
Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie – Prof. Aßmann - Softwaretechnologie II

13. Validation of Graph-Based Models and
Programs
(Analysis and Consistency of Models)

Lecturer: Dr. Sebastian Götz

Prof. Dr. U. Aßmann

Technische Universität Dresden

Institut für Software- und
Multimediatechnik

Gruppe Softwaretechnologie

http://st.inf.tu-
dresden.de/teaching/swt2

05.12.2018

1. Types of Graphs

2. Analysis of Graphs in
Models

1. Layering

2. Searching

3. Transitive Closure and
Reachability in Models

Softwaretechnologie II

Obligatory Reading

 Balzert Kap. 1 (LE 2), Kap 2 (LE 4)

 Maciaszek Chap 6-8

©
 P

r
o
f.

 U
.

A
ß

m
a
n

n

2

Softwaretechnologie II

Goals

 Understand that software models can become very large

 the need for appropriate techniques to handle large models

 the need for automatic analysis of the models

 Learn how to use graph-based techniques to analyze and check models for
consistency, well-formedness and integrity

• Datalog,

• Graph Query Languages,

• Description Logic,

• Edge Addition Rewrite Systems and

• Graph Transformations

 Understand how to integrate them into tools for software quality assurance

 Understand some basic concepts of simplicity in software models

P
r
o
f.

 U
.

A
ß

m
a
n

n

3

Softwaretechnologie II

Further Reading

 Jazayeri Chap 3

 If you have Balzert, Macasziek or Pfleeger, read the lecture slides carefully and do the exercise sheets

 J. Pan et. al. Ontology Driven Architectures and Potential Uses of the Semantic Web in Systems and
Software Engineering http://www.w3.org/2001/sw/BestPractices/SE/ODA/

 Alexander Christoph. Graph rewrite systems for software design transformations. In M. Aksit, editor,
Proceedings of Net Object Days 2002, Erfurt, Germany, October 2002. Springer LNCS 2591

 D. Calvanese, M. Lenzerini, D. Nardi. Description Logics for Data Modeling. In J. Chomicki, G. Saale.
Logics for Databases and Information Systems. Kluwer, 1998.

 D. Berardi, D. Calvanese, G. de Giacomo. Reasoning on UML class diagrams. Artificial Intelligence
168(2005), pp. 70-118. Elsevier.

 Michael Kifer. Rules and Ontologies in F-Logic. Reasoning Web Summer School 2005. Lecture Notes in
Computer Science, LNCS 3564, Springer. http://dx.doi.org/10.1007/11526988_2

 Mira Balaban, Michael Kifer. An Overview of F-OML: An F-Logic Based Object Modeling Language.
Proceedings of the Workshop on OCL and Textual Modelling (OCL 2010). ECEASST 2010, 36,
http://journal.ub.tu-berlin.de/eceasst/article/view/537/535

 Holger Knublauch, Daniel Oberle, Phil Tetlow, Evan Wallace (ed.). A Semantic Web Primer for Object-
Oriented Software Developers http://www.w3.org/2001/sw/BestPractices/SE/ODSD/

 Lam, M. S., Whaley, J., Livshits, V. B., Martin, M. C., Avots, D., Carbin, M., and Unkel, C. 2005.
Context-sensitive program analysis as database queries. In Proceedings of the Twenty-Fourth ACM
SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems (Baltimore, Maryland, June
13 - 15, 2005). PODS '05. ACM, New York, NY, 1-13. DOI=
http://doi.acm.org/10.1145/1065167.1065169

P
r
o
f.

 U
.

