
Software Quality –

Promise or Threat?

Carl Worms
Softwareentwicklung in der Industriellen Praxis

Contents

➢ WhoamI

➢ Software Quality – State of the Art

➢ Software Quality – the Main Problem

➢ What do Other Engineering Disciplines?

➢ Software Engineering Advanced

➢ What’s needed?

➢ Who dares?

2

Who am I

➢ 1975- : Computer Science in Karlsruhe,

Germany

➢ 1978- : Lived from programming for 20 years

➢ 1991- : Software Quality/Testing

➢ 1993: Walter Masing Awardee (DGQ)

➢ 1999: IT Architect/SWE Process Architect at a

major Swiss bank for 16 years

➢ 2007- : PC member of IEEE conferences,

keynotes, papers, lectures

➢ Member of GI, DGQ, IEEE

3

Software Quality – State of the Art

Definition [1]:

The quality of a system is the degree to which the

system satisfies the stated and implied needs of its

various stakeholders, and thus provides value.

4

Software Quality – State of the Art

History [2]:

Germination stage (1970-1990):

➢ concept of software quality, factors, evaluation

Exploration stage (1990 – 2001:

➢ SW product evaluation, quality metrics

➢ ISO/IEC 14598, ISO/IEC 9126

Mature stage (since 2001): SQuaRE

5

Software Quality – State of the Art

SQuaRE: Systems and software Quality

Requirements and Evaluation, structure of standards

➢ Quality management ISO/IEC 2500n

➢ Quality model ISO/IEC 2501n

➢ Quality measurement ISO/IEC 2502n

➢ Quality requirement ISO/IEC 2503n

➢ Quality evaluation ISO/IEC 2504n

➢ Extension ISO/IEC 25050

- 25099

6

Software Quality – State of the Art

Quality model, general structure

Quality =

➢ Sum of characteristics =

➢ Sum of subcharacteristics =

➢ Sum of quality properties =

➢ Sum of quality measure elements

7

Software Quality – State of the Art

Systems and software product quality model [1]

8

Software Quality – State of the Art

Quality in use model [1]

9

Software Quality – State of the Art

Quality Measurement standards overview [3]

10

Software Quality – State of the Art

Relationship among quality model and measure [3]

11

Software Quality – State of the Art

Present reasearch on SW quality (examples):

➢ Challenges of overall quality evaluation [4]

➢ Quality Trade-offs in Embedded Systems [16]

➢ Realistic failure models of SW components [5]

➢ Data quality models for web portals [6]

➢ Empirical studies on quality prediction [7]

➢ Simulation of software quality [8][9]

12

Software Quality – State of the Art

Present reasearch on factors impacting SW quality:

➢ Requirements Traceability Completeness [10]

➢ Architectural Technical Debt [11]

➢ Object-Oriented Code Refactoring [12]

➢ Classification of poor data quality [13]

➢ Quality assurance for big data applications [14]

➢ Testing of Concurrent Software Systems [17]

➢ Organizational parameters as quality predictor [15]

➢ SW quality and agile methods -> see other lectures

13

Software Quality – State of the Art

Present-day issues:

➢ Error-prone number entry in e.g. medical devices [18]

➢ Still ‘bare-metal programming’ (without IDE) for embedded

or safety-related software [19]

➢ Quality of Service (QoS) of distributed systems only

partially matches with the latest software quality standards

ISO/IEC 25010 [20][21]

➢ A new hot spot of QoS is energy consumption [22][23][24]

➢ Internet App research with concerning results [25]

14

Software Quality - theProblem

What are your pros and

cons regarding present

software quality?

What‘s missing?

