TECHNISCHE VA‘
UNIV SITAT DRESDEN
DRESDEN concert

Prof. Dr. U. ABmann

Chair for Software Engineering
Faculty of Computer Science
Dresden University of Technology
WS 18/19, November 1, 2018

Lecturer: Dr. Sebastian Gotz

5. Architectural Glue Patterns

1) Mismatch Problems
2) Adapter Pattern

3) Facade

4) Mediator

Literature (To Be Read)

= D. Garlan, R. Allen, J. Ockerbloom. Architectural mismatch - or why it is so hard to
build systems out of existing parts. In Proceedings of the 17th International
Conference on Software Engineering, ACM, 1995, pp. 179-185
https://dl.acm.org/citation.cfm?doid=225014.225031

= D. Garlan, R. Allen, J. Ockerbloom. Architectural Mismatch: Why Reuse is Still So
Hard. IEEE Software 26:4, July/August 2009, pp. 66-69.
https://ieeexplore.ieee.org/abstract/document/5076461

= GOF - Adapter, Mediator, Facade

TECHNISCHE Patterns for Architectural Mismatch .
UNIVERSITAT Software Technology Group / Dr. Sebastian Gotz Folie 2 DRESDEN h
DRESDEN Design Patterns and Frameworks // 01.11.2018 concept W 4

https://dl.acm.org/citation.cfm?doid=225014.225031
https://ieeexplore.ieee.org/abstract/document/5076461

Goal

= Understand architectural mismatch

= Understand design patterns that bridge architectural mismatch

TECHNISCHE Patterns for Architectural Mismatch .
UNIVERSITAT Software Technology Group / Dr. Sebastian Gotz Folie 3 DRESDEN h
DRESDEN Design Patterns and Frameworks // 01.11.2018 concept W 4

5.1 Architectural Mismatch

1IN 3
@ NIVERSITA
DR)

Roots of Architectural Mismatch

= Different Assumptions about the component model
= Infrastructure
= Control model
- Data model

= Different assumptions about the connectors
= Protocols
= Data models

= Different assumptions about the global architectural structure

= Different assumptions about the construction process

TECHNISCHE Patterns for Architectural Mismatch
UNIVERSITAT Software Technology Group / Dr. Sebastian Gotz Folie 5
DRESDEN Design Patterns and Frameworks // 01.11.2018

DRESDEN
concept

'lﬂh.,

2\

~4

Different Assumptions about the Component Model

= A component model assembles information and constraints about the
nature of components
= Nature of interfaces
= Substitutability of components

= Components assume they have a certain infrastructure, but it might not
be available

= For example, one component assumes an Windows infrastructure, while another
assumes Linux

= More in “Component-Based Software Engineering”, summer semester

TECHNISCHE Patterns for Architectural Mismatch .
UNIVERSITAT Software Technology Group / Dr. Sebastian Gotz Folie 6 DRESDEN h
DRESDEN Design Patterns and Frameworks // 01.11.2018 concept B 4

Assumptions on Control Model

= Components think differently in which components have the main control
= Multiple components might each have an ever-running event loop inside

TECHNISCHE Patterns for Architectural Mismatch i
UNIVERSITAT Software Technology Group / Dr. Sebastian Gotz Folie 7 DRESDEN ‘\ "
DRESDEN Design Patterns and Frameworks // 01.11.2018 concept W 4

Assumptions on Data Model

= Different assumptions about the data

SLMs Room Planning
I

TECHNISCHE Patterns for Architectural Mismatch .
UNIVERSITAT Software Technology Group / Dr. Sebastian Gotz Folie 8 DRESDEN ‘\ h
DRESDEN Design Patterns and Frameworks // 01.11.2018 concept W 4

Connectors: Protocol Mismatch

Some tools work asynchronously; which superimposes concurrency to tools, when

messages of different tools are crossing

DRESDEN

Tool 1 Asynchronous Tool Tool 3
Request A -
Notify B
_ Notify B
Concurrency
\ __ Reply A
\ 4 \ 4
TECHNISCHE Patterns for Architectural Mismatch
UNIVERSITAT Software Technology Group / Dr. Sebastian Gotz Folie 9
DRESDEN Design Patterns and Frameworks // 01.11.2018

concept

'ﬂﬂh.,

2\

~4

Data Format Mismatch

= Components also have different assumptions what comes over a channel (a
connection).

