Traceability — An Introduction

Eine Ringvorlesung
fur die Technische Universitat Dresden
by
Harry M. Sneed
SoRing Kft. H-1221 Budapest

Institut fuir Software Technik
Dresden im November 2018

Two Forms of Software Tracing

There are two forms of software tracing:

1. Dynamic tracing, when you execute the
software and follow the path of execution
through the code.

2. Static tracing, when you begin with a software
artifact and collect all the other artifacts related
to that one, for instance, you begin with a
change request or an error message and collect
all artifacts, i.e. documents, code members and
test specifications, related to it.

Origin of Dynamic Software Tracing

Dynamic Tracing began with the Question ,what path
thru the system is followed by this test case?”

The answer that question one has to instrument the
code by placing markers at different points in the code,
for instance after each decision.

Dynamic tracing is used to debug and to document
tests.

In testing modules for Siemens at the Budapest Test
Laboratory in 1978 this speaker had to document every
test case since payment was based on test cases
tested.

The monthly test report to Siemens included the path
of every test case tested.

Dynamic tracing is used today to document tests of all
kinds from unit testing to network testing.

Origin of Static Software Tracing

Static Tracing began with the Question ,,What will it
cost to make this change?“

The answer was ,that it all depends on what is affected
by that change.”

To find that out one had to trace the change thru the
Software artifacts — documents, code and tests.

This was referred to as ,,Impact Analysis®.
Research on Impact Analysis began in the early 1990s.

Steve Bohner wrote his dissertation for the University
of Maryland on the subject of “Impact Analysis in the
Software Change Process ”, in the year 1990, the same
year that Robert Arnold finished his dissertation at the
same University on “Reverse Engineering”.

The two subjects are highly related.

My Work on Static Tracing

My work on static tracing began in a banking project in
Vienna in the years 2000 to 2003.

| was responsible for calculating the costs of changing
and extending a complex C++ system.

To do this | had to identify the impact domain of the
change in order to measure the size.

That resulted in a repository-based tool to
automatically calculate the costs of implementing
specified changes.

This work was reported on at the IEEE International
Conference on Software Maintenance (ICSM) in
Florence, Italy in Nov. 2001.

Impact Analysis of Maintenance Tasks
for a Distributed Object-oriented System
Harry M. Sneed
Software Daten Service GmbH
Vienna, Austria

GEOS System Model Levels

Change Impact
Request Domain

A

A

Concept Model

Code Model

A 4

Test Model

Figure 1: Repository Levels

Architecture Impact Analysis

Change
Request 0..* p
anel K>
Lﬂ“ 0.* | Business
0.1 Process
0. Data o
o.* | Business Object
1..1
E—_ Resource|t-* >
usiness |1.1 1.1_| Process 0.*
. Report <>
Reqirement - Frame >
o.* | Business %
Rule .
. > View <>
1.*
0..*
Use Caser—
h 0..* .
Dialog Batch Function <>
Process Process
Figure 2: Concept Model C Function
C++
Methode

> Module

Data
Attribute

arameter

Condition

Test Case

l

Test
Case

Code Impact Analysis

SDS Repository Impact Analysis
Product > GEOS
System = NOSTRO
Project > Sneed Date : 20.10.2001
Repository : D:\tools\maintain\softrepo\tables
Base Element : GAF
Element type : COMP

Search Direction : F

Lev Impacted Elements (Forward) Element Type Module_ Id
1 GAF COMP -> 0000
1 gafausfgh MOD -> 0016
2 GASVC_Steuer_Kontr CLASS -> 0016
2 gafkdzutcpp MOD -> 0017
3 gafausfg.h INC -> 0021
2 KD_Ausfg_Warten FUNCT -> 0021
2 GetKontoSparte FUNCT -> 0021
3 Execute FUNCT -> 0036
3 GAMAusfg_Kd_ZuteilungDIg FUNCT -> 0032
2 gafktzutcpp MOD -> 0018
3 gafausfg.h INC -> 0021
3 gafzutei.h INC -> 0021

Total Number of Elements impacted = 12

Base Element : GetSKONTR

Element type : FUNCT

Search Direction : F

Lev Impacted Elements (Forward) Element Type Module_ Id
1 GetSKONTR FUNCT -> 0017
Total Number of Elements impacted = 1

Artifact Impact Table

Requester: Bank of Austria System: GEOS
Change Request: Alter_Order_Map Date: 2001.01.22
Fct. Obj. Test Impact
Level Type Artifact Lines Stmts Pts Pts. Pts. Comp Qual Rate

Concept Panel Order_Map 39 39 7 21 - | 0.420| 0.602 10%
Concept Dialog Order_Entry 67 67 13 39 - | 0.491| 0.598 10%
Concept Frame Order_Process 208 208 20 112 - | 0.523| 0.570 5%
Concept Funct Status_check 92 92 6 28 - | 0.318 | 0.635 20%
Concept TestCase TF_OE_011 9 9 - - 4 - - 50%
Concept TestCase TF_OE_013 7 7 - - 3 - - 50%
Code Comp Procord 2420 | 1680 51 803 - | 0.561 | 0.501 2%
Code Module Procordl 860 560 19 240 - | 0.573 | 0.499 5%
Code Class Order 97 42 - 28 - | 0.519| 0.538 10%
Code Method Check_Status 36 21 - - - - - 40%
Test TestCase TF_OE_011 12 8 - - 4 - - 50%
Test TestCase TF_OE_013 10 6 - - 3 - - 50%
Test TestObj Procord 219 150 - - 72 - - 2%
Test Scenario Test_Orders 66 45 - - 21 | 0.592 | 0.542 10%
Test Script Test_Status 212 158 - - 69 | 0.571| 0.531 20%
15 4354 | 3092 116 | 1271 176 | 0.507 | 0.557 3%

Figure 6: Impact Table

Code Change Request Cost Estimation

o
| Code based Cost Report

| Product - GEOS

| System - NOSTRO

| Project - CR2 Date : 11.09.01

| Repository : d:\maintain\softrepo\tables

e
| Change Adjusted Monthly Person

| Metric Quantity Rate Complexity Quality Quantity Product Months

e
| Stmnts: 333 X 0.500 X 1.028 X 0.595 = 101 / 500 = 0.20

| Dat Pt: 65 X 0.500 X 1.028 X 0.595 = 19 / 150 = 0.13

| Obj Pt: 425 X 0.500 X 1.028 X 0.595 = 129 / 140 = 0.93

| Fct Pt: 108 X 0.500 X 1.028 X 0.595 = 33/ 32 = 1.03

| Median: O X 0.500 X 1.028 X 0.595 = O/ O00= 0.57

