

3. Formal Features of Petri Nets for Static Verification of Dynamic Behavior

Lecturer: Dr. Sebastian Götz

Prof. Dr. U. Aßmann Technische Universität Dresden Institut für Software- und Multimediatechnik Softwaretechnologie <u>http://st.inf.tu-dresden.de</u>

- 1. Reachability Graph
- 2. Boundedness
- 3. Liveness
- 4. Liveness with T-invariants

24.10.2018

Content

- Behavioral properties
 - Reachability
 - Liveness
 - Boundedness
- Liveness checking

Obligatory Readings

- T. Murata. Petri Nets: properties, analysis, applications. IEEE volume 77, No 4, 1989.
- Ghezzi Chapter 5
- J. B. Jörgensen. Colored Petri Nets in UML-based Software Development Designing Middleware for Pervasive Healthcare.
 <u>www.pervasive.dk/publications/files/CPN02.pdf</u>

Literature

- K. Jensen, Colored Petri Nets. Vol. I-III. Springer, 1992-96. Landmark book series on CPN.
- W. Reisig. Elements of Distributed Algorithms Modelling and Analysis with Petri Nets. Springer. 1998.
- W. Reisig, G. Rozenberg: Lectures on Petri Nets I+II, Lecture Notes in Computer Science, 1491+1492, Springer.
- J. Peterson. Petri Nets. ACM Computing Surveys, Vol 9, No 3, Sept 1977
- H. Balzert. Lehrbuch der Softwaretechnik. Verlag Spektrum der Wissenschaft. Heidelberg, Germany.

Goals

Understand the isomorphism between finite automata (statecharts) and bounded Petri nets

Understand why matrix algebra solves

- deadlock and liveness questions
- protocol questions

3.1 Behavioral Properties of PN

Reachability of Markings

If t is *enabled* in M, we write M[t)

A marking M_n is said to be *reachable* from a marking M_0 if there exists a firing sequence s that transforms M_0 to M_n .

■ We write this M₀ [s) M_n

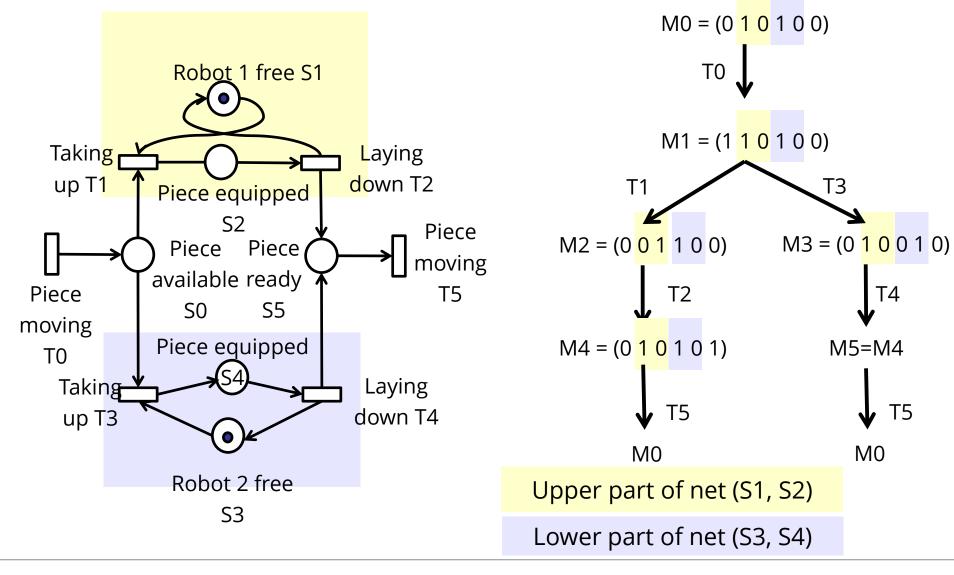
A *firing sequence* is denoted by a sequence of transitions $s = M_0 [t1) M_1 [t2) M_2 ... [tn) M_n$ or simply s = t1 t2 t3 ... tn.

The set of all possible markings reachable from M_0 is denoted $R(M_0)$.