= Strings
« (Cdata
«» C++data

= Requires translation components
= This can easily become a performance bottleneck

TECHNISCHE Patterns for Architectural Mismatch .
UNIVERSITAT Software Technology Group / Dr. Sebastian Gotz Folie 10 DRESDEN h
DRESDEN Design Patterns and Frameworks // 01.11.2018 concept B 4

Assumptions about the Global Architecture

= For example,
- adatabase-centered architecture (repository style) versus
= A shared-nothing architecture

TECHNISCHE Patterns for Architectural Mismatch .
UNIVERSITAT Software Technology Group / Dr. Sebastian Gotz Folie 11 DRESDEN h
DRESDEN Design Patterns and Frameworks // 01.11.2018 concept B 4

Assumptions about the Building Process

= Assumptions about the library infrastructure
= Assumptions about a generic language (C++)
= Assumptions about a tool specific language

= Combination is fatal;

= Some component A may have other expectations on the generated code of
another component B as B itself

= Then, the developer has to patch the generated code of A with patch scripts
(another translation component)

TECHNISCHE Patterns for Architectural Mismatch .
UNIVERSITAT Software Technology Group / Dr. Sebastian Gotz Folie 12 DRESDEN h
DRESDEN Design Patterns and Frameworks // 01.11.2018 concept

~4

Proposed Solutions of [Garlan et al. 1995]

Make all architectural assumptions explicit
= Problem: how to document or specify them?
= Many of the aforementioned problems are not formalized

= Implicit assumptions are a violation of the information hiding principle, and
hamper variability

= Make components more independent of each other

= Provide bridging technology

= For building language translation components (compiler construction, compiler
generators, XML technology)

= Distinguish architectural styles (architectural patterns) explicitly
= Distinguish connectors explicitly

= Solution: design patterns serve all of these purposes

TECHNISCHE Patterns for Architectural Mismatch .
UNIVERSITAT Software Technology Group / Dr. Sebastian Gotz Folie 13 DRESDEN h
DRESDEN Design Patterns and Frameworks // 01.11.2018 concept B 4

Usability of Extensibility Patterns

= All extensibility patterns can be used to treat architectural mismatch

= Behavior adaptation
- ChainOfResponsibility as filter for objects, to adapt behavior
= Proxy for translation between data formats
= Observer for additional behavior extension, listening to the events of the subject
= Visitor for extension of a data structure hierarchy with new algorithms

= Bridging data mismatch
- Decorator for wrapping, to adapt behavior, and to bridge data mismatch, not for
protocol mismatch
= Bridge for factoring designs on different platforms (making abstraction and
implementation components independent)

TECHNISCHE Patterns for Architectural Mismatch .
UNIVERSITAT Software Technology Group / Dr. Sebastian Gotz Folie 14 DRESDEN h
DRESDEN Design Patterns and Frameworks // 01.11.2018 concept B 4

5.2 Adapter

Object Adapter

= An object adapter is a proxy that maps one interface to another
= Or a protocol
= Or adata format

= An adapter cannot easily map control flow to each other
= Since itis passed once when entering the adapted class

TECHNISCHE Patterns for Architectural Mismatch
UNIVERSITAT Software Technology Group / Dr. Sebastian Gotz
DRESDEN Design Patterns and Frameworks // 01.11.2018

Object Adapter

Object adapters use delegation
Client Goal lAdapted class does
, | not inherit from goal|
operation() — — — 75 —
/\ /
—7 /
~ /
—
- — — — adapted /
-i . |
| Decorator-like | Object
Ilnheritance | Adapter AdaptedClass
operation() Op specificOperation()
adaptedObiject.specificOperation()
. TECHNISCHE Patterns for Architectural Mismatch
@ UNIVERSITAT Software Technology Group / Dr. Sebastian Gotz Folie 17 DRESDEN
DRESDEN Design Patterns and Frameworks // 01.11.2018 concept

(A

2\

~4

Class Adapter

Instead of delegation, class adapters use multiple inheritance

Client GoalClass AdaptedClass

operation() specificOperation()

4
’ zl
d
7
7/
4
,/

Can also be

Interface (Implementation)
Adapter
operation() O N
specificOperation()
TECHNISCHE Patterns for Architectural Mismatch .
UNIVERSITAT Software Technology Group / Dr. Sebastian Gotz Folie 18 DRESDEN h
DRESDEN Design Patterns and Frameworks // 01.11.2018 concept B 4

Example: Use of Legacy Systems:
Using External Class Library For Texts

External Library

e e e

/// ~
* . . /// \\\
DrawingEditor > GraficObject \\
\
frame() / _ \
: TextDispla
createManipulator() / splay
f E // largeness()
II
| :
|
) |
|
|
I
!
Linie Text \\— <
frame() frame() 8| return text.largeness()
createManipulator() createManipulator() ©[% <
\

TECHNISCHE
UNIVERSITAT
DRESDEN

Patterns for Architectural Mismatch
Software Technology Group / Dr. Sebastian Gotz
Design Patterns and Frameworks // 01.11.2018

return new TextManipuIato/r

N
N\
N
N

N

7
/
/
/

7
// DRESDEN

~._ Folie 19
~ -~ concept

~
~————

(A

—
g

—_— N

2\

~4

Adapters and Decorators

= Similar to a decorator, an adapter inherits its interface from the goal class
= but adapts the interface

