
Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie – Prof. Aßmann - Software as a Business

31. Lean (Canvas) Modeling

Prof. Dr. Uwe Aßmann
Technische Universität Dresden

Software Engineering Group

http://st.inf.tu-dresden.de

Version 18-0.4, 07.12.18

1) Canvases as collaborative tools

2) Lean modeling with canvases

3) Nested canvases

4) Grading and metrics on canvases

5) The canvas cactus as megamodel

http://st.inf.tu-dresden.de/
http://st.inf.tu-dresden.de/
http://st.inf.tu-dresden.de/
http://st.inf.tu-dresden.de/
http://st.inf.tu-dresden.de/

So
ft

w
ar

e
as

 a
 B

u
si

n
es

s,
 ©

 P
ro

f.
U

w
e

A
ß

m
an

n

2 Software as a Business

Literature

[CM03] Sitt Sen Chok, Kim Marriott. Automatic Generation of Intelligent Diagram Editors.
ACM Transactions on Computer-Human Interaction, Vol. 10, No. 3, September 2003,
Pages 244–276.

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie – Prof. Aßmann - Software as a Business

31.1 Canvases as Light-Weight Cooperation
Tools

So
ft

w
ar

e
as

 a
 B

u
si

n
es

s,
 ©

 P
ro

f.
U

w
e

A
ß

m
an

n

4 Software as a Business

► A canvas is a collaborative frontend for a model, in which sticky notes demarcate the
formal content from the informal text.

► A lean model is a semi-conceptualized model, an active document with informal and
conceptualized content.

■ XML is a similar idea: semi-structured content
■ Lean models transfer this idea to model-driven development

► Lean modeling is an agile conceptualization process:
■ Canvas -> Lean Model -> fully conceptualized Model

4

Canvases as Lean Models

Lean Model
(semi-conceptualized)Canvas Model

Value Proposition is
A and B and C

Key partners

Ch
an

ne
ls

ar
e

New
s,

Pr
es

s,
W

eb

Cost structure is

100€, 2 per day

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie – Prof. Aßmann - Software as a Business

31.2. Lean Modeling with Canvases

So
ft

w
ar

e
as

 a
 B

u
si

n
es

s,
 ©

 P
ro

f.
U

w
e

A
ß

m
an

n

6 Software as a Business

Schemas for Flat Canvases as Grammars

► A (flat) canvas is a structured questionnaire for collaborative development

► It can be represented as a tree-shaped model
■ Canvas structure:

. Canvas left side vs. right side

. Left part, right part, upper, lower part

. Canvas fields with sticky text notes, Canvas questions or answers
■ Inter-field references with inter-field constraints
■ Intra-field constraints
■ Canvas fill order (partial order) on the tree nodes
■ NO Subcanvases; Subcanvases are other trees that may be referenced

So
ft

w
ar

e
as

 a
 B

u
si

n
es

s,
 ©

 P
ro

f.
U

w
e

A
ß

m
an

n

7 Software as a Business

Schemas for Flat Canvases as Grammars

► The canvas’ schema can be described by a grammar in a Part Grammar (Constraint Multiset
Grammar, CMG) describing Whole-and-Part relationships

► Example invariants: forall stickynotes in CustomerRelations there is a
stickynote in Channels; there must be a revenue

► Why is the partial fill order a set of inter-field constraints?

► Alternative: EBNF and OCL

// Example Grammar for BMC
Grammar Fields = Rules {
 Note ::= Question | Answer
 Root Field ::= StickyNote:Note *
}
Grammar BusinessModelCanvas = import Fields
Rules {
 Root BMC ::= { LeftPart ValueProposition:Field RightPart }
 LeftPart ::= { KeyPartners:Field KeyActivities:Field KeyResources:Field Costs:Field }
 RightPart ::= { CustomerRelations:Field Channels:Field CustomerSegments:Field Revenues:Field }
 Invariant { forall s:CustomerRelations.StickyNote* exists y:StickyNote, y in Channels.StickyNote*
 Invariant MUST exists r:StickyNote in Revenues.StickyNote* }
}