15

Software Quality – the Problem

Very popular:

Requirements

in natural

language

Software

Code

Software

Tests

Binary

Code

☺

manual automated

manual

16

Software Quality – the Problem

«Professional»:

Requirements

in natural

language

Software

Code

Software

Validation

Binary

Code

☺

Software

Design

Model

manual autom.manual

manual Software

Verification

17

Software Quality – the Problem

Very rare:

Requirements

in natural

language

Formally

proven

Model

Software

Validation

Binary

Code

☺

?
semi-

automated
automated

semi-

automated ☺

18

Software Quality - Old Facts

➢ Software Defect Reduction Top 10 List [27]:
1) Finding and fixing a software problem after delivery is often 100 times more

expensive than finding and fixing it during the requirements and design phase; for

small, noncritical systems it is more like 5:1

2) Software projects spend about 40 to 50 % of their effort on avoidable rework

3) About 80% of avoidable rework comes from 20% of the defects (lower for

smaller, higher for very large ones)

4) About 80% (median) of the defects come from 20% of the modules, and about

half the modules are defect free

5) About 90% of the downtime comes from, at most, 10% of the defects

19

Software Quality - Old Facts

➢ Software Defect Reduction Top 10 List [27]:
6) Peer reviews catch 60% of the defects

7) Perspective-based reviews catch 35% more reviews than nondirected reviews

8) Disciplined personal practices can reduce defect introduction rates by up to 75%

9) All other things being equal, it costs 50% more per source instruction to develop

high-dependability software products than to develop low-dependability software

products. However, the investment is more than worth ist if the project involves

significant maintenance and operations cost. Low-dependability software costs

about 50% per instruction more to maintain than to develop, whereas high-

dependable software costs 15% less. For a typical life-cycle cost distribution of

30% development and 70% maintenance, both software types become about

the same in cost […]

10)About 40-50% of user programs contain nontrivial defects. Between 21 and

26% of operational spreadsheets contain defects.

!

20

Software Engineering - Nowadays

Real engineering practice

➢ Well-codified knowledge,

preferentially scientifically-founded,

shapes design decisions

➢ Reference materials make knowledge

and experience available

➢ Analysis of a design predicts

properties of its implementation

SW engineering status

 We have some guidance for design

decisions, but not nearly enough nor

systematic enough

 Reference materials and documen-

tation are widely neglected. We have

scientific papers, […] and searchable

APIs for specific systems – but well

curated reference are sorely lacking

 We have a rich set of analysis technics,

but most focus on the code rather than the

design. We have rich simulations systems

in certain areas. But we still lack […]

exploring design alternatives before

implementation [26]

21

What Do Other Disciplines?

➢ Mechatronics (easy):

➢ Use e.g. Fritzing

➢ Use domain specific

part collections (via

standardized

interfaces)

➢ Use domain specific

simulation

➢ Build the system really
Fritzing Intro

22

https://youtu.be/Hxhd4HKrWpg

What Do Other Disciplines?

➢ Electronics (for Pro’s):

➢ Use e.g. LTSPICE (since

20 years)

➢ Use domain specific

part collections (via

standardized

interfaces)

➢ Use domain specific

simulation

➢ Build the system really

LTSPICE Overview

23

http://cds.linear.com/videos/LTspice_Overview.mp4

What Do Other Disciplines?

➢ Mechanics:

➢ Use Computer Aided

Design (CAD)

➢ Use domain specific

part collections (via

standardized

interfaces)

➢ Use domain specific

simulation (e.g. finite

elements)

➢ Build the system really MIT InstantCAD

Destaco BodyBuilder

24

https://www.youtube.com/watch?time_continue=9&v=45YLK7vbL3M
http://www.destaco.ch/pdf/modular/1bodybuilder_cpi/1_bodybuilder.pdf

What Do Other Disciplines?

➢ Civil Engineering:

➢ Define domain specific

targets

➢ Use Computer Aided

Design (CAD)

➢ Use domain specific

simulation

➢ Connect with other IT

systems

➢ Build the system

Präsentation Hochschule Luzern

25

https://www.energie-cluster.ch/admin/data/files/file/file/1382/11.-berechnungstool-gebaeudebereich-bim-kompatibilitaet_-prof-gerhard-zweifel_hslu-.pdf?lm=1472110387

What Do Other Disciplines?

➢ Summary

➢ Design: CA* tools and part collections including all

relevant physical parameters for the domain, based on

formal methods and empirical natural sciences

➢ Process: design and verify/validate with domain-

specific software, than build

➢ People: only accept formal education and certificates

➢ Education: teach math adapted for the discipline

➢ Research: focus on new physics/materials/simulations

➢ Regulators: improve and develop standards/rules

26

What Do Other Disciplines NOT?

