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Who am I

➢ 1975- : Computer Science in Karlsruhe, 

Germany

➢ 1978- : Lived from programming for 20 years

➢ 1991- : Software Quality/Testing

➢ 1993: Walter Masing Awardee (DGQ)

➢ 1999: IT Architect/SWE Process Architect at a 

major Swiss bank for 16 years

➢ 2007- : PC member of IEEE conferences, 

keynotes, papers, lectures

➢ Member of GI, DGQ, IEEE 
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Software Quality – State of the Art

Definition [1]:

The quality of a system is the degree to which the

system satisfies the stated and implied needs of its

various stakeholders, and thus provides value.
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Software Quality – State of the Art

History [2]:

Germination stage (1970-1990):

➢ concept of software quality, factors, evaluation

Exploration stage (1990 – 2001:

➢ SW product evaluation, quality metrics

➢ ISO/IEC 14598, ISO/IEC 9126

Mature stage (since 2001): SQuaRE
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Software Quality – State of the Art

SQuaRE: Systems and software Quality 

Requirements and Evaluation, structure of standards

➢ Quality management ISO/IEC 2500n

➢ Quality model ISO/IEC 2501n

➢ Quality measurement ISO/IEC 2502n

➢ Quality requirement ISO/IEC 2503n

➢ Quality evaluation ISO/IEC 2504n

➢ Extension ISO/IEC 25050

- 25099
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Software Quality – State of the Art

Quality model, general structure

Quality =

➢ Sum of characteristics =

➢ Sum of subcharacteristics =

➢ Sum of quality properties =

➢ Sum of quality measure elements
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Software Quality – State of the Art

Systems and software product quality model [1]
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Software Quality – State of the Art

Quality in use model [1]
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Software Quality – State of the Art

Quality Measurement standards overview [3]
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Software Quality – State of the Art

Relationship among quality model and measure [3]
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Software Quality – State of the Art

Present reasearch on SW quality (examples):

➢ Challenges of overall quality evaluation [4]

➢ Quality Trade-offs in Embedded Systems [16]

➢ Realistic failure models of SW components [5]

➢ Data quality models for web portals [6]

➢ Empirical studies on quality prediction [7]

➢ Simulation of software quality [8][9]
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Software Quality – State of the Art

Present reasearch on factors impacting SW quality:

➢ Requirements Traceability Completeness [10]

➢ Architectural Technical Debt [11]

➢ Object-Oriented Code Refactoring [12]

➢ Classification of poor data quality [13]

➢ Quality assurance for big data applications [14]

➢ Testing of Concurrent Software Systems [17]

➢ Organizational parameters as quality predictor [15]

➢ SW quality and agile methods -> see other lectures
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Software Quality – State of the Art

Present-day issues:

➢ Error-prone number entry in e.g. medical devices [18]

➢ Still ‘bare-metal programming’ (without IDE) for embedded

or safety-related software [19]

➢ Quality of Service (QoS) of distributed systems only

partially matches with the latest software quality standards

ISO/IEC 25010 [20][21]

➢ A new hot spot of QoS is energy consumption [22][23][24]

➢ Internet App research with concerning results [25]
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Software Quality - theProblem

What are your pros and 

cons regarding present

software quality?

What‘s missing?
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Software Quality – the Problem 

Very popular:

Requirements

in natural

language

Software 

Code

Software 

Tests

Binary 

Code

☺





manual automated

manual
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Software Quality – the Problem 

«Professional»:

Requirements

in natural

language

Software 

Code

Software 

Validation

Binary 

Code

☺





Software

Design

Model



manual autom.manual

manual Software 

Verification
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Software Quality – the Problem 

Very rare:

Requirements

in natural

language

Formally

proven

Model

Software 

Validation

Binary 

Code

☺

?
semi-

automated
automated

semi-

automated ☺
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Software Quality - Old Facts 

➢ Software Defect Reduction Top 10 List [27]:
1) Finding and fixing a software problem after delivery is often 100 times more

expensive than finding and fixing it during the requirements and design phase; for

small, noncritical systems it is more like 5:1

2) Software projects spend about 40 to 50 % of their effort on avoidable rework

3) About 80% of avoidable rework comes from 20% of the defects (lower for

smaller, higher for very large ones)

4) About 80% (median) of the defects come from 20% of the modules, and about

half the modules are defect free

5) About 90% of the downtime comes from, at most, 10% of the defects
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Software Quality - Old Facts 

➢ Software Defect Reduction Top 10 List [27]:
6) Peer reviews catch 60% of the defects

7) Perspective-based reviews catch 35% more reviews than nondirected reviews

8) Disciplined personal practices can reduce defect introduction rates by up to 75%

9) All other things being equal, it costs 50% more per source instruction to develop

high-dependability software products than to develop low-dependability software

products. However, the investment is more than worth ist if the project involves

significant maintenance and operations cost. Low-dependability software costs

about 50% per instruction more to maintain than to develop, whereas high-

dependable software costs 15% less. For a typical life-cycle cost distribution of

30% development and 70% maintenance, both software types become about

the same in cost […]

10)About 40-50% of user programs contain nontrivial defects. Between 21 and 

26% of operational spreadsheets contain defects.  