// Example Grammar for BMC
Grammar Fields = Rules {
 Note ::= Question | Answer
 Root Field ::= StickyNote:Note *
}
Grammar BusinessModelCanvas = import Fields
Rules {
 Root BMC ::= { LeftPart ValueProposition:Field RightPart }
 LeftPart ::= { KeyPartners:Field KeyActivities:Field KeyResources:Field Costs:Field }
 RightPart ::= { CustomerRelations:Field Channels:Field CustomerSegments:Field Revenues:Field }
 Invariant { forall s:CustomerRelations.StickyNote* exists y:StickyNote, y in Channels.StickyNote*
 Invariant MUST exists r:StickyNote in Revenues.StickyNote* }
}

So
ft

w
ar

e
as

 a
 B

u
si

n
es

s,
 ©

 P
ro

f.
U

w
e

A
ß

m
an

n

9 Software as a Business

VPC as Grammar with Constraints

► Invariants:
■ Forall gains there must be a gain creator
■ Forall pains there must be a pain killer
■ Forall pain killers there should be a service or product
■ Forall gain creators there should be a service or product

Grammar ValuePropositionCanvas = import Fields
Rules {
 Root VPC ::= { LeftPart RightPart }
 LeftPart ::= { GainCreator:Field PainKiller:Field ProductsAndServices:Field }
 RightPart ::= { Gain:Field Pain:Field CustomerSituation:Field }
 Invariant forall s:Gain.StickyNote* exists y:StickyNote, y in GainCreator.StickyNote*
 Invariant forall s:Pain.StickyNote* exists y:StickyNote, y in PainKiller.StickyNote*
 Invariant forall s:PainKiller.StickyNote* exists y:StickyNote, y in ProductsAndServices.StickyNote*
 Invariant forall s:GainCreator.StickyNote* exists y:StickyNote, y in ProductsAndServices.StickyNote*
}

Grammar ValuePropositionCanvas = import Fields
Rules {
 Root VPC ::= { LeftPart RightPart }
 LeftPart ::= { GainCreator:Field PainKiller:Field ProductsAndServices:Field }
 RightPart ::= { Gain:Field Pain:Field CustomerSituation:Field }
 Invariant forall s:Gain.StickyNote* exists y:StickyNote, y in GainCreator.StickyNote*
 Invariant forall s:Pain.StickyNote* exists y:StickyNote, y in PainKiller.StickyNote*
 Invariant forall s:PainKiller.StickyNote* exists y:StickyNote, y in ProductsAndServices.StickyNote*
 Invariant forall s:GainCreator.StickyNote* exists y:StickyNote, y in ProductsAndServices.StickyNote*
}

So
ft

w
ar

e
as

 a
 B

u
si

n
es

s,
 ©

 P
ro

f.
U

w
e

A
ß

m
an

n

11 Software as a Business

Validating a Flat Canvas

► A flat canvas is called well-formed, if
■ All fields are being computed (filled)
■ All fields fulfill all constraints.

► Validation:
■ Parse the canvas with its sticky notes
■ Evaluate constraints in OCL
■ or with an Attributed Grammar
■ or with an Multiset Constraint Grammar

So
ft

w
ar

e
as

 a
 B

u
si

n
es

s,
 ©

 P
ro

f.
U

w
e

A
ß

m
an

n

12 Software as a Business

► A lean model can be merged with another lean model

► A canvas twin is a parallelly edited canvas, which can be merged into a lean model by
unifying the fields

► Conceptualization Process:
■ CanvasTwin * -> Lean Model -> fully conceptualized Model
■ Assembling all constraints
■ Validating all constraints

12

Parallelly Edited Lean Models can be Merged

Lean Model
(semi-conceptualized)