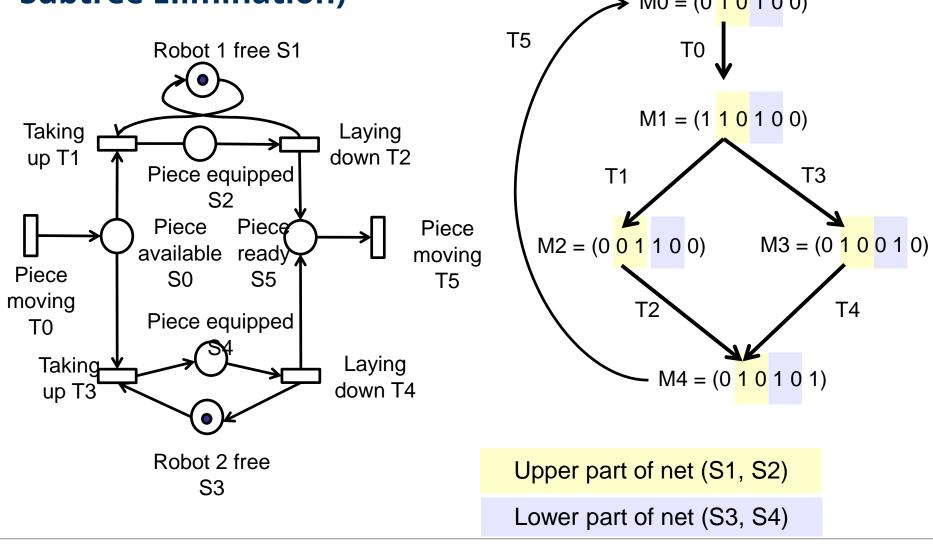
- R(M₀) is spanning up a state automaton, the *state space*, *reachability graph*, or *occurrence graph*
- Every marking of the PN is a state in the reachability graph

The set of all possible firing sequences in a net (N,M_0) is denoted $L(M_0)$. This is the language of the automaton $R(M_0)$.

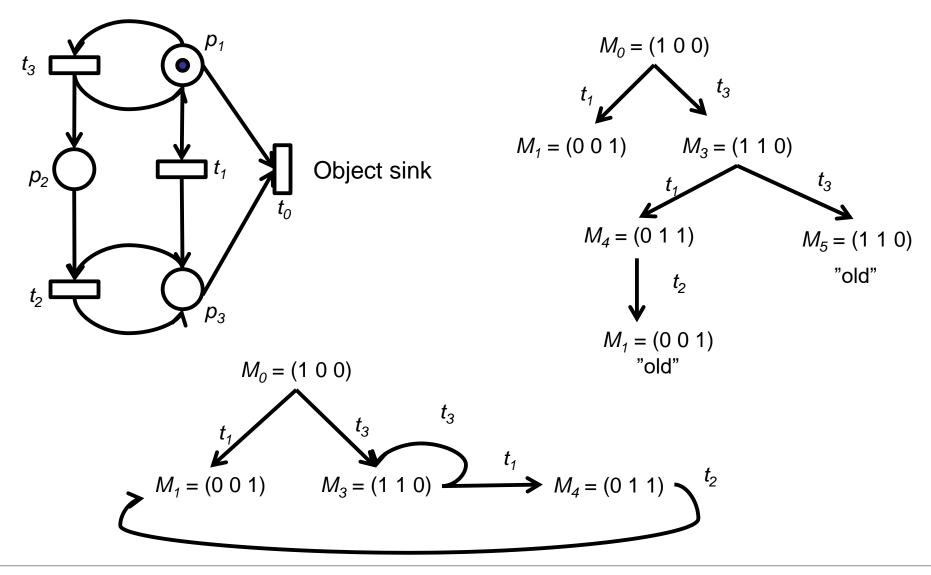
Reachability Tree of the 2 Robots



Folding the Tree to the Reachability Graph (Common Subtree Elimination) $\longrightarrow M0 = (0 \ 1 \ 0 \ 1 \ 0 \ 0)$



Example: The Reachability Tree and Graph



3.2 Boundedness

Boundedness and Safety

A PN (N,M_0) is *k*-bounded or simply bounded if every place is size-restricted by k \square M(p) \leq k for every place p and every marking M in R(M₀).

A PN is *safe* if it is 1-bounded.

