Facade Hides a Subsystem

Abstract

Facade

operation()

Client

HiddenClass2

specificOperation()

Concrete

Facade

operation()

....

adaptedObject.specificOperation()

adaptedObject2.specificOperation()

....

adapted

Object2

HiddenClass1

specificOperation()

adapted

Object1

HiddenClass3

specificOperation()

adapted

Object3

....

adaptedObject.specificOperation()

adaptedObject2.specificOperation()

....

HiddenSubsystem

Patterns for Architectural Mismatch
Software Technology Group / Dr. Sebastian Götz
Design Patterns and Frameworks // 01.11.2018

Folie 24

5.4 Mediator (Broker)

Patterns for Architectural Mismatch
Software Technology Group / Dr. Sebastian Götz
Design Patterns and Frameworks // 01.11.2018

Folie 25

Mediator (Broker)

 A mediator is an n-way proxy for communication

 Combined with a Bridge

 A mediator serves for

 Anonymous communication

 Dynamic communication nets

Patterns for Architectural Mismatch
Software Technology Group / Dr. Sebastian Götz
Design Patterns and Frameworks // 01.11.2018

Folie 26

Mediator

ColleagueMediator
mediator

ConcreteMediator ConcreteColleague1 ConcreteColleague2

AColleague

Mediator

AConcreteMediator AColleague

Mediator

Typical Object Structure:

AColleague

Mediator

AColleague

Mediator

Patterns for Architectural Mismatch
Software Technology Group / Dr. Sebastian Götz
Design Patterns and Frameworks // 01.11.2018

Folie 27

Mediator As n-Proxy and Bridge

Colleague MediatorMediator

ConcreteMediatorConcreteColleague1 ConcreteColleague2

AColleague

Mediator

AConcreteMediator AColleague

Mediator

Proxy Object

AColleague

Mediator

AColleague

Mediator

Proxy Class

Abstraction

of Service

Realization of

Service

Patterns for Architectural Mismatch
Software Technology Group / Dr. Sebastian Götz
Design Patterns and Frameworks // 01.11.2018

Folie 28

Intent of Mediator

 Proxy object hides all communication partners

 Every partner uses the mediator object as proxy

 Clear: real partner is hidden

 Bridge links both communication partners

 Both mediator and partner hierarchies can be varied

 ObserverWithChangeManager combines Observer with Mediator

Patterns for Architectural Mismatch
Software Technology Group / Dr. Sebastian Götz
Design Patterns and Frameworks // 01.11.2018

Folie 29

Web Service Brokers

WebServiceWebServiceMediator
mediator

Google HotelBooking

buy()

query(WebService)

ConcreteServiceMediator

buy()

query(Widget)

search()

query() mediator.query(this)

google

hotel

search()

reserve()

buy()

Patterns for Architectural Mismatch
Software Technology Group / Dr. Sebastian Götz
Design Patterns and Frameworks // 01.11.2018

Folie 30

Summary

 Architectural mismatch between components and tools consists of
different assumptions about components, connections, architecture,
and building procedure

 Design patterns, such as extensibility patterns or communication
patterns, can bridge architectural mismatches
 Data mismatch

 Interface mismatch

 Protocol mismatch

 With Glue Patterns, reuse becomes much better

Patterns for Architectural Mismatch
Software Technology Group / Dr. Sebastian Götz
Design Patterns and Frameworks // 01.11.2018

Folie 31

The End