➢ Summary

➢ Process: do what you like, tweak standards

➢ People: accept practical experience as replacement for

formal education and certificates

➢ Education: teach math not applied for their discipline

➢ Research:

➢Mix of the core discipline and business analysis/operations

or psychology

➢ E.g. observe communication between designers to find out

properties of the parts they work on

27

Software vs. Other Engineering

➢ Personal conclusion:

➢ SWE maturity after 60 years is probably similar than

mechanics and civil engineering after 60 years – who

remembers broken gothic churches or bridges from many

years ago or exploding steam engines (sometimes still

explode chemical plants even in Europe and the US …)

➢ Unfortunately from the beginning of software development

the productivity increase with software often outperformed

the cost of low quality (except for safety critical systems);

this allowed the industry to optimize profit vs. quality

28

Software Engineering - Advanced

What further progress

could SWE make?

Your ideas?

29

Software Engineering - Advanced

➢ Topics [28]:

➢ Verification of physical systems as they work in the real

world

➢ Formal methods will be a key enabling technology

➢ SWE … has become more about the composition of existing

functionality while adding some innovative functions …

➢ … new strategies to blend traditional testing, new advances

in formal methods, modeling and simulation and automated

testing, and continued data collection after fielding.

30

Software Engineering - Advanced

➢ Composition of existing functionality

➢ Zhu, Bayley [31]: Composition of design patterns

➢ Jatoth et al. [32]: Literature Review on QoS-Aware Web Service

Composition

➢ Andreou, Papatheocharous [40]: Automated matching of component

requirements

➢ New advances in formal methods:

➢ Abrial [33][34]: Event-B method and toolset, industrial applied in

➢ Railway engineering [35]

➢ Real Time Operating System Memory Manager [36] (an excellent example

of the application of Event-B)

➢ Morales, Capel [37]: Model checking for critical systems

31

Software Engineering - Advanced

➢ Modeling

➢ ThingML approach for IoT [29]

➢ IoT Reference Architectures [30] and comparison

➢ Code generation

➢ On-the fly for scientific computing [38]

➢ Safety-critical avionics software [39]

➢ Simulation

➢ Comparison of performance prediction methods [40]

➢ Etc., etc.

32

Software Engineering - Advanced

➢ Missing

➢ Domain-specific and empirically confirmed standard

sets of software quality properties

➢ Domain-specific standard sets of a software

components runtime parameters

➢ E.g.:

➢ Ressource metrics with respect to a reference platform/in a

reference network

➢ Correctness proven yes/no

➢…

33

What‘s needed?

➢ Education:

➢ Math lectures (logic, set theory, statistics)

adapted to software engineer‘s needs

➢ Tutorials/exercises in formal methods and

present tool sets

➢ Research:

➢ Improvement of formal methods and tools for

large distributet systems

➢ Refocus on Software Empirics vs. the Software

Engineer

➢ Industry: the «Innovative Formal Guerilla»

34

Who dares to …?

… develop formal correct Linux drivers?

… develop the first formal proven App?

… develop a formal correct Linux FC 1.0?

… develop a better RODIN for students?

… found a commercial company to produce

formal proven only systems and software?

35

A Last Word

Thank you

36

References

[1] ISO/IEC 25010 Systems and software engineering – Systems and software Quality Requirements

and Evaluation (SQuaRE) – Systems and software quality models

[2] Y. Zhang, X. Liu, Z. Liu and W. Li, "Development and Reconstitution of Software Quality

Measurement and Evaluation Standards," 2018 19th IEEE/ACIS International Conference on

Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing (SNPD),

Busan, Korea (South), 2018, pp. 380-384.

[3] ISO/IEC 25010 Systems and software engineering – Systems and software Quality Requirements

and Evaluation (SQuaRE) – Measurement of system and software product quality

[4] Y. Zhao, J. Gong, Y. Hu, Z. Liu and L. Cai, "Analysis of quality evaluation based on ISO/IEC

SQuaRE series standards and its considerations," 2017 IEEE/ACIS 16th International Conference on

Computer and Information Science (ICIS), Wuhan, China, 2017, pp. 245-250.