Bounded nets can have only finitely many states, since the number of tokens and token combinations is limited

- The reachability graph of bounded nets is finite, it corresponds to a finite automaton (which is much larger)
- The PN is much more compact, it *abbreviates* the automaton

Applications of Boundedness

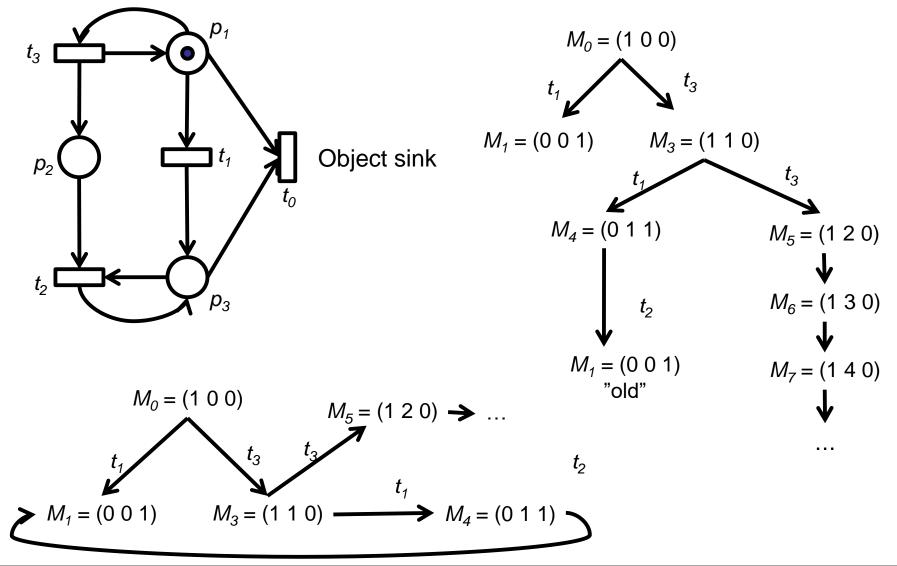
The markings of a state can express the number of available resources

- Operating Systems: number of memory blocks, number of open devices, number of open files, number of processes
- Workflows: number of actors, number of workpieces that flow

Boundedness can be used to prove that a system only consumes k resources

Important for systems with resource constraints

Example: Unbounded net



3.3 Liveness of Nets

Liveness is closely related to the complete absence of deadlocks in operating systems.

A PN (N,M₀) is **live** if, no matter what marking has been reached from M₀,

- all transitions are live
- i.e., it is possible to fire any transition of the net by progressing through some further firing sequence.

Liveness of Transitions

Liveness expresses whether a transition stays active or not

A transition t is called:

Dead (L0-live) if t can never be fired in any firing sequence in $R(M_0)$. (not fireable)

L1-live (potentially fireable) if t can be at least fired once in some firing sequence in $R(M_0)$. (firing at least once from the start configuration)

L2-live (k-fireable) if t can be fired at least k times in some firing sequence in $R(M_0)$, given a positive integer k. (firing k times from the start configuration)

L3-live (inf-fireable) if t appears infinitely often in *some* firing sequence in $R(M_0)$. (firing infinitely often from the start configuration)

L4-live if t is L1-live for every (even unreachable) marking M in $R(M_0)$.

Liveness of Markings and Nets

A marking is *dead* if non of its transitions are enabled.

A marking is *live* if no reachable marking is dead (equivalent: all transitions are live)

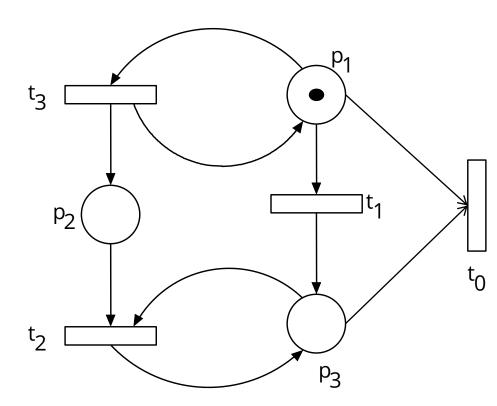
A net is *live* if M_0 is live (every t is always fire-able again from every reachable marking of M_0)

t₁ L1-live (fireable only once, bridge)

