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Design Patterns and Frameworks

Goals and Contents of the Course
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Main Goals

► Know several different kinds of patterns
■ Basic kinds of incentives for design patterns

► Explain patterns for variability and extensibility of systems
► Understand frameworks and product lines better
► Explain systematic structures for systems with >100KLOC

■ Layered frameworks
■ Facets

► Understand a different way of object-oriented design
■ Role-based design
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Standard Problems to Be Solved By 
Design Patterns
► Variability

■ Exchanging parts easily
■ Variation, complex parametrization
■ Static and dynamic
■ For product lines, framework-based development

► Extensibility
■ Software must change

► Gluing (bridging, adapting, connecting)
■ Overcoming architectural mismatches 
■ Coupling software that was not built for each other

► Others:
■ Optimization: making things more efficient

. Antagonistic to flexibility

■ Structuring of interactive applications
. Grasping common patterns of flow in software systems
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Goal: Variability Patterns

► Variability (Variation, Exchange, Parametrization)
■ Expressing commonality and variability
■ We fix a common part (a framework) and parametrize 

it at variation points (variability)
■ Framework instantiation patterns describe variations of frameworks

► Understanding Templates and Hooks
■ Template Method vs Template Class
■ Dimensional Class Hierarchy, Bridge

► Understanding creational patterns
■ Factory Method, Factory Class, Builder

► Variability design patterns for frameworks
► Variability concerns

■ Exchange of communication
■ Dynamic call (e.g., ChainOfResponsibility)

■ Exchange of policy
■ Exchange of material in data-based applications
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Goal: Extensibility Patterns

► Extensibility
■ For new, unforeseen product variants 
■ For evolution
■ For dynamic change

► Understanding extensibility patterns
■ ObjectRecursion vs TemplateMethod, Objectifier (and Strategy)
■ Decorator vs Proxy vs Composite vs ChainOfResponsibility
■ Visitor, Observer (EventBridge)

► Parallel class hierarchies as implementation of facets
■ Understand facets as non-partitioned subset hierarchies
■ Layered frameworks as a means to structure large systems, based on 

facets

► Template/Hook Extension:
■ Code skeletons are extended  at hooks
■ Frameworks can have hooks that can be extended (beyond variation)

► Framework extension patterns
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Goal: Gluing Patterns for Overcoming 
Architectural Mismatches
► Glue patterns

■ Understand architectural mismatch
■ Understand patterns that bridge architectural mismatch

► Adaptation, bridging, connections
■ Of communication protocols 
■ Between heterogeneous components (different representations, different 

locations, different control flow structure)

► Anonymous communication
■ For exchange of commmunicators

► Scalable communication
■ At runtime, in distributed systems
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Goal: A Basic Tool: Role Modeling

► For all of that, a basic tool set is role modeling
■ Which roles does an object play in the application?

► It tells how design patterns occur in applications
■ Reenskaug. Summarized in the book “Working with Objects”, 1995

► Role-model based design
■ Why design patterns are role models of class diagrams
■ Understand the difference between roles and objects, role types and 

classes
■ Understand role mapping to classes

■ How roles can be implemented
■ Understand role model composition
■ Understand composite design patterns as composition of role models
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Goal: Framework Patterns

► Understand variabilities in frameworks
■ Introducing different types of hooks for frameworks and components 

(TH patterns)
■ Understanding framework variability patterns 

► Studying extensible framework hook patterns
■ Role Object pattern
■ Layered frameworks, implemented by Role Object 

► Patterns document frameworks
■ Patterns play an important role on how a framework is instantiated
■ Whitebox, blackbox, layered, T&H framework 



P
ro

f.
 U

w
e 

A
ß

m
an

n,
 D

r.
 S

. G
öt

z,
 D

es
ig

n
 P

a
tte

r n
s 

an
d  

F
ra

m
ew

or
ks

10

Goal: Structuring Interactive 
Applications with Tools&Materials
► Understand the central metaphors of the Tools-and-Materials 

architectural style for the construction of interactive applications
■ Know an example of a pattern language

► Interactive applications can be pretty complex
► TAM (tools-and-materials, Werkzeug-Automat-Material, WAM) is a 

pattern language for interactive applications
► Nice metaphors that help thinking, constructing, maintaining 

interactive applications
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Overview of the Course

Intro

Variability Patterns Extensibility Patterns Glue Patterns

Metapatterns
and Framework patterns

Role Models Composite Patterns

Layered FrameworksTools & Materials

Employment and Usage

Part 2: Roles 

Part 1: Basic Patterns 

Part 3: Frameworks 
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Design Patterns and Frameworks

