
Design Patterns and Frameworks, © Prof. Uwe Aßmann, Dr. S. Götz 1

Design Patterns and Frameworks
(DPF)
Announcements

Dr. Sebastian Götz

Software Technology Group

Department of Computer Science

Technische Universität Dresden

WS 19/20, Oct 15, 2019
Slides from Prof. Dr. U. Aßmann

Design Patterns and Frameworks, © Prof. Uwe Aßmann, Dr. S. Götz 2

Design Patterns and Frameworks

Goals and Contents of the Course

P
ro

f.
 U

w
e

A
ß

m
an

n,
 D

r.
 S

. G
öt

z,
 D

es
ig

n
 P

a
tte

r n
s

an
d

F
ra

m
ew

or
ks

3

Main Goals

► Know several different kinds of patterns
■ Basic kinds of incentives for design patterns

► Explain patterns for variability and extensibility of systems
► Understand frameworks and product lines better
► Explain systematic structures for systems with >100KLOC

■ Layered frameworks
■ Facets

► Understand a different way of object-oriented design
■ Role-based design

P
ro

f.
 U

w
e

A
ß

m
an

n,
 D

r.
 S

. G
öt

z,
 D

es
ig

n
 P

a
tte

r n
s

an
d

F
ra

m
ew

or
ks

4

Standard Problems to Be Solved By
Design Patterns
► Variability

■ Exchanging parts easily
■ Variation, complex parametrization
■ Static and dynamic
■ For product lines, framework-based development

► Extensibility
■ Software must change

► Gluing (bridging, adapting, connecting)
■ Overcoming architectural mismatches
■ Coupling software that was not built for each other

► Others:
■ Optimization: making things more efficient

. Antagonistic to flexibility

■ Structuring of interactive applications
. Grasping common patterns of flow in software systems

P
ro

f.
 U

w
e

A
ß

m
an

n,
 D

r.
 S

. G
öt

z,
 D

es
ig

n
 P

a
tte

r n
s

an
d

F
ra

m
ew

or
ks

5

Goal: Variability Patterns

► Variability (Variation, Exchange, Parametrization)
■ Expressing commonality and variability
■ We fix a common part (a framework) and parametrize

it at variation points (variability)
■ Framework instantiation patterns describe variations of frameworks

► Understanding Templates and Hooks
■ Template Method vs Template Class
■ Dimensional Class Hierarchy, Bridge

► Understanding creational patterns
■ Factory Method, Factory Class, Builder

► Variability design patterns for frameworks
► Variability concerns

■ Exchange of communication
■ Dynamic call (e.g., ChainOfResponsibility)

■ Exchange of policy
■ Exchange of material in data-based applications

P
ro

f.
 U

w
e

A
ß

m
an

n,
 D

r.
 S

. G
öt

z,
 D

es
ig

n
 P

a
tte

r n
s

an
d

F
ra

m
ew

or
ks

6

Goal: Extensibility Patterns

► Extensibility
■ For new, unforeseen product variants
■ For evolution
■ For dynamic change

► Understanding extensibility patterns
■ ObjectRecursion vs TemplateMethod, Objectifier (and Strategy)
■ Decorator vs Proxy vs Composite vs ChainOfResponsibility
■ Visitor, Observer (EventBridge)

► Parallel class hierarchies as implementation of facets
■ Understand facets as non-partitioned subset hierarchies
■ Layered frameworks as a means to structure large systems, based on

facets

► Template/Hook Extension:
■ Code skeletons are extended at hooks
■ Frameworks can have hooks that can be extended (beyond variation)

► Framework extension patterns

P
ro

f.
 U

w
e

A
ß

m
an

n,
 D

r.
 S

. G
öt

z,
 D

es
ig

n
 P

a
tte

r n
s

an
d

F
ra

m
ew

or
ks

7

Goal: Gluing Patterns for Overcoming
Architectural Mismatches
► Glue patterns

■ Understand architectural mismatch
■ Understand patterns that bridge architectural mismatch

► Adaptation, bridging, connections
■ Of communication protocols
■ Between heterogeneous components (different representations, different

locations, different control flow structure)

► Anonymous communication
■ For exchange of commmunicators

► Scalable communication
■ At runtime, in distributed systems

P
ro

f.
 U

w
e

A
ß

m
an

n,
 D

r.
 S

. G
öt

z,
 D

es
ig

n
 P

a
tte

r n
s

an
d

F
ra

m
ew

or
ks

8

Goal: A Basic Tool: Role Modeling

► For all of that, a basic tool set is role modeling
■ Which roles does an object play in the application?