A
ß

m
a
n

n

4

http://www.w3.org/2001/sw/BestPractices/SE/ODA/
http://journal.ub.tu-berlin.de/eceasst/article/view/537/535
http://www.w3.org/2001/sw/BestPractices/SE/ODSD/
http://doi.acm.org/10.1145/1065167.1065169

Softwaretechnologie II

Query Engines on Code and Models Using Logic

 Yi, Kwangkeun, Whaley, John, Avots, Dzintars, Carbin, Michael, Lam,
Monica. Using Datalog with Binary Decision Diagrams for Program Analysis.
In: Programming Languages and Systems. Lecture Notes in Computer
Science 3780, 2005, pp. 97-118 http://dx.doi.org/10.1007/11575467_8

 Thomas, Dave, Hajiyev, Elnar, Verbaere, Mathieu, de Moor, Oege.
codeQuest: Scalable Source Code Queries with Datalog, ECOOP 2006 –
Object-Oriented Programming, Lecture Notes in Computer Science 4067,
2006, Springer, pp. 2 - 27 http://dx.doi.org/10.1007/11785477_2

 Ebert, Jürgen; Riediger, Volker; Schwarz, Hannes; Bildhauer, Daniel
(2008): Using the TGraph Approach for Model Fact Repositories. In:
Proceedings of the International Workshop on Model Reuse Strategies
(MoRSe 2008). S. 9--18.

 Bildhauer, Daniel; Ebert, Jürgen (2008): Querying Software Abstraction
Graphs. In: Working Session on Query Technologies and Applications for
Program Comprehension (QTAPC 2008), collocated with ICPC 2008.

P
r
o
f.

 U
.

A
ß

m
a
n

n

5

http://dx.doi.org/10.1007/11575467_8
http://dx.doi.org/10.1007/11785477_2
http://www.uni-koblenz-landau.de/koblenz/fb4/institute/IST/AGEbert/personen/juergen-ebert
http://www.uni-koblenz.de/~riediger/
http://www.uni-koblenz.de/~hschwarz
http://www.uni-koblenz.de/~dbildh
http://www.uni-koblenz.de/~dbildh
http://www.uni-koblenz-landau.de/koblenz/fb4/institute/IST/AGEbert/personen/juergen-ebert

Softwaretechnologie II

References

 S. Ceri, G. Gottlob, L. Tanca. What You Always Wanted to Know About Datalog (And
Never Dared to Ask). IEEE Transactions on Knowledge And Data Engineering. March
1989, (1) 1, pp. 146-166.

 S. Ceri, G. Gottlob, L. Tanca. Logic Programming and Databases. Springer, 1989.

 Ullman, J. D. Principles of Database and Knowledge Base Systems. Computer Science
Press 1989.

 Benjamin Grosof, Ian Horrocks, Raphael Volz, and Stefan Decker. Description logic
programs: Combining logic programs with description logics. In Proc. of World Wide
Web Conference (WWW) 2003, Budapest, Hungary, 05 2003. ACM Press.

 Uwe Aßmann, Steffen Zschaler, and Gerd Wagner. Ontologies, Meta-Models, and the
Model-Driven Paradigm. Handbook of Ontologies in Software Engineering. Springer,
2006.

 http://www.uni-koblenz-
landau.de/koblenz/fb4/institute/IST/AGEbert/personen/juergen-ebert/juergen-ebert/

P
r
o
f.

 U
.

A
ß

m
a
n

n

6

http://www.uni-koblenz-landau.de/koblenz/fb4/institute/IST/AGEbert/personen/juergen-ebert/juergen-ebert/

Softwaretechnologie II

Querying and Transformings Models with

Graph Rewriting

 Graph rewriting for programs and models:

 U. Aßmann. On Edge Addition Rewrite Systems and Their Relevance to Program
Analysis. In J. Cuny, H. Ehrig, G. Engels, and G. Rozenberg, editors, 5th Int.
Workshop on Graph Grammars and Their Application To Computer Science,
volume 1073 of Lecture Notes in Computer Science, pages 321-335. Springer,
Heidelberg, November 1994.

