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4) Mediator

5. Architectural Glue Patterns
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Goal

 Understand architectural mismatch

 Understand design patterns that bridge architectural mismatch
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5.1 Architectural Mismatch
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Roots of Architectural Mismatch

 Different Assumptions about the component model

 Infrastructure

 Control model

 Data model

 Different assumptions about the connectors

 Protocols

 Data models

 Different assumptions about the global architectural structure

 Different assumptions about the construction process
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Different Assumptions about the Component Model

 A component model assembles information and constraints about the 
nature of components

 Nature of interfaces

 Substitutability of components

 Components assume they have a certain infrastructure, but it might not 
be available

 For example, one component assumes an Windows infrastructure, while another 
assumes Linux

 More in “Component-Based Software Engineering”, summer semester
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jExam DB

Assumptions on Control Model

 Components think differently in which components have the main control

 Multiple components might each have an ever-running event loop inside

jExam Web jExam Server

Secretary
Client

Reporting

Exam
Office 
Client
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Assumptions on Data Model

 Different assumptions about the data

SELMA HIS S-Plus

jExam

SLMs Room Planning

Import
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Connectors: Protocol Mismatch

Some tools work asynchronously; which superimposes concurrency to tools, when 
messages of different tools are crossing

Asynchronous ToolTool 1 Tool 3

Request A

Reply A

Notify B

Notify B

Concurrency
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Data Format Mismatch

 Components also have different assumptions what comes over a channel (a 
connection).

 Strings

 C data

 C++ data

 Requires translation components

 This can easily become a performance bottleneck
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Assumptions about the Global Architecture

 For example, 

 a database-centered architecture (repository style) versus 

 A shared-nothing architecture
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Assumptions about the Building Process

 Assumptions about the library infrastructure

 Assumptions about a generic language (C++)

 Assumptions about a tool specific language

 Combination is fatal:

 Some component A may  have other expectations on the generated code of 
another component B as B itself

 Then, the developer has to patch the generated code of A with patch scripts 
(another translation component)
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Proposed Solutions of [Garlan et al. 1995]

 Make all architectural assumptions explicit

 Problem: how to document or specify them?

 Many of the aforementioned problems are not formalized

 Implicit assumptions are a violation of the information hiding principle, and 
hamper variability

 Make components more independent of each other

 Provide bridging technology

 For building language translation components (compiler construction, compiler 
generators, XML technology)

 Distinguish architectural styles (architectural patterns) explicitly

 Distinguish connectors explicitly

 Solution: design patterns serve all of these purposes
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Usability of Extensibility Patterns

 All extensibility patterns can be used to treat architectural mismatch

 Behavior adaptation

 ChainOfResponsibility as filter for objects, to adapt behavior

 Proxy for translation between data formats

 Observer for additional behavior extension, listening to the events of the subject

 Visitor for extension of a data structure hierarchy with new algorithms

 Bridging data mismatch

 Decorator for wrapping, to adapt behavior,  and to bridge data mismatch, not for 
protocol mismatch

 Bridge for factoring designs on different platforms (making abstraction and 
implementation components independent)
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5.2 Adapter
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Object Adapter

 An object adapter is a proxy that maps one interface to another

 Or a protocol

 Or a data format

 An adapter cannot easily map control flow to each other

 Since it is passed once when entering the adapted class
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Object Adapter

Object adapters use delegation

Goal

operation()

Client

AdaptedClass

specificOperation()

Adapter

operation()

adaptedObject.specificOperation()

adapted

ObjectDecorator-like

inheritance

Adapted class does

not inherit from goal
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Class Adapter

Instead of delegation, class adapters use multiple inheritance

GoalClass

operation()

Client AdaptedClass

specificOperation()

Adapter

operation()

(Implementation)

specificOperation()

Can also be

interface
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Example: Use of Legacy Systems:
Using External Class Library For Texts

GraficObject

frame()

createManipulator()

DrawingEditor

TextDisplay

largeness()

return text.largeness()

Linie

frame()

createManipulator()

Text

frame()

createManipulator()

return new TextManipulator

External Library

*
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Adapters and Decorators

 Similar to a decorator, an adapter inherits its interface from the goal class

 but adapts the interface

 Hence, adapters can be inserted into inheritance hierarchies later on

Library

New

Extensions

Library

Adapter with

New Features

Adapted

Class
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5.3 Facade
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Facade

 A facade is an object adapter that hides a complete set of objects 
(subsystem)

 Or: a proxy that hides a subsystem

 The facade has to map its own interface to the interfaces of the 
hidden objects
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Facade Hides a Subsystem

Abstract

Facade

operation()

Client

HiddenClass2

specificOperation()

Concrete

Facade

operation()

....

adaptedObject.specificOperation()

adaptedObject2.specificOperation()

....

adapted

Object2

HiddenClass1

specificOperation()

adapted

Object1

HiddenClass3

specificOperation()

adapted

Object3

....

adaptedObject.specificOperation()

adaptedObject2.specificOperation()

....

HiddenSubsystem
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5.4 Mediator (Broker)
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Mediator (Broker)

 A mediator is an n-way proxy for communication

 Combined with a Bridge

 A mediator serves for

 Anonymous communication

 Dynamic communication nets
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Mediator

ColleagueMediator
mediator

ConcreteMediator ConcreteColleague1 ConcreteColleague2

AColleague

Mediator

AConcreteMediator AColleague

Mediator

Typical Object Structure:

AColleague

Mediator

AColleague

Mediator
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Mediator As n-Proxy and Bridge

Colleague MediatorMediator

ConcreteMediatorConcreteColleague1 ConcreteColleague2

AColleague

Mediator

AConcreteMediator AColleague

Mediator

Proxy Object

AColleague

Mediator

AColleague

Mediator

Proxy Class

Abstraction

of Service

Realization of

Service
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Intent of Mediator

 Proxy object hides all communication partners

 Every partner uses the mediator object as proxy

 Clear: real partner is hidden

 Bridge links both communication partners

 Both mediator and partner hierarchies can be varied

 ObserverWithChangeManager combines Observer with Mediator



Patterns for Architectural Mismatch
Software Technology Group / Dr. Sebastian Götz
Design Patterns and Frameworks // 01.11.2018

Folie 29

Web Service Brokers

WebServiceWebServiceMediator
mediator

Google HotelBooking

buy()

query(WebService)

ConcreteServiceMediator

buy()

query(Widget)

search()

query() mediator.query(this)

google

hotel

search()

reserve()

buy()
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Summary

 Architectural mismatch between components and tools consists of 
different assumptions about components, connections, architecture, 
and building procedure

 Design patterns, such as extensibility patterns or communication 
patterns, can bridge architectural mismatches
 Data mismatch

 Interface mismatch

 Protocol mismatch

 With Glue Patterns, reuse becomes much better
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The End