= Hence, adapters can be inserted into inheritance hierarchies later on

Library

N

/

\

TECHNISCHE
@ UNIVERSITAT
DRESDEN

Patterns for Architectural Mismatch

New
Extensions

Library

/“\
/

Software Technology Group / Dr. Sebastian Gotz

Design Patterns and Frameworks // 01.11.2018

\
Adapter with
New Features \
Adapted
Class
Folie 20 DRESDEN (A‘

concept

~4

5.3 Facade

Facade

= Afacade is an object adapter that hides a complete set of objects
(subsystem)

= Or: aproxy that hides a subsystem

= The facade has to map its own interface to the interfaces of the
hidden objects

TECHNISCHE Patterns for Architectural Mismatch .
UNIVERSITAT Software Technology Group / Dr. Sebastian Gotz Folie 22 DRESDEN h
DRESDEN Design Patterns and Frameworks // 01.11.2018 concept B 4

Facade Hides a Subsystem

Client

Abstract

Facade

operation()

/\

HiddenSubsystem

adgpted HiddenClass1
Object
specificOperation()
adapted
Concrete Object2 :
Facade HiddenClass?2
operation() Q| ™ specificOperation()
adapted
Object3 HiddenClass3
adaptedObject.specificOperation() specificOperation()
adaptedObject2.specificOperation()
Software Technology Group / Dr. Sebastian Gotz Folie 23 DRESDEN

TECHNISCHE Patterns for Architectural Mismatch
@ UNIVERSITAT
DRESDEN Design Patterns and Frameworks // 01.11.2018

concept

'ﬂﬂh.,

2\

~4

5.4 Mediator (Broker)

Mediator (Broker)

= A mediator is an n-way proxy for communication
= Combined with a Bridge

= A mediator serves for
= Anonymous communication
= Dynamic communication nets

TECHNISCHE Patterns for Architectural Mismatch .
UNIVERSITAT Software Technology Group / Dr. Sebastian Gotz Folie 25 DRESDEN h
DRESDEN Design Patterns and Frameworks // 01.11.2018 concept B 4

Mediator

Mediator mediator Colleague
ConcreteMediator ConcreteColleague1 ConcreteColleague2

Typical Object Structure:

) (") ("
(AColleague AConcreteMediator AColleague

LMediator ® | ®e o | ¢ MediatorJ

N\ 4

(AColleague AColleague)

L Mediator @ ® Mediator J
J -
TECHNISCHE Patterns for Architectural Mismatch .
@ UNIVERSITAT Software Technology Group / Dr. Sebastian Gotz Folie 26 DRESDEN h
DRESDEN Design Patterns and Frameworks // 01.11.2018 concept B 4

Mediator As n-Proxy and Bridge

Mediator

| Realization of |

| Service |
— Yy — —

.
| Abstraction — — 2| Colleague

of Service _ /N\

Mediator

/\

ConcreteColleague1 ConcreteColleague2

ConcreteMediator

1

| N

| Proxy Object | —

\

| Proxy Class

— — —

~
" R "
(AColleague AConcreteMediator AColleague \]
| ° | J
L Mediator > L > L Mediator
4
(AColleague AColleague 1
L Mediator @—; N ® Mediator J
TECHNISCHE Patterns for Architectural Mismatch .
UNIVERSITAT Software Technology Group / Dr. Sebastian Gotz Folie 27 DRESDEN h
DRESDEN Design Patterns and Frameworks // 01.11.2018 concept B 4

Intent of Mediator

= Proxy object hides all communication partners
= Every partner uses the mediator object as proxy
= Clear: real partner is hidden

= Bridge links both communication partners
= Both mediator and partner hierarchies can be varied

= ObserverWithChangeManager combines Observer with Mediator

TECHNISCHE Patterns for Architectural Mismatch .
UNIVERSITAT Software Technology Group / Dr. Sebastian Gotz Folie 28 DRESDEN h
DRESDEN Design Patterns and Frameworks // 01.11.2018 concept B 4

Web Service Brokers

mediator.query(this)

N

. . mediator .
WebServiceMediator <> WebService
buy/() query() ©
query(WebService) /\

Google
. . oogle
ConcreteServiceMediator 5908 search()
bu
y0 , hotel
query(Widget)
TECHNISCHE Patterns for Architectural Mismatch
UNIVERSITAT Software Technology Group / Dr. Sebastian Gotz
DRESDEN Design Patterns and Frameworks // 01.11.2018

HotelBooking

search()
reserve()

buy()

Folie 29

DRESDEN
concept

"N
~4

Summary

= Architectural mismatch between components and tools consists of
different assumptions about components, connections, architecture,
and building procedure

= Design patterns, such as extensibility patterns or communication
patterns, can bridge architectural mismatches
= Data mismatch
= Interface mismatch
= Protocol mismatch

= With Glue Patterns, reuse becomes much better

TECHNISCHE Patterns for Architectural Mismatch .
UNIVERSITAT Software Technology Group / Dr. Sebastian Gotz Folie 30 DRESDEN h
DRESDEN Design Patterns and Frameworks // 01.11.2018 concept B 4

The End