 Uwe Aßmann. How to uniformly specify program analysis and transformation. In
P. A. Fritzson, editor, Proceedings of the International Conference on Compiler
Construction (CC), volume 1060 of Lecture Notes in Computer Science, pages
121-135. Springer, Heidelberg, 1996.

 U. Aßmann. Graph Rewrite Systems for Program Optimization. ACM Transactions
on Programming Languages and Systems, June 2000.

 U. Aßmann. OPTIMIX, A Tool for Rewriting and Optimizing Programs. Graph
Grammar Handbook, Vol. II, 1999. Chapman&Hall.

 U. Aßmann. Reuse in Semantic Applications. REWERSE Summer School. July
2005. Malta. Reasoning Web, First International Summer School 2005, number
3564 in Lecture Notes in Computer Science. Springer.

 Alexander Christoph. GREAT - a graph rewriting transformation framework for
designs. Electronic Notes in Theoretical Computer Science (ENTCS), 82(4), April
2003.

P
r
o
f.

 U
.

A
ß

m
a
n

n

7

Softwaretechnologie II

Motivation

 Software engineers must be able to

 handle big design specifications (design models) during development

 work with consistent models

 measure models and implementations

 validate models and implementations

 Real models and systems become very complex

 Most models and specifications are graph-based

 We have to deal with basic graph theory to be able to measure well

 Every analysis method is very welcome

 Every structuring method is very welcome

P
r
o
f.

 U
.

A
ß

m
a
n

n

8

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie – Prof. Aßmann - Softwaretechnologie II

13.1 TYPES OF GRAPHS IN
SPECIFICATIONS

Lists, Trees, Dags, Graphs

Structural constrains on graphs

(background information)

Prof. U. Aßmann 9

Softwaretechnologie II

Modeling Graphs on Two Abstraction Levels

 In modeling, we deal mostly with directed graphs (digraphs) representing
unidirectional relations

 lists, trees, dags, overlay graphs, reducible (di-)graphs, graphs

 There are two different abstraction levels; we are interested in the logical
level:

 Logical level (conceptual, abstract, often declarative, problem oriented)

 Methods to specify graph and algorithms on graphs:

 Relational algebra

Datalog, description logic

Graph rewrite systems, graph grammars

 Recursion schemas

 Physical level (implementation level concrete, often imperative, machine
oriented)

 Representations: Data type adjacency list, boolean (bit)matrix,
BDD

 Imperative algorithms

 Pointer based representations and algorithms

P
r
o
f.

 U
.

A
ß

m
a
n

n

10

Softwaretechnologie II

Essential Graph Definitions

 Fan-in

 In-degree of node under a certain relation

 Fan-in(n = 0): n is root node (source)

 Fan-in(n) > 0: n is reachable from other nodes

 Fan-out

 Out-degree of node under a certain relation

 Fan-out(n) = 0: n is leaf node (sink)

 An inner node is neither a root nor a leaf

 Path

 A path p = (n1, n2,…,nk) is a sequence of nodes of length k

P
r
o
f.

 U
.

A
ß

m
a
n

n

11

Softwaretechnologie II

Lists

 One source (root)

 One sink

 Every other node has fan-in 1, fan-out 1

 Represents a total order (sequentialization)

 Gives

 Prioritization

 Execution order

P
r
o
f.

 U
.

A
ß

m
a
n

n

12

root

sink

Softwaretechnologie II

Trees

 One source (root)

 Many sinks (leaves)

 Every node has fan-in <= 1

 Hierarchical abstraction:

 A node represents or abstracts
all nodes of a sub tree

 Example

 SA function trees

 Organization trees (line organization)

P
r
o
f.

 U
.

A
ß

m
a
n

n

13

.......

.......

.......

root

sinks

Softwaretechnologie II

Directed Acyclic Graphs

 Many sources

 A jungle (term graph) is a dag with
one root

 Many sinks

 Fan-in, fan-out arbitrary

 Represents a partial order

 Less constraints that in a total order

 Weaker hierarchical abstraction
feature

 Can be layered

 Example

 UML inheritance dags

 Inheritance lattices

P
r
o
f.