Canvases
Model

Value Proposition is
A and B and C

Key partners

Ch
an

ne
ls

ar
e

New
s,

Pr
es

s,
W

eb

Cost structure is

100€, 2 per day

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie – Prof. Aßmann - Software as a Business

31.3 Nested Canvases

So
ft

w
ar

e
as

 a
 B

u
si

n
es

s,
 ©

 P
ro

f.
U

w
e

A
ß

m
an

n

14 Software as a Business

A Nested Canvas

► A nested canvas (deep canvas) is a link tree with level graphs
■ Every canvas forms a sequence, graph or array of fields
■ Sticky notes attach text to the fields
■ Constraints constrain the content of the canvas fields

► Subcanvases form children
■ Grammars of nested canvases are united (grammar composition)

► The fill order of the canvas defines a phase structure on the link tree
■ Metrics on advancement (hierarchical wavefront progress)

So
ft

w
ar

e
as

 a
 B

u
si

n
es

s,
 ©

 P
ro

f.
U

w
e

A
ß

m
an

n

15 Software as a Business

The Nested BMC (Deep BMC)

► Many subcanvases

BMC

VPC

Customer Journey
Canvas (CJC)

ReqEC

Channel
Flipbook Canvas

Pain Canvas
Pain Killer Canvas

Pain-Gain
Banana

Pain Portfolio Customer
Empathy Map

Customer
BMCY

Customer Double
Funnel Canvas

SPIN™ Canvas

Solution
Selling™

Canvas

So
ft

w
ar

e
as

 a
 B

u
si

n
es

s,
 ©

 P
ro

f.
U

w
e

A
ß

m
an

n

16 Software as a Business

► A nested canvas twin is a parallelly edited nested canvas, which can be merged into a
lean model by unifying the fields

► Conceptualization Process:
■ NestedCanvasTwin * -> Lean Model -> fully conceptualized Model

16

Parallelly Edited Lean Models can be Merged to Get a
More Mature Model

Lean Model
(semi-conceptualized)

Model

Value Proposition is
A and B and C

Key partners

Ch
an

ne
ls

ar
e

New
s,

Pr
es

s,
W

eb

Cost structure is

100€, 2 per day

BMC

VPC
Customer

Empathy Map

BMC

VPC
Customer

Empathy Map

Nested Canvases

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie – Prof. Aßmann - Software as a Business

31.4 Grading and Metrics on Canvases

So
ft

w
ar

e
as

 a
 B

u
si

n
es

s,
 ©

 P
ro

f.
U

w
e

A
ß

m
an

n

18 Software as a Business

Assessment in Canvases and Nodetypes in Canvas
Trees

► StickyNote dimension: every node can have a sticky note (Answer to a canvas question)

► Commenting is done by spanning up a comment dimension in a canvas tree
■ Every node can get a comment

► Corresponding dimension: Every node (e.g., sticky note or comment) can invoke a
corresponding node in another field that has to be filled

■ When a sticky note invokes another sticky note

■ INVARIANT Exists s:StickyNote: corresponding(self, s)
► Grading is done by spanning up a grading dimension in a canvas tree

■ Every node can get a grade (green-yellow-red, 1-5, 1-10, 1-15)
■ The grading dimension defines grading functions for sticky notes in the

fields

► SWOT dimension: every node can get a SWOT grading node: “how
strong/weak/opportunity-like/trend-like is node?”

■ BMC-SWOT grading matrix canvas uses the SWOT grading dimension
■ LeanCanvas-SWOT uses SWOT grading dimension for LeanCanvas

► Grading on nested canvases: Grading is like commenting, but attributing a grade to a
node. It defines the grading functions for all tree nodes of the nested canvas.