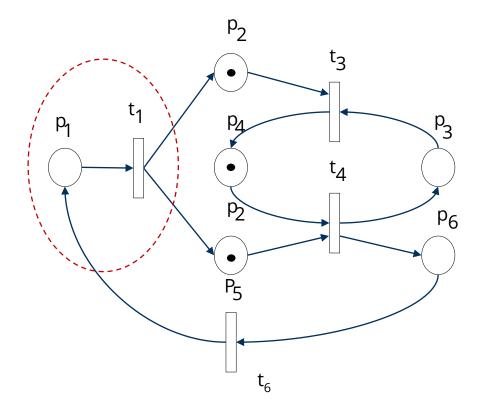
Hence, t_3 is L3-live (on a cycle), but not L4-live, since it cannot be activated anymore once t_1 is crossed

 $t_{0}\ \text{is L0-live}$ (dead, since $t_{1}\ \text{is bridge}$ and either $p_{1}\ \text{or}\ p_{3}\ \text{is filled})$

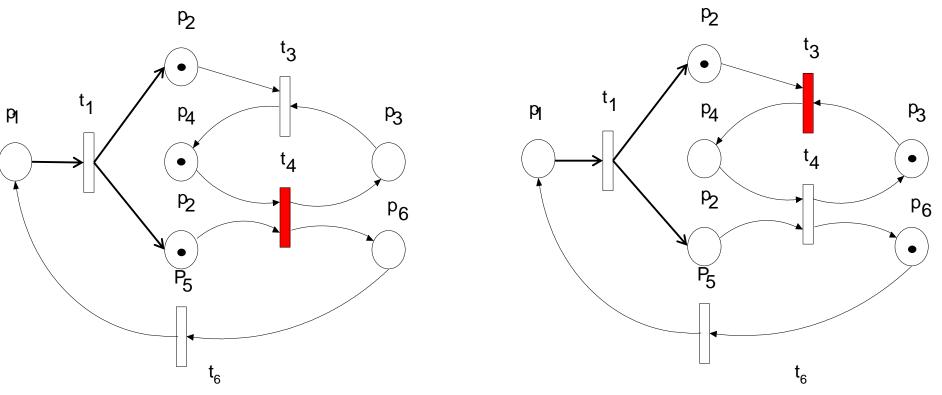
 t_2 L2-live (fireable when t_1 is crossed)



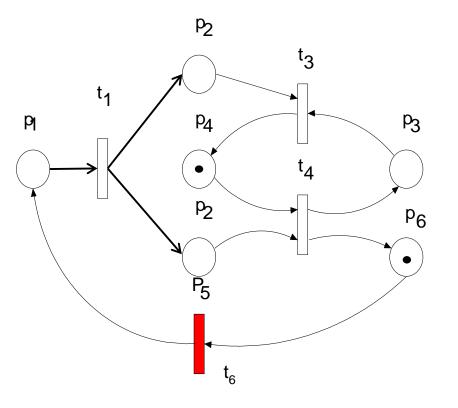
A safe, live PN. M0 can be reproduced again, e.g., $t_1^{}\,t_4^{}\,t_3^{}\,t_6^{}$ reproduces a filled $p_1^{}$ and $p_2^{}$

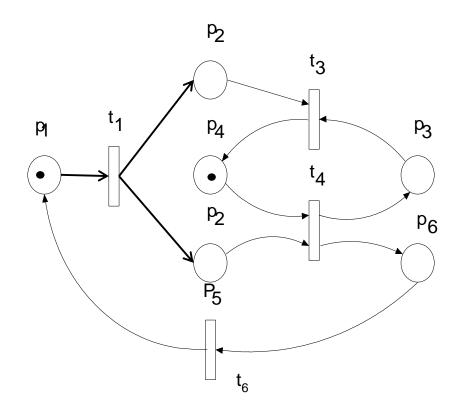


p1, t1 form a fork

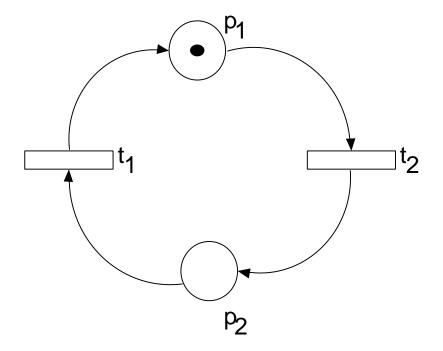


p2 is a synchronization dependency; process p5 can run earlier, p2 has to wait. Note: the content of p2 must be reproduced again Net is unbounded, due to the reproduction facilities of t6