 U
.

A
ß

m
a
n

n

14

.......

.......

.......

roots

sinks

Softwaretechnologie II

Link Trees
(Skeleton Trees with Overlay or Secondary Graphs)

 A Link Tree is a skeleton tree with overlay graph
(secondary links)

 Skeleton tree is primary

 Overlay graph is secondary: “less important”

 Advantage of an Overlay Graph

 Tree can be used as a conceptual hierarchy

 References to other parts are possible

 Example

 Link trees: Trees with links (references)

 XML, e.g., XHTML. Structure is described
by Xschema/DTD, links form the
secondary relations

 AST with name relationships after
name analysis (name-resolved trees,
abstract syntax graphs)

P
r
o
f.

 U
.

A
ß

m
a
n

n

15

.......

.......

.......

roots

sinks

Softwaretechnologie II

Reducible Graphs (Graphs with Skeleton Trees)

 A reducible graph is a graph with cycles, however, only
between siblings

 No cycles between hierarchy levels

 Graph can be “reduced” to one node

 Advantage

 Tree can be used as a conceptual hierarchy

 Example

 UML statecharts

 UML and SysML component diagrams

 Control-flow graphs of Modula, Ada, Java
(not C, C++)

 SA data flow diagrams

 Refined Petri Nets

P
r
o
f.

 U
.

A
ß

m
a
n

n

16

.......

.......

.......

roots

sinks

Softwaretechnologie II

Reduction of a Reducible Graph
P

r
o
f.

 U
.

A
ß

m
a
n

n

17

B1

B2

B3

B4

B1a

B3a

B1a

B3a

B1b

Softwaretechnologie II

Layerable Graphs with Skeleton Dags

 Like reducible graphs, however, sharing between different parts of the
skeleton trees

 Graph cannot be “reduced” to one node

 Advantage

 Skeleton can be used to layer the graph

 Cycles only within one layer

 Example

 Layered system architectures

P
r
o
f.

 U
.

A
ß

m
a
n

n

18

.......

.......

.......

Softwaretechnologie II

Wild Unstructured (Directed) Graphs

 Wild, unstructured graphs are the
worst structure we can get

 Wild, unstructured, irreducible cycles

 Unlayerable, no abstraction possible

 No overview possible

 Many roots

 A digraph with one source is called flow graph

 Many sinks

 Example

 Many diagrammatic methods in
Software Engineering

 UML class diagrams

P
r
o
f.

 U
.

A
ß

m
a
n

n

19

.......

.......

.......

Softwaretechnologie II

Strength of Assertions in Graph-Based Models
P

r
o
f.

 U
.

A
ß

m
a
n

n

20

List: strong assertion: total order

Graph: the worst case

Dag: still layering possible

Tree: still abstraction possible

Sequential

Partial order

Layered

Hierarchies

Unstructured

Ease of

Understanding

Softwaretechnologie II

Strength of Assertions in Graph-Based Models

 Saying that a relation is

 A list: very strong assertion, total order!

 A tree: still a strong assertion: hierarchies possible, easy to think

 A dag: still layering possible, still a partial order

 A layerable graph: still layering possible, but no partial order

 A reducible graph: graph with a skeleton tree

 A graph: hopefully, some structuring or analysis is possible. Otherwise, it’s the
worst case

 And those propositions hold for every kind of diagram in Software
Engineering!

 Try to model reducible graphs, dags, trees, or lists in your specifications,
models, and designs

 Systems will be easier, more efficient

P
r
o
f.

 U
.

A
ß

m
a
n

n

21

Softwaretechnologie II

Structuring Improves Worst Case
P

r
o
f.

 U
.