[5] J. M. Franco, F. Cerveira, R. Barbosa and M. Zenha-Rela, "Modeling the Failure Pathology of

Software Components," 2016 12th International ACM SIGSOFT Conference on Quality of Software

Architectures (QoSA)(QOSA), Venice, Italy, 2016, pp. 41-49

[6] C. Calero, A. Caro, M. Moraga and C. Moraga, "SQuaRE-Aligned Data Quality Model for Web

Portals," 2009 9th International Conference on Quality Software (QSIC 2009)(QSIC), Jeju, 2009, pp.

117-122

[7] R. Lincke, W. Löwe and T. Gutzmann, "Software Quality Prediction Models Compared," Quality

Software, International Conference on(QSIC), Zhangjiajie, Hunan, China, 2010, pp. 82-91

37

References

[8] C. Paterson and R. Calinescu, "Accurate Analysis of Quality Properties of Software with

Observation-Based Markov Chain Refinement," 2017 IEEE International Conference on Software

Architecture (ICSA), Gothenburg, Sweden, 2017, pp. 121-130.

[9] E. Tang, X. Zhang, N. T. Muller, Z. Chen and X. Li, "Software Numerical Instability Detection and

Diagnosis by Combining Stochastic and Infinite-Precision Testing," in IEEE Transactions on Software

Engineering, vol. 43, no. 10, pp. 975-994, 2017.

[10] P. Rempel and P. Mader, "Preventing Defects: The Impact of Requirements Traceability

Completeness on Software Quality," in IEEE Transactions on Software Engineering, vol. 43, no. 8,

pp. 777-797, 2017.

[11] T. Besker, A. Martini and J. Bosch, "Impact of Architectural Technical Debt on Daily Software

Development Work — A Survey of Software Practitioners," 2017 43rd Euromicro Conference on

Software Engineering and Advanced Applications (SEAA), Vienna, Austria, 2017, pp. 278-287.

[12] J. Al Dallal and A. Abdin, "Empirical Evaluation of the Impact of Object-Oriented Code

Refactoring on Quality Attributes: A Systematic Literature Review," in IEEE Transactions on Software

Engineering, vol. 44, no. 1, pp. 44-69, 2018.

[13] N. Laranjeiro, S. N. Soydemir and J. Bernardino, "A Survey on Data Quality: Classifying Poor

Data," 2015 IEEE 21st Pacific Rim International Symposium on Dependable Computing (PRDC),

Zhangjiajie, China, 2015, pp. 179-188.

38

References

[14] P. Zhang, X. Zhou, W. Li and J. Gao, "A Survey on Quality Assurance Techniques for Big Data

Applications," 2017 IEEE Third International Conference on Big Data Computing Service and

Applications (BigDataService), Redwood City, USA, 2017, pp. 313-319.

[15] N. Nagappan, B. Murphy and V. Basili, "The influence of organizational structure on software

quality," 2008 ACM/IEEE 30th International Conference on Software Engineering. ICSE'08(ICSE),

Leipzig, 2009, pp. 521-530.

[16] F. A. Bianchi, A. Margara and M. Pezze, "A Survey of Recent Trends in Testing Concurrent

Software Systems," in IEEE Transactions on Software Engineering, vol. 44, no. 8, pp. 747-783,

2018.

[17] D. Feitosa, A. Ampatzoglou, P. Avgeriou and E. Y. Nakagawa, "Investigating quality trade-offs in

open source Critical Embedded Systems," 2015 11th International ACM SIGSOFT Conference on

Quality of Software Architectures (QoSA)(QOSA), Montreal, QC, Canada, 2015, pp. 113-122.

[18] H. Thimbleby, "Safer User Interfaces: A Case Study in Improving Number Entry"; IEEE Trans. on

Softw. Eng., Vol. 41, No. 7, July 2015

[19] G. H. Holzmann, "Tiny Tools"; IEEE Software, January/February 2016

[20] J. Kiruthika, S. Khaddaj, "Software Quality Issues and Challenges of Internet of Things"; 2015

14th International Symposium on Distributed Computing and Application for Business Engineering

and Science, pp. 176-179, 2015

39

References

[21] T. Bianchi, D. S. Santos, and K. R. Felizardo, "Quality Attributes of Systems-of-Systems: A