Introduction
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History

► Beginning of the 70s: the window and desktop 
metaphors (conceptual patterns) 

■ Smalltalk group in Xerox Parc, Palo Alto

► 1978/79: MVC pattern for Smalltalk GUI. 
Goldberg and Reenskaug at Xerox Parc

■ During porting Smalltalk-78 for Norway in 
the Eureka Software Factory project 
[Reenskaug]

► 1979: Alexander's “The Timeless Way of 
Building”

■ Introduces the notion of a pattern and a 
pattern language

► 1987: W. Cunningham, K. Beck: OOPSLA 
paper “Using Pattern Languages for Object-
Oriented Programs”

■ Discovered Alexander's work for software 
engineers by applying 5 patterns in 
Smalltalk

► 1991: Erich Gamma. Design Patterns. PhD 
Thesis 

■ Working with ET++, one of the first 
window frameworks of C++

■ At the same time, Vlissides works on 
InterViews (part of Athena)

■ Pattern workshop at OOPSLA 91, 
organized by B. Anderson

► 1993: E. Gamma, R.  Helm, R. Johnson, J. 
Vlissides. Design Patterns: Abstraction and 
Reuse of Object-Oriented Design. ECOOP 
97, LNCS 707, Springer, 1993.

► 1994: First PLOP conference (Pattern 
Languages Of  Programming)

► 1995: GOF book.

► 1997: Riehle on role models and design 
patterns

► 2005: Collaborations (class-role models) in 
UML
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Alexander’s Laws on Beauty

► Christopher Alexander. “The timeless way of building” . Oxford Press 
1977.

■ Hunting for the “Quality without a name”: 
■ When are things "beautiful"?
■ When do things “live”?

► Patterns grasp centers of beauty
► You have a language for beauty, consisting of patterns (a pattern 

language)
■ Dependent on culture

► Beauty cannot be invented 
■ but must be combined/generated by patterns from a pattern language

► The “quality without a name” can be reached by pattern composition 
in pattern languages



P
ro

f.
 U

w
e 

A
ß

m
an

n,
 D

r.
 S

. G
öt

z,
 D

es
ig

n
 P

a
tte

r n
s 

an
d  

F
ra

m
ew

or
ks

15

The Most Popular Definition

► A Design Pattern is 
■ A description of a standard solution for 
■ A standard design problem 
■ In a certain context

► Goal: Reuse of design information
■ A pattern must not be “new”!

■ A pattern writer must have an “aggressive disregard for originality”

► In this sense, patterns are well-known in every engineering discipline
■ Mechanical engineering
■ Electrical engineering
■ Architecture 
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Example: Model/View/Controller  (MVC)

► MVC is a agglomeration of classes to control a user interface and a 
data structure 

■ Developed by Goldberg/Reenskaug 1978, for Smalltalk

► MVC is a complex design pattern and combines the simpler ones 
composite, strategy, observer.

► Ingredients:
■ Model: Data structure or object, invisible
■ View: Representation(s) on the screen
■ Controller:  Encapsulates reactions on inputs of  users, couples 

model and views
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Views as Observer

a=50%
b=30%
c=20%

Window
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WindowWindow

 a  b  c
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Views
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Patterns

► Pattern 1: Observer: Grasps relation between model and views
■ Views may register at the model (observers). 
■ They are notified if the model changes. Then, every view updates itself by accessing the 

data of the model.
. Views are independent of each other. The model does not know how views visualize it.

■ Observer decouples strongly.

► Pattern 2: Composite: Views may be nested (represents trees)
■ For a client class, Composite unifies the access to root, inner nodes, and leaves
■ The MVC pattern additionally requires that

. There is an abstract superclass View

. The class CompositeView is a subclass of View

. And can be used in the same way as View

► Pattern 3: Strategy: The relation between controller and view is a Strategy.
■ There may be different control strategies, lazy or eager update of views (triggering output), 

menu or keyboard input (taking input)
■ A view may select subclasses of Controller, even dynamically. Strategy allows for this 

dynamic exchange (variability)
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What Does a Design Pattern Contain?