A
ß

m
a
n

n

22

List: strong assertion: total order

Graph: the worst case

Dag: still layering possible

Tree: still abstraction possible

Sequential

Partial order

Layered

Hierarchies

Unstructured

Structured
Structured graph (reducible,

skeleton dag)

Ease of

Understanding

UnstructuredGraph with analyzed features

Link Tree: primary tree
Partial order

Layered

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie – Prof. Aßmann - Softwaretechnologie II

13.2 METHODS AND TOOLS FOR
ANALYSIS OF GRAPH-BASED
MODELS

Prof. U. Aßmann 23

Softwaretechnologie II

The Graph-Logic Isomorphism

 In the following, we will make use of the graph-logic isomorphism:

 Graphs can be used to represent logic

 Nodes correspond to constants

 (Directed) edges correspond to binary predicates oder nodes (triple statements)

 Hyperedges (n-edges) correspond to n-ary predicates

 Consequence:

 Graph algorithms can be used to test logic queries on graph-based specifications

 Graph rewrite systems can be used for deduction

P
r
o
f.

 U
.

A
ß

m
a
n

n

24

Victoria

Silvia

Carl Gustav

married

father

mother

// fact base
married(CarlGustav,Silvia).

married(Silvia, CarlGustav).

father(CarlGustav,Victoria).

mother(Silvia,Victoria).

// Normalized English
CarlGustav is married to Silvia.

Silvia is married to CarlGustav.

CarlGustav is father to Victoria.

Silvia is mother to Victoria.

Softwaretechnologie II

Graphs and Fact Data Bases

 Graphs can also be noted textually

 Graphs consist of nodes, relations

 Relations link nodes

P
r
o
f.

 U
.

A
ß

m
a
n

n

25

 Fact data bases consist of
constants (data) and predicates

 Nodes of graphs can be regarded
as constants, edges as predicates
between constants (facts):

GustavAdolf

Adam

Sibylla

isParentOf

isParentOf

// Facts

isParentOf(Adam,GustavAdolf).

isParentOf(Adam,Sibylla).

// OWL Triples

Adam isParentOf GustavAdolf.

Adam isParentOf Sibylla.

Softwaretechnologie II

Queries on Graph-Based Models Make Implicit
Knowledge Explicit

 Since graph-based models are a mess, we try to analyze them

 Knowledge is either

 Explicit, I.e., represented in the model as edges and nodes

 Implicit, I.e., hidden, not directly represented, and must be analyzed

 Query and analysis problems try to make implicit knowledge explicit

 E.g. Does the graph have one root? How many leaves do we have? Is this
subgraph a tree? Can I reach that node from this node?

 Determining features of nodes and edges

 Finding certain nodes, or patterns

 Determining global features of the model

 Finding paths between two nodes (e.g., connected, reachable)

 Finding paths that satisfy additional constraints

 Finding subgraphs that satisfy additional constraints

P
r
o
f.

 U
.

A
ß

m
a
n

n

26

Softwaretechnologie II

Queries for Checking Consistency (Model Validation)

 Queries can be used to find out whether a graph is consistent (i.e., valid,
well-formed)

 Due to the graph-logic isomorphism, constraint specifications can be phrased in
logic and applied to graphs

 Business people call these constraint specifications business rules

 Example:

 if a person hasn't died yet, its town should not list her in the list of dead people

 if a car is exported to England, steering wheel and pedals should be on the right
side; otherwise on the left

P
r
o
f.

 U
.

A
ß

m
a
n

n

27

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie – Prof. Aßmann - Softwaretechnologie II

13.2.1 LAYERING GRAPHS: HOW TO
ANALYZE A SYSTEM FOR LAYERS

With the Same Generation Problem

How to query a dag and search in a dag

How to layer a dag – a simple structuring problem

Prof. U. Aßmann 28

Softwaretechnologie II

Layering of Systems

 To be comprehensible, a system should be structured in layers

 Several relations in a system can be used to structure it, e.g., the

 Call graph: layered call graph

 Layered definition-use graph

P
r
o
f.