!
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Software Engineering - Nowadays

Real engineering practice

➢ Well-codified knowledge, 

preferentially scientifically-founded, 

shapes design decisions

➢ Reference materials make knowledge

and experience available

➢ Analysis of a design predicts

properties of its implementation

SW engineering status

 We have some guidance for design 

decisions, but not nearly enough nor

systematic enough

 Reference materials and documen-

tation are widely neglected. We have

scientific papers, […] and searchable

APIs for specific systems – but well

curated reference are sorely lacking

 We have a rich set of analysis technics, 

but most focus on the code rather than the

design. We have rich simulations systems

in certain areas. But we still lack […] 

exploring design alternatives before

implementation [26]

21



What Do Other Disciplines?

➢ Mechatronics (easy):

➢ Use e.g. Fritzing

➢ Use domain specific

part collections (via 

standardized

interfaces)

➢ Use domain specific

simulation

➢ Build the system really
Fritzing Intro
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What Do Other Disciplines?

➢ Electronics (for Pro’s):

➢ Use e.g. LTSPICE (since

20  years)

➢ Use domain specific

part collections (via 

standardized

interfaces)

➢ Use domain specific

simulation

➢ Build the system really

LTSPICE Overview
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What Do Other Disciplines?

➢ Mechanics:

➢ Use Computer Aided

Design (CAD)

➢ Use domain specific

part collections (via 

standardized

interfaces)

➢ Use domain specific

simulation (e.g. finite 

elements)

➢ Build the system really MIT InstantCAD

Destaco BodyBuilder
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https://www.youtube.com/watch?time_continue=9&v=45YLK7vbL3M
http://www.destaco.ch/pdf/modular/1bodybuilder_cpi/1_bodybuilder.pdf


What Do Other Disciplines?

➢ Civil Engineering:

➢ Define domain specific

targets

➢ Use Computer Aided

Design (CAD)

➢ Use domain specific

simulation

➢ Connect with other IT 

systems

➢ Build the system

Präsentation Hochschule Luzern
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https://www.energie-cluster.ch/admin/data/files/file/file/1382/11.-berechnungstool-gebaeudebereich-bim-kompatibilitaet_-prof-gerhard-zweifel_hslu-.pdf?lm=1472110387


What Do Other Disciplines?

➢ Summary

➢ Design: CA* tools and part collections including all 

relevant physical parameters for the domain, based on 

formal methods and empirical natural sciences

➢ Process: design and verify/validate with domain-

specific software, than build

➢ People: only accept formal education and certificates

➢ Education: teach math adapted for the discipline

➢ Research: focus on new physics/materials/simulations

➢ Regulators: improve and develop standards/rules
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What Do Other Disciplines NOT?

➢ Summary

➢ Process: do what you like, tweak standards

➢ People: accept practical experience as replacement for

formal education and certificates

➢ Education: teach math not applied for their discipline

➢ Research:

➢Mix of the core discipline and business analysis/operations

or psychology

➢ E.g. observe communication between designers to find out 

properties of the parts they work on
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Software vs. Other Engineering

➢ Personal conclusion:

➢ SWE maturity after 60 years is probably similar than

mechanics and civil engineering after 60 years – who

remembers broken gothic churches or bridges from many

years ago or exploding steam engines (sometimes still 

explode chemical plants even in Europe and the US …)

➢ Unfortunately from the beginning of software development

the productivity increase with software often outperformed

the cost of low quality (except for safety critical systems); 

this allowed the industry to optimize profit vs. quality
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Software Engineering - Advanced

What further progress

could SWE make? 

Your ideas?
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Software Engineering - Advanced

➢ Topics [28]:

➢ Verification of physical systems as they work in the real 

world

➢ Formal methods will be a key enabling technology

➢ SWE … has become more about the composition of existing

functionality while adding some innovative functions …

➢ … new strategies to blend traditional testing, new advances

in formal methods, modeling and simulation and automated

testing, and continued data collection after fielding. 

30



Software Engineering - Advanced

➢ Composition of existing functionality

➢ Zhu, Bayley [31]: Composition of design patterns

➢ Jatoth et al. [32]: Literature Review on QoS-Aware Web Service 

Composition

➢ Andreou, Papatheocharous [40]: Automated matching of component

requirements

➢ New advances in formal methods:

➢ Abrial [33][34]: Event-B method and toolset, industrial applied in

➢ Railway engineering [35]

➢ Real Time Operating System Memory Manager [36] (an excellent example

of the application of Event-B)

➢ Morales, Capel [37]: Model checking for critical systems
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Software Engineering - Advanced

➢ Modeling

➢ ThingML approach for IoT [29]

➢ IoT Reference Architectures [30] and comparison

➢ Code generation

➢ On-the fly for scientific computing [38]

➢ Safety-critical avionics software [39]

➢ Simulation

➢ Comparison of performance prediction methods [40]

➢ Etc., etc.
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Software Engineering - Advanced

➢ Missing

➢ Domain-specific and empirically confirmed standard

sets of software quality properties

➢ Domain-specific standard sets of a software

components runtime parameters

➢ E.g.:

➢ Ressource metrics with respect to a reference platform/in a 

reference network

➢ Correctness proven yes/no

➢…
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What‘s needed?

➢ Education: 

➢ Math lectures (logic, set theory, statistics) 

adapted to software engineer‘s needs

➢ Tutorials/exercises in formal methods and 

present tool sets

➢ Research:

➢ Improvement of formal methods and tools for

large distributet systems

➢ Refocus on Software Empirics vs. the Software 

Engineer

➢ Industry: the «Innovative Formal Guerilla»
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Who dares to …?

… develop formal correct Linux drivers?

… develop the first formal proven App?

… develop a formal correct Linux FC 1.0?

… develop a better RODIN for students?

… found a commercial company to produce

formal proven only systems and software?
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A Last Word

Thank you
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