Systematic Literature Review"; 2015 IEEE/ACM 3rd International Workshop on Software Engineering

for Systems-of-Systems (SESoS), pp. 23-30, 2015

[22] K.-Y. Chen, J. M. Chang, and T.-W. Hou, "An Energy-Efficient Java Virtual Machine"; IEEE Trans.

on Cloud Computing, vol. 5, pp. 263-275, April-June 2017

[23] S. Wang, A. Zhou, C.-H.Hsu, X. Xiao, and F. Yang, "Provision of Data-Intensive Services

Through Energy- and QoS-Aqare Virtual Machine Placement in National Cloud Data Centers"; IEEE

Trans. on Emerging Topics in Comp., vol. 4, no. 2, June 2016

[24] M. Wan, Y. Jin, D. Li., and W. G. Halfond, "Detecting Display Energy Hotspots in Android Apps";

in Proc. IEEE 8th Int. Conf. Softw. Testing, Verification and Validation, pp. 1-10, 2015

[25] W. Martin, F. Sarro, Y. Jia, Y. Zhang, and M. Harmann, "A Survey of App Store Analysis for

Software Engineering"; IEEE Trans. on Softw. Engineering, vol. 43, no. 9, September 2017

[26] M. Shaw, “Progress Toward an Engineering Discipline of Software (Keynote)“; 2016 IEEE/ACM

38th Int. Conf. on Softw. Eng. Compagnion, p. 3

[27] Victor R. Basili, Barry Boehm, "Software Defect Reduction Top 10 List", Computer, vol. 34, pp.

135-137, January 2001

[28] A. Moore, T.O’Reilly, P. D. Nielsen, and K. Fall, “Four Thought Leaders on Where the Industry is

Headed“; IEEE Software, pp. 36-39, January/February 2016

40

References

[29] B. Morin, N. Harrand, and F. Fleurey, “Model-Based Software-Engineering to Tame the IoT

Jungle“; IEEE Software, pp. 30-36, January/February 2017

[30] M Weyrich, C. Ebert, “Reference Architectures for the Internet of Things“; IEEE Software, pp.

112-116, January/February 2016

[31] H. Zhu, I. Bayley, “On the Composability of Design Patterns“; IEEE Trans. On Softw. Eng., vol.

41, no. 11, November 2015

[32] C. Jatoth, G. R. Gangadharan, and R. Buyya, “Computational Intelligence Based QoS-Aware

Web Service Composition: A Systematic Literature Review“; IEEE Trans. On Services Comp., vol. 10,

no. 3, May/June 2017

[33] J.-R. Abrial, “Faultless Systems: Yes, we can!“, Computer, pp. 30-36, September 2009

[34] J.-R. Abrial, "Formal Methods in Industry: Achievements, Problems, Future", Software

Engineering, International Conference on, pp. 761-768, 2006

[35] T. Fischer, “Rodin in the Field of Railway System Engineering“; 6th Rodin User and Developer

Workshop 2016, http://wiki.event-b.org/index.php/Rodin_Workshop_2016

[36] W. Su, J.-R. Abrial, G. Pu, and B. Fang, “Formal Develoment of a Real-Time Operating System

Memory Manager“; 2015 20th Int. Conf. On Eng. Of Compl. Comp. Syst., 2015

[37] L. E. Mendoza Morales, M. I. Capel, “Checking Critical Software Systems: A Formal Proposal“;

2016 10th Int. Conf. On the Quality of Inf. and Comm. Techn., 2016

41

http://wiki.event-b.org/index.php/Rodin_Workshop_2016

References

[38] A. Heinecke, G. Henry, M. Hutchinson, and H. Pabst, “LIBXSMM: Accelerating Small Matrix

Multiplications by Runtime Code Generation“; SC '16: Proceedings of the International Conference for

High Performance Computing, Networking, Storage and Analysis, 2016

[39] A. Wölfl, N. Siegmund, S. Apel, H. Kosch, J. Krautlager, and G. Weber-Urbina, “Generating

Qualifiable Avionics Software: An Experience Report“; 2015 30th Int. Conf. on Autom. Softw. Eng.,

2015

[40] A. S. Andreou, E. Papatheocharous, “Automatic Matching of Software Component Requirements

Using Semi-Formal Specifications and a CBSE Ontology“; 2015 International Conference on

Evaluation of Novel Approaches to Software Engineering (ENASE)

42