 U
.

A
ß

m
a
n

n

29

 A layered architecture is the
dominating style for large systems (-
> ST-1)

 Outer, upper layers use inner, lower

layers (layered USES relationship)

 Legacy systems can be analyzed for

layering, and if they do not have a

layered architecture, their structure

can be improved towards this

principle

Softwaretechnologie II

Layering of Acyclic Graphs

 Given any acyclic relation, it can be made layered

 SameGeneration analysis layers in trees or dags

 Example: layering a family tree:

 Who is whose contemporary?

 Who is ancestor of whom?

P
r
o
f.

 U
.

A
ß

m
a
n

n

30

Victoria
Madeleine

Ralf

Silvia

Sibylla

GustavAdolf

Walter

Alice

Desiree

Adam

Carl Gustav

Softwaretechnologie II

Pattern and Rules

 Parenthood can be described by a graph pattern

 We can write the graph pattern also in logic:

isParentOf(Parent,Child1) && isParentOf(Parent,Child2)

 And define the rule
if isParentOf(Parent,Child1) && isParentOf(Parent,Child2)

then sameGeneration(Child1,Child2)

P
r
o
f.

 U
.

A
ß

m
a
n

n

31

Parent

Child 1

Child 2

Parent

Child 1

Child 2

isParentOf

isParentOf

isParentOf

isParentOf

<<create>>

sameGeneration

Softwaretechnologie II

Impact of Rule on Family Graph
P

r
o
f.

 U
.

A
ß

m
a
n

n

32

CarlGustav

VictoriaMadeleine

Ralf

Silvia

Sibylla

GustavAdolf

Walter

Alice

Desiree

Adam

CarlGustav

VictoriaMadeleine

Ralf

Silvia

Sibylla

GustavAdolf

Walter

Alice

Desiree

Adam

Softwaretechnologie II

Rule set “Same Generation“

 Base rule: Beyond sisters and brothers we can link all people of same
generation

 Additional rule (transitive): Enters new levels into the graph

P
r
o
f.

 U
.

A
ß

m
a
n

n

33

Parent

Child 1

Child 2

Parent

Child 1

Child 2

Parent 1 Child 1

Parent 2 Child 2

Parent 1 Child 1

Parent 2 Child 2

Softwaretechnologie II

Impact of Transitive Rule
P

r
o
f.

 U
.

A
ß

m
a
n

n

34

Carl

Gustav

VictoriaMadeleine

Ralf

Silvia

Sibylla

GustavAdolf

Walter

Alice

Desiree

Adam

Softwaretechnologie II

The Generations as Layers
P

r
o
f.

 U
.

A
ß

m
a
n

n

35

Adam

Gustav
Adolf

Sybille

Walter

Alice

Carl
Gustav

Madeleine

Silvia

Desiree

Ralf

Victoria

Softwaretechnologie II

”Same Generation” Introduces Layers

 Computes all nodes that belong to one layer of a dag

 If backedges are neglected, also for an arbitrary graph

 Algorithm:

 Compute Same Generation

 Go through all layers and number them

 Applications:

 Compute layers in a call graph

 Find out the call depth of a procedure from the main procedure

 Restructuring of legacy software (refactoring)

 Compute layers of systems by analyzing the USES relationships (ST-I)

 Insert facade classes for each layer (Facade design pattern)

 Every call into the layer must go through the facade

 As a result, the application is much more structured

P
r
o
f.

 U
.