► A part with a “bad smell”
■ A structure with a bad smell
■ A query that proved a bad smell
■ A graph parse that recognized a bad smell

► A part with a “good smell” (standard solution)
■ A structure with a good smell
■ A query that proves a good smell
■ A graph parse that proves a good smell

► A part with “forces”
■ The context, rationale, and pragmatics
■ The needs and constraints

“bad smell” “good smell”

forces
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Structure for Design Pattern 
Description (GOF Form)

► Name (incl. Synonyms) (also known as)
► Motivation (purpose)

■ also “bad smells” to be avoided

► Employment
► Solution (the “good smell”)

■ Structure (Classes, abstract classes, relations): UML class or object 
diagram 

■ Participants: textual details of classes
■ Interactions: interaction diagrams (MSC, statecharts, collaboration 

diagrams)
■ Consequences: advantages and disadvantages (pragmatics)
■ Implementation: variants of the design pattern
■ Code examples

► Known Uses
► Related Patterns
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Purposes of Design Patterns

► Improve communication in teams
■ Between clients and programmers
■ Between designers, implementers and testers
■ For designers, to understand good design concepts

► Design patterns create an “ontology of software design”
■ Improvement of the state of the art of software engineering
■ Fix a glossary for software engineering
■ A “software engineer” without the knowledge of patterns is a programmer
■ Prevent re-invention of well-known solutions

► Design patterns document abstract design concepts 
■ Patterns are “mini-frameworks”
■ Documentation, In particular frameworks are documented by design 

patterns
■ May be used to capture information in reverse engineering
■ Improve code structure and hence, code quality
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1.2 Different Kinds of Patterns



P
ro

f.
 U

w
e 

A
ß

m
an

n,
 D

r.
 S

. G
öt

z,
 D

es
ig

n
 P

a
tte

r n
s 

an
d  

F
ra

m
ew

or
ks

23

What is a Pattern?

► There is not “the pattern”
► At least, research is done in the following areas:

■ Conceptual patterns
■ Design Patterns

. Different forms

■ Antipatterns
■ Implementation patterns (programming patterns, idioms, workarounds)
■ Enterprise patterns
■ Process patterns

. Reengineering patterns

■ Organizational patterns

► General definition:
■ A pattern is the abstraction from a concrete form which keeps recurring in 

specific non-arbitrary contexts [Riehle/Zülinghoven, Understanding and 
Using Patterns in Software Development]
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Conceptual Patterns

► A conceptual pattern is a pattern whose form is described by means 
of the terms and concepts from an application domain

■ Based on metaphors in the application domain

► Example:  conceptual pattern “desktop”
■ Invented in Xerox Parc from A. Kay and others 

. Folders, icons, TrashCan 

. Drag&Drop as move actions on the screen

■ Basic pattern for all windowing systems
■ Also for many CASE tools for visual programming
■ Question: what is here the “abstraction from the concrete form”?

► We will revisit in the Tools-And-Materials (TAM) pattern language
■ It works on conceptual patterns such as “Tool”, “Material”, “Automaton”
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Design Patterns

► “A design pattern superimposes a simple structure of a relation in the 
static or dynamic semantics of a system”

■ Relations, interactions, collaborations
■ Nodes: objects, classes, packages

► “A design pattern is a named nugget of insight which conveys the 
essence of a proven solution to a recurring problem within a certain 
context amidst competing concerns” [Appleton]
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Different Types of Design Patterns

► Fundamental Design Pattern (FDP) 
■ A pattern that cannot be expressed as language construct

► Programming Pattern, Language Dependent Design Pattern (LDDP) 
■ A pattern that exists as language construct in another programming 

language, but is not available in general
► Architectural pattern

■ A design pattern that describes the coarse-grain structure of a (sub)system
■ A design pattern on a larger scale, for coarse-grain structure (macro 

structure)
► Framework Instantiation Patterns

■ Some design patterns couple framework variation points and application code 
(framework instantiation patterns)

► Design patterns are “mini-frameworks” themselves
■ Since they contain common structure for many applications
■ Design patterns are used in frameworks (that's how they originated)
■ Hence, this course must also say many things about frameworks
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Programming Pattern (Idiom, LDDP) 

► An idiom is a pattern whose form is described by means of 
programming language constructs.

► Example: The C idiom of check-and-returns for contract checking
■ The first book on idioms was Coplien's Advanced C++ Programming 

Styles and Idioms (1992), Addison-Wesley

public void processIt (Document doc) {
  // check all contracts of processIt
  if (doc == null) return;
  if (doc.notReady()) return;
  if (internalDoc == doc) return;
  
  // now the document seems ok
  internalProcessIt(doc);
}

private void internalProcessIt (Document doc) {
  // no contract checking anymore
  
  // process the document immediately
  walk(doc);
  print(doc);
}
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Workaround

► A workaround is an idiom that works around a language construct that 
is not available in a language