So
ft

w
ar

e
as

 a
 B

u
si

n
es

s,
 ©

 P
ro

f.
U

w
e

A
ß

m
an

n

19 Software as a Business

Examples of Attributes (Variables) of a Canvas Field
(Node)

► Node.Questions: List(Question) // all questions of a field or note
► Node.SWOT: List(SWOT)

► Node.Comments: List(Comment) // all nodes in a canvas can be commented
■ NumberOf // all lists in nodes of a canvas can be counted

► Field.AllStickyNotes: List(StickyNotes)

► Field.MissingStickyNodes: List(empty Fields)

► Field.Grade: /* The average of all sticky note grades */
► StickyNote.Grade: /* the grading: e.g., red, yellow, green */
► StickyNode.SWOT.Strength.Grade: /* Grade of SWOT */
► StickyNode.SWOT.Weakness.Grade: /* Grade of SWOT */
► StickyNode.SWOT.Opportunity.Grade: /* Grade of SWOT */
► StickyNode.SWOT.Trend.Grade: /* Grade of SWOT */
► StickyNote.CorrespondingStickyNote: List(Ref StickyNote) /* corresponding sticky nodes

or holes */
► Canvas.Grade: /* The average of all sticky note grades of all nodes */

So
ft

w
ar

e
as

 a
 B

u
si

n
es

s,
 ©

 P
ro

f.
U

w
e

A
ß

m
an

n

20 Software as a Business

Thresholds for Canvas Metrics

► Status of invariants is important for the maturity of the canvas

If a set of metric function on a nested canvas does not
fulfil its threshold, or if not all invariants are fulfilled,

we call the canvas orange.

If a set of metric function on a nested canvas does not
fulfil its threshold, or if not all invariants are fulfilled,

we call the canvas orange.

A green canvas fills all its variables
and fulfills all its invariants.

A green canvas fills all its variables
and fulfills all its invariants.

A red canvas does not fulfill all its MUST invariants.A red canvas does not fulfill all its MUST invariants.

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie – Prof. Aßmann - Software as a Business

31.5 The Canvas Cactus as Megamodel and
its Metrics

So
ft

w
ar

e
as

 a
 B

u
si

n
es

s,
 ©

 P
ro

f.
U

w
e

A
ß

m
an

n

22 Software as a Business

The Evolving BMC-VPC Canvas Cactus (extended)

► Growing a tree with side edges (link tree - cactus) out of a first version
■ Assess with red-yellow-green; choose a current “greenest” “champion”

► Every step tests hypotheses about the customer

► Not too many canvases are kept active (small dashboard)

So
ft

w
ar

e
as

 a
 B

u
si

n
es

s,
 ©

 P
ro

f.
U

w
e

A
ß

m
an

n

23 Software as a Business

The Megamodel of Evolving Canvases

► A megamodel describes a set of models

► A canvas cactus is a link tree of canvases, i.e., a link-tree-shaped megamodel of
canvases

► Canvas cactus evolution evolves the megamodel with agile modeling

► The megamodel of canvases in a cactus is a link tree and can be analysed by constrained
multiset grammar (CMG)

■ Metrics
■ Constraints

So
ft

w
ar

e
as

 a
 B

u
si

n
es

s,
 ©

 P
ro

f.
U

w
e

A
ß

m
an

n

24 Software as a Business

Business Model Generation with Osterwalder/Pigneur

• CC-BY-SA: http://www.businessmodelgeneration.com/downloads/business_model_canvas_poster.pdf

Prof. U.
Aßmann

So
ft

w
ar

e
as

 a
 B

u
si

n
es

s,
 ©

 P
ro

f.
U

w
e

A
ß

m
an

n

25 Software as a Business

The End

► More on modeling, lean modeling, and megamodeling in the course

► “Model-Driven Software Development in Technical Spaces (MOST)” in WS 17/18

► Explain the concept of a CMG. Why do we need a grammar to model Canvases?

► Explain why a canvas is an instance of a CMG.
■ Which role do invariants play?
■ Which role do filling functions play?
■ Can the user execute / simulate a filling function?

	Slide 1
	Slide 2
	Slide 3
	Lean Models
	Slide 5
	Slide 6
	Slide 7
	Slide 9
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25