► It tells how design patterns occur in applications
■ Reenskaug. Summarized in the book “Working with Objects”, 1995

► Role-model based design
■ Why design patterns are role models of class diagrams
■ Understand the difference between roles and objects, role types and

classes
■ Understand role mapping to classes

■ How roles can be implemented
■ Understand role model composition
■ Understand composite design patterns as composition of role models

P
ro

f.
 U

w
e

A
ß

m
an

n,
 D

r.
 S

. G
öt

z,
 D

es
ig

n
 P

a
tte

r n
s

an
d

F
ra

m
ew

or
ks

9

Goal: Framework Patterns

► Understand variabilities in frameworks
■ Introducing different types of hooks for frameworks and components

(TH patterns)
■ Understanding framework variability patterns

► Studying extensible framework hook patterns
■ Role Object pattern
■ Layered frameworks, implemented by Role Object

► Patterns document frameworks
■ Patterns play an important role on how a framework is instantiated
■ Whitebox, blackbox, layered, T&H framework

P
ro

f.
 U

w
e

A
ß

m
an

n,
 D

r.
 S

. G
öt

z,
 D

es
ig

n
 P

a
tte

r n
s

an
d

F
ra

m
ew

or
ks

10

Goal: Structuring Interactive
Applications with Tools&Materials
► Understand the central metaphors of the Tools-and-Materials

architectural style for the construction of interactive applications
■ Know an example of a pattern language

► Interactive applications can be pretty complex
► TAM (tools-and-materials, Werkzeug-Automat-Material, WAM) is a

pattern language for interactive applications
► Nice metaphors that help thinking, constructing, maintaining

interactive applications

P
ro

f.
 U

w
e

A
ß

m
an

n,
 D

r.
 S

. G
öt

z,
 D

es
ig

n
 P

a
tte

r n
s

an
d

F
ra

m
ew

or
ks

11

Overview of the Course

Intro

Variability Patterns Extensibility Patterns Glue Patterns

Metapatterns
and Framework patterns

Role Models Composite Patterns

Layered FrameworksTools & Materials

Employment and Usage

Part 2: Roles

Part 1: Basic Patterns

Part 3: Frameworks

Design Patterns and Frameworks, © Prof. Uwe Aßmann, Dr. S. Götz 12

Design Patterns and Frameworks

Introduction

P
ro

f.
 U

w
e

A
ß

m
an

n,
 D

r.
 S

. G
öt

z,
 D

es
ig

n
 P

a
tte

r n
s

an
d

F
ra

m
ew

or
ks

13

History

► Beginning of the 70s: the window and desktop
metaphors (conceptual patterns)

■ Smalltalk group in Xerox Parc, Palo Alto

► 1978/79: MVC pattern for Smalltalk GUI.
Goldberg and Reenskaug at Xerox Parc

■ During porting Smalltalk-78 for Norway in
the Eureka Software Factory project
[Reenskaug]

► 1979: Alexander's “The Timeless Way of
Building”

■ Introduces the notion of a pattern and a
pattern language

► 1987: W. Cunningham, K. Beck: OOPSLA
paper “Using Pattern Languages for Object-
Oriented Programs”

■ Discovered Alexander's work for software
engineers by applying 5 patterns in
Smalltalk

► 1991: Erich Gamma. Design Patterns. PhD
Thesis

■ Working with ET++, one of the first
window frameworks of C++

■ At the same time, Vlissides works on
InterViews (part of Athena)

■ Pattern workshop at OOPSLA 91,
organized by B. Anderson

► 1993: E. Gamma, R. Helm, R. Johnson, J.
Vlissides. Design Patterns: Abstraction and
Reuse of Object-Oriented Design. ECOOP
97, LNCS 707, Springer, 1993.