► Example: Simulating polymorphism by if-cascades

public void processIt (Document doc) {
  // Analyze type of document
  if (doc->type == Text)  

processText((Text)doc);
  else i f (doc->type == Figure) 
 processFigure((Figure)doc);
  else 
       printf(“unknown subtype of document”); 
}

void processText(Text t) {..}
void process Figure(Figure f) {..}
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Antipatterns (Defect Patterns)

► Software can contain bad structure
■ No modular structure, only procedure calls
■ If-cascades instead of polymorphism
■ Casts everywhere
■ Spaghetti code (no reducible control flow graphs)
■ Cohesion vs Coupling (McCabe)

Defect pattern
(Bad smell)

Analysis 1 Analysis 2 Analysis 3

Software with 
unknown structure
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Process Patterns

► Process patterns are solutions for the process of making something 

State A State B

Step 1
Process 
pattern 1

Process
pattern 2

Process 
pattern 3
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Process Patterns

► When process patterns are automatized, they are called workflows
► Workflow management systems enable us to capture and design 

processes
■ ARIS on SAP
■ Intentia
■ FlowMark (IBM) 
■ and many others

► Example: 
■ “Delegate-Task-And-Resources-Together”
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Organizational Patterns

► Two well-known organizational patterns are 
■ Hierarchical management

. In which all communication can be described by the organizational hierarchy

■ Matrix organization
. In which functional and organizational units talk to each other
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In This Course

► We will mainly treat design patterns
■ Conceptual patterns 
■ Architectural patterns
■ Framework instantiation patterns
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Pattern Languages: Patterns in Context

► According to Alexander, patterns occur in pattern languages
■ A set of related patterns for a set of related problems in a domain
■ Similar to a natural language, the pattern language contains a vocabulary 

for building artifacts

► A structured collection of patterns that build on each other to 
transform forces (needs and constraints) into an architecture [Coplien]

■ Patterns rarely stand alone. Each pattern works in a context, and 
transforms the system in that context to produce a new system in a new 
context.

■ New problems arise in the new system and context, and the next “layer” of 
patterns can be applied.

► We will treat one larger example, the TAM pattern language
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Design Patterns and Frameworks

General Notes



P
ro

f.
 U

w
e 

A
ß

m
an

n,
 D

r.
 S

. G
öt

z,
 D

es
ig

n
 P

a
tte

r n
s 

an
d  

F
ra

m
ew

or
ks

36

Elements of the Course

► Lecturing
■ Do not miss one, they should give you a short and concise overview of the 

material

► Reading
► Exercise sheets

■ You have one week to solve them on your own
■ After that, solutions will be explained in the exercise seminars 

► http://st.inf.tu-dresden.de  → Studies → Courses → Design Patterns and 
Frameworks 

► http://st.inf.tu-dresden.de/teaching/dpf 
► News are announced on this course page – check regularly!

http://st.inf.tu-dresden.de/
http://st.inf.tu-dresden.de/teaching/dpf
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Reading Along the Lectures

► Unfortunately, the course is not covered by any book
■ The GOF book is a prerequisite for the course, not it's contents!

► You have to read several research papers, available on the Internet 
■ Marked by “Mandatory Literature (To Be Read)”

► Secondary Literature is non-mandatory, but interesting reading. 
■ Can be done during the course
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Literature (To Be Read)

► During the course, read the following papers, if possible, in sequential order. 
See also literature web page.

► Every week, read about 1 paper (3-4h work)
► Start here: 

► A. Tesanovic. What is a pattern? Paper in Design Pattern seminar, 
IDA, 2001. Available at home page.

► Brad Appleton. Patterns and Software: Essential Concepts and 
terminology. 
http://www.sci.brooklyn.cuny.edu/~sklar/teaching/s08/cis20.2/papers/appleton-patterns-intro.pdf

Compact introduction into patterns. 

► K. Beck, J. Coplien, R. Crocker, L. Dominick, G. Meszaros, F. 
Paulisch, J. Vlissides. Industrial Experience with Design 
Patterns. Int. Conference on Software Engineering (ICSE)  1996. 
http://dl.acm.org/citation.cfm?id=227747  

http://www.sci.brooklyn.cuny.edu/~sklar/teaching/s08/cis20.2/papers/appleton-patterns-intro.pdf
http://dl.acm.org/citation.cfm?id=227747
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Literature (To Be Read)

► [GOF, Gamma] E. Gamma, R. Helm, R. Johnson, J. Vlissides: Design 
Patterns. Addison-Wesley 1995. Standard book belonging to the shelf 
of every software engineer.