Well, everything: Safe, Live



3.4 Liveness of PN with the Incidence Matrix and T-Invariants

The Relation to Matrices

Bounded Petri nets have a direct mapping to matrices Via matrix algebra, an algorithm can be derived which tests the liveness of a PN That is the basis of the check tools

Incidence Matrix

The *incidence matrix (transition matrix, switching matrix)* represents a PN in matrix form

- Markings are represented as vectors
- Firing sequences are represented as vectors (firing vectors)
- Matrix-vector multiplication shows the influence of the PN on a marking
- Multiplying incidence matrix with a firing vector gives new marking

A PN with n transitions and m places, the incidence matrix $A = [a_{ij}]$ is a $n \ge m$ matrix of integers

- rows: transitions
- columns: places

Weights and the Incidence Matrix

Weights on edges become entries in the matrix as follows

An entry of the incidence matrix shows the effect a_{ij} on a place I by adding the incoming tokens and subtracting the outgoing tokens from transition j:

a_{ij} = w(t_j, s_i) - w(s_i, t_j): w(t_j, s_i), the weight of the arc from transition j to output place i (*incoming* weight to place)

w(s_i, t_j), the weight of the arc from input place i to (outgoing) transition j. (*outgoing weight from place*)

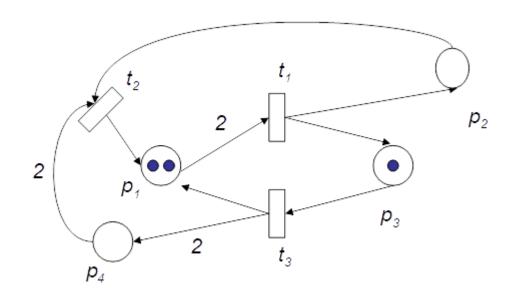
Transition i is enabled at a marking M iff $a_{ij} \leq M(j), j = 1, 2, ..., m$.

After firing, a marking m' = m+(w(t_j , s_i) - w(s_i , t_j)) results.

Example: Computing the Incidence Matrix

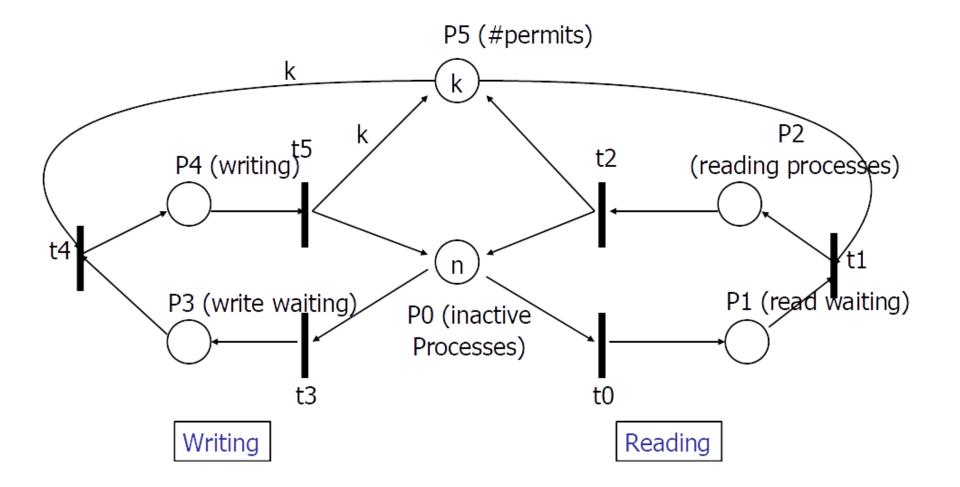
p1 looses 2 to t1; p1 gets 1 from t2; p1 gets 1 from t3 p2 looses 1 to t2; p2 gets 1 from t1

...