A
ß

m
a
n

n

36

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie – Prof. Aßmann - Softwaretechnologie II

13.2.2 SEARCHING GRAPHS – SEARCHING
IN SPECIFICATIONS WITH DATALOG AND
EARS

Prof. U. Aßmann 37

Softwaretechnologie II

SameGeneration as a Graph Rewrite System

 The rule system SameGeneration only adds edges.
 An edge addition rewrite system (EARS) adds edges to graphs

 It enlarges the graph, but the new edges can be marked such that they
are not put permanently into the graph

 EARS are declarative

 No specification of control flow and an abstract representation

 Confluence: The result is independent of the order in which rules
are applied

Recursion: The system is recursive, since relation sameGeneration
is used and defined

 Termination: terminates, if all possible edges are added, latest,
when graph is complete

 EARS compute with graph query and graph analysis

 Reachability of nodes

 Paths in graphs

 SameGeneration can be used for graph analysis

P
r
o
f.

 U
.

A
ß

m
a
n

n

38

Softwaretechnologie II

Rule Systems in EARS and Datalog

 Rule systems can be noted textually
or graphically (DATALOG or EARS)

 Datalog contains

• textual if-then rules, which test predicates about the constants

• rules contain variables

P
r
o
f.

 U
.

A
ß

m
a
n

n

39

Child1

Parent

Child2

Child1

Parent

Child2

// conclusion

sameGeneration(Child1,

Child2)

:- // say: "if"

// premise

isParentOf(Parent,Child1),

isParentOf(Parent,Child2).

// premise

if isParentOf(Parent,Child1)

&&

isParentOf(Parent,Child2)

then

// conclusion

sameGeneration(Child1,Child2

)

Softwaretechnologie II

Same Generation Datalog Program
P

r
o
f.

 U
.

A
ß

m
a
n

n

40

isParentOf(Adam,GustavAdolf).

isParentOf(Adam,Sibylla).

.....

if isParentOf(Parent,Child1),
isParentOf(Parent,Child2)
then sameGeneration(Child1, Child2).

if sameGeneration(Parent1,Parent2),

isParentOf(Parent1,Child1),
isParentOf(Parent2,Child2)

then

sameGeneration(Child1, Child2).

Softwaretechnologie II

Searching and Solving Path Problems is Easy With
Datalog

 Single Source Multiple Target Path Problem – SMPP

 Multiple Source Single Target Path Problem – MSPP

 Multiple Source Multiple Target Path Problem – MMPP

P
r
o
f.

 U
.

A
ß

m
a
n

n

41

SMPP problem (searching for Single source a set of Multiple targets)

descendant(Adam,X)?

X={ Silvia, Carl-Gustav, Victoria,}

MSPP problem (multiple source, single target)

descendant(X,Silvia)?

X={Walter, Adam, Alice}

MMPP problem (multiple source, multiple target)

ancestor(X,Y)?

{X=Walter, Y={Adam}

X=Victoria, Y={CarlGustav, Silvia, Sibylla, ...}

Y = Adam, Walter, ...

Victoria, Madeleine, CarlPhilipp not in the set

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie – Prof. Aßmann - Softwaretechnologie II

13.3 REACHABILITY QUERIES WITH
TRANSITIVE CLOSURE IN DATALOG
AND EARS

 The Swiss-Knife of Graph Analysis

Prof. U. Aßmann 42

Softwaretechnologie II

Who is Descendant of Whom?

 Sometimes we need to know transitive edges, i.e., edges after edges of the
same color

 Question: what is reachable from a node?

 Which descendants has Adam?

 Answer: Transitive closure calculates reachability over nodes

 It contracts a graph, inserting masses of edges to all reachable nodes

 It contracts all paths to single edges

 It makes reachability information explicit

 After transitive closure, it can easily be decided whether a node is
reachable or not

 Basic premise: base relation is not changed (offline problem)

P
r
o
f.

 U
.

A
ß

m
a
n

n

43

Softwaretechnologie II

Transitive Closure as Datalog Rule System or EARS

 Basic rule descendant(V,N) :- isChildOf(V,N).

 Transitive rule (recursion rule)

 left recursive: descendant(V,N) :- descendant(V,X),isChildOf(X,N).

 right recursive: descendant(V,N) :- isChildOf(V,X),

descendant(X,N).

P
r
o
f.

 U
.