■ Prerequisite for the course
■ The  book is called GOF (Gang of Four), due to the 4 authors

► Alternatively to GOF can be read: 
■ Head First Design Patterns. Eric Freeman & Elisabeth Freeman, mit Kathy Sierra 

& Bert Bates.O'Reilly, 2004, ISBN 978-0-596-00712-6
■ German Translation: Entwurfsmuster von Kopf bis Fuß. Eric Freeman & Elisabeth 

Freeman, mit Kathy Sierra & Bert Bates. O'Reilly, 2005, ISBN 978-3-89721-421-7

► Alternatively, available at home page. If you have already studied 
GOF, do not read these. These paper stem from a Design Pattern 
seminar at Linköpings Universitet, IDA, 2001:

■ T. Panas. Design Patterns, A Quick Introduction.  (on Composite, Visitor)
■ Veaceslav Caisin. Creational Patterns. 
■ P. Pop. An overview of the automation of patterns. 
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Secondary Literature

► M. Fowler. Refactoring. Addision-Wesley, 1999.
► D. Riehle, H. Züllighoven, Understanding and Using Patterns in 

Software Development. Theory and Practice of Object Systems, 1996 
http://dirkriehle.com/computer-science/research/1996/tapos-1996-survey.html 

► D. Garlan, R. Allen, J. Ockerbloom. Architectural mismatch – or why it 
is so hard to build systems out of existing parts. Int. Conf. On 
Software Engineering (ICSE 95). 
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=469757 

► A. Abel. Design Pattern Relationships and Classification. Paper in 
Design Pattern seminar, IDA, 2001.  Available at home page.

► T. Pop. Multi-Paradigm Design. Paper in Design Pattern seminar, 
IDA, 2001.  Available at home page.   

http://dirkriehle.com/computer-science/research/1996/tapos-1996-survey.html
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=469757
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Other Literature

► T. Reenskaug, P. Wold, O. A. Lehne. Working with objects Manning. 
■ The OOram Method, introducing role-based design, role models and 

many other things. A wisdom book for design. Out of print. Preversion 
available on the internet at 
http://heim.ifi.uio.no/~trygver/1996/book/WorkingWithObjects 

 

► K. Beck. Extreme Programming. Addison-Wesley.
► H. Allert, P. Dolog, W. Nejdl, W. Siberski, F. Steimann. Role-Oriented 

Models for Hypermedia Construction – Conceptual Modelling for the 
Semantic Web. 
http://people.cs.aau.dk/~dolog/pub/ht2003.pdf 

http://heim.ifi.uio.no/~trygver/1996/book/WorkingWithObjects
http://people.cs.aau.dk/~dolog/pub/ht2003.pdf
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Please, Please Be Aware – 
There Will Be Pain!

► This course is a research-oriented course
► It treats rather advanced material
► No book exists on all of that at all

■ GOF only prerequisite 
■ Please, collaborate! Read the articles, ask questions! 
■ Do the exercise sheets

► Warning: The oral exams can only be done if you have 
visited all lectures and solved all exercise sheets

■ The GOF Book alone is not sufficient 
► Learn continuously!
► Be aware: you have not yet seen larger systems

■ Middle-size systems start over 100KLOC
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Learning Java with INLOOP

► If you don't know Java, yet...
► In our basic course on software technology, we have published a 

web-based self-learning system for Java
■ into which you can enter Java programs
■ which tests style and syntax of the programs
■ and runs a test suite against your program

► INLOOP gives you feedback about your programming abilities in Java

► INLOOP is an opportunity for you, please use it!

https://inloop.inf.tu-dresden.de/ 

https://inloop.inf.tu-dresden.de/
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The Positive Side

► If you follow carefully, you will discover an exciting world of beauty in 
software

► If you know all the patterns of the course, you will be a much better 
software engineer than the standard programmer

■ Most of the work has been discovered in the last 10 years, and is 
unknown to many programmers

► You will also be a much better manager, 
■ because patterns and frameworks teach you how to master large systems 

and product lines in your company

► The gain is worthwhile the pain!
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Oral and/or Written Exam/s

► There will be two weeks for oral exams
► Somewhen between February and March 2020
► The exam weeks will be announced early January.
► There will be no oral exams during the lecture period of summer 

term 2020. The next examination period will be August/September 
2020.

► You can enroll by sending an Email to 
st-exams@mailbox.tu-dresden.de  

► In your mail you need to indicate:
■ The preferred time (e.g., end of February) and/or times when you 

are away
■ The module you want to take the exam for (e.g., BAS3)
■ Your course of study (e.g., Master MINF)

mailto:st-exams@mailbox.tu-dresden.de
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The End
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