	р1	p2	р3	р4
t1	-2	1	1	0
t2	1	-1	0	-2
t3	1	0	-1	2

A System of n Processes Sharing k Resources



Incidence Matrix Transposed

p0 looses 1 to t0; p1 gets one from t0; p1 looses one from t1; p2 gets 1 from t1 ... p5 looses k to t4; p5 gets k from t5

	t0	t1	t2	t3	t4	t5
p0	-1		1	-1		1
p1	1	-1				
p2		1	-1			
р3				1	-1	
p4					1	-1
р5		-1	1		-k	k

Firing Vectors

Marking M_k is written as an m x 1 column vector.

■ The j-th entry of M_k denotes the number of tokens in place j after the k-th firing.

The *firing vector* u_k is a n x 1 column unit vector of n – 1 zeros and one nonzero entry,

- 1 in the i-th position indicates that transition i fires at the k-th firing
- The firing vector characterizes a firing transition

The *recurrence* for incidence matrix A is a matrix equation over firing vectors: $M_k = M_{k-1} + A^T u_k, k = 1, 2$

This equation summarizes all reachable states

State Equation and Firing Count Vectors

Suppose M_d is reachable from M_0 through a firing sequence $\{u_1, u_2, ..., u_d\}$

The state equation to compute M_d from M_0 is: $M_d = M_0 + A^T \sum_{k=1}^d u_k$

Which can be rewritten as $A^T x = \Delta M$

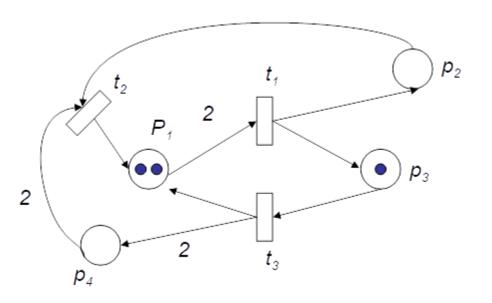
• Where $\Delta M = M_d - M_0$ and

x is an n x 1 column vector (*firing count vector*)

- The i-th entry of x denotes the number of time transition i must fire to transform M_0 to M_d .
- A firing count vector characterizes a firing sequence

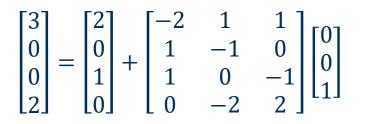
$$x = \sum_{k=1}^{d} u_k$$

Example: Incidence matrix



A PN with initial marking $(2 \ 0 \ 1 \ 0)^{T}$. The state equation is shown, where t_3 fires to result in $M_1 = (3 \ 0 \ 0 \ 2)^{T}$.

 $\mathbf{M}_{\mathbf{k}} = \mathbf{M}_{\mathbf{k}-1} + \mathbf{A}^{\mathsf{T}}\mathbf{u}_{\mathbf{k}}$



Invariants of Transition Matrices

A null evaluation of the transposed incidence matrix, $A^{T}x = 0$, is called a *T-invariant* (transition invariant)

- A T-invariant is a firing count vector (firing sequence) that transforms a marking into itself
- Does not specify the order, but the number of firings for each transition

A null evaluation of the incidence matrix, Ay = 0 is called an *S-invariant (state invariant)*

The invariants are used for studying structural properties.

Structural properties with T-Invariants

An invariant (vector) y is *minimal* if there is no other invariant y1 such that $y1(p) \le y(p)$ for all p.

- An invariant can be written as linear combinations of minimal support invariants
- A *minimal T-invariant* is a minimal firing sequence that transfers a marking into itself

Theorem: An n-vector x > 0 is a T-invariant iff there exists a marking M_0 such that its firing sequence σ leads from M_0 back to M_0

T-Invariants and Liveness

The theorem delivers directly a check procedure to check liveness of a PN

- Switch vector: the sum of all minimal T-invariants.
- Calculate minimal T-invariants as elementary null evaluations
- Check that switch vector does not have null entries
- Build the reachability graph, and test whether the initial marking M₀ is reachable from all reachable configurations.

Repeat: Purpose of Liveness: Protocol Checking for Components

Describe the behavior of two components with two PN

Link their ports

- Check on liveness of the unified PN
- If the unified net is not live, components will not fit to each other...

Check on boundedness:

Estimate consumed resources

The End

Thanks to Björn Svensson who did many of the slides, summarizing [Murata]