A
ß

m
a
n

n

44

Parent

Child

Parent

Child

Parent

Child

GrandCh Parent

Child

GrandCh

Softwaretechnologie II

Impact of Basic Rule
P

r
o
f.

 U
.

A
ß

m
a
n

n

45

CarlGustav

VictoriaMadeleine

Ralf

Silvia

Sibylla

GustavAdolf

Walter

Alice

Desiree

Adam

CarlGustav

VictoriaMadeleine

Ralf

Silvia

Sibylla

GustavAdolf

Walter

Alice

Desiree

Adam

Softwaretechnologie II

Impact of Recursion Rule
P

r
o
f.

 U
.

A
ß

m
a
n

n

46

CarlGustav

VictoriaMadeleine

Ralf

Silvia

Sibylla

GustavAdolf

Walter

Alice

Desiree

Adam

Impact only shown for Adam,

but is applied to other nodes too

Softwaretechnologie II

[S|M][S|M]PP Path Problems are
Special Cases of Transitive Closure

 Single Source Single Target Path Problem, SSPP:

 Test, whether there is a path from a source to a target

 Single Source Multiple Target SMPP:

 Test, whether there is a path from a source to several targets

 Or: find n targets, reachable from one source

 Multiple Source Single Target MSPP:

 Test, whether a path from n sources to one target

 Multiple Source Multiple Target MMPP:

 Test, whether a path of n sources to n targets exists

 All can be computed with transitive closure:

 Compute transitive closure

 Test sources and targets on direct neighborship

P
r
o
f.

 U
.

A
ß

m
a
n

n

47

Softwaretechnologie II

Exercise: Railway Routes as Reachability Queries

 The info system of DB is based on a graph of German railway stations. If
you query www.bahn.de, you end up in a Datalog query engine.

 Base (Facts):
 directlyLinked(Berlin, Potsdam).

 directlyLinked(Potsdam,

Braunschweig).

 directlyLinked(Braunschweig,

Hannover).

 Define the predicates
 linked(A,B)

 alsoLinked(A,B)

 unreachable(A,B)

 Answer the queries
 linked(Berlin,X)

 unreachable(Berlin, Hannover)

P
r
o
f.

 U
.

A
ß

m
a
n

n

48

http://www.bahn.de

Softwaretechnologie II

Application: Inheritance Analysis as Reachability Queries

 Base (Facts):
 class(Person). class(Human). class(Man). class(Woman).

 extends(Person, Human).

 extends(Man,Person).

 extends(Woman,Person).

 Define the predicates
 superScope(A,B) :- class(A), class(B), isA(A,B).

 transitiveSuperScope(A,B) :- superScope(A,C),

transitiveSuperScope(C,B).

 Answer the queries
 ? transitiveSuperScope(Man,X)

 >> {X=Person,X=Human}

 ? transitiveSuperScope(Woman,Y)

 >> {Y=Person,Y=Human}

P
r
o
f.

 U
.

A
ß

m
a
n

n

49

Softwaretechnologie II

What Have We Learned

 Graphs and Logic are isomorphic to each other

 Using logic or graph rewrite systems, models can be validated

 Analyzed

 Queried

 Checked for consistency

 Structured

 Applications are many-fold, using all kinds of system relationships

 Consistency of UML class models (domain, requirement, design models)

 Structuring (layering) of USES relationships

 Logic and graph rewriting technology involves reachability questions

P
r
o
f.

 U
.

A
ß

m
a
n

n

50

Logic and edge addition rewrite systems are the Swiss army
knifes of the validating modeler

Softwaretechnologie II

The End

 Why are EARS and binary Datalog equivalent?

 Explain the graph-logic isomorphism

 Why does the „SameGeneration“ Program compute layers?

 Describe how you dump a UML class diagram into a logic fact base

 What can be done if a model becomes too large?

©
 P

r
o
f.

 U
.

A
ß

m
a
n

n

51