► 1994: First PLOP conference (Pattern
Languages Of Programming)

► 1995: GOF book.

► 1997: Riehle on role models and design
patterns

► 2005: Collaborations (class-role models) in
UML

P
ro

f.
 U

w
e

A
ß

m
an

n,
 D

r.
 S

. G
öt

z,
 D

es
ig

n
 P

a
tte

r n
s

an
d

F
ra

m
ew

or
ks

14

Alexander’s Laws on Beauty

► Christopher Alexander. “The timeless way of building” . Oxford Press
1977.

■ Hunting for the “Quality without a name”:
■ When are things "beautiful"?
■ When do things “live”?

► Patterns grasp centers of beauty
► You have a language for beauty, consisting of patterns (a pattern

language)
■ Dependent on culture

► Beauty cannot be invented
■ but must be combined/generated by patterns from a pattern language

► The “quality without a name” can be reached by pattern composition
in pattern languages

P
ro

f.
 U

w
e

A
ß

m
an

n,
 D

r.
 S

. G
öt

z,
 D

es
ig

n
 P

a
tte

r n
s

an
d

F
ra

m
ew

or
ks

15

The Most Popular Definition

► A Design Pattern is
■ A description of a standard solution for
■ A standard design problem
■ In a certain context

► Goal: Reuse of design information
■ A pattern must not be “new”!

■ A pattern writer must have an “aggressive disregard for originality”

► In this sense, patterns are well-known in every engineering discipline
■ Mechanical engineering
■ Electrical engineering
■ Architecture

P
ro

f.
 U

w
e

A
ß

m
an

n,
 D

r.
 S

. G
öt

z,
 D

es
ig

n
 P

a
tte

r n
s

an
d

F
ra

m
ew

or
ks

16

Example: Model/View/Controller (MVC)

► MVC is a agglomeration of classes to control a user interface and a
data structure

■ Developed by Goldberg/Reenskaug 1978, for Smalltalk

► MVC is a complex design pattern and combines the simpler ones
composite, strategy, observer.

► Ingredients:
■ Model: Data structure or object, invisible
■ View: Representation(s) on the screen
■ Controller: Encapsulates reactions on inputs of users, couples

model and views

P
ro

f.
 U

w
e

A
ß

m
an

n,
 D

r.
 S

. G
öt

z,
 D

es
ig

n
 P

a
tte

r n
s

an
d

F
ra

m
ew

or
ks

17

Views as Observer

a=50%
b=30%
c=20%

Window

 a

 30

 30

 10

 20

 10

 b c

 10

 60

 50

 80

 x

 y

 z

WindowWindow

 a b c

Model

Views

P
ro

f.
 U

w
e

A
ß

m
an

n,
 D

r.
 S

. G
öt

z,
 D

es
ig

n
 P

a
tte

r n
s

an
d

F
ra

m
ew

or
ks

18

Patterns

► Pattern 1: Observer: Grasps relation between model and views
■ Views may register at the model (observers).
■ They are notified if the model changes. Then, every view updates itself by accessing the

data of the model.
. Views are independent of each other. The model does not know how views visualize it.

■ Observer decouples strongly.

► Pattern 2: Composite: Views may be nested (represents trees)
■ For a client class, Composite unifies the access to root, inner nodes, and leaves
■ The MVC pattern additionally requires that

. There is an abstract superclass View

. The class CompositeView is a subclass of View

. And can be used in the same way as View

► Pattern 3: Strategy: The relation between controller and view is a Strategy.
■ There may be different control strategies, lazy or eager update of views (triggering output),

menu or keyboard input (taking input)
■ A view may select subclasses of Controller, even dynamically. Strategy allows for this

dynamic exchange (variability)

P
ro

f.
 U

w
e

A
ß

m
an

n,
 D

r.
 S

. G
öt

z,
 D

es
ig

n
 P

a
tte

r n
s

an
d

F
ra

m
ew

or
ks

19

What Does a Design Pattern Contain?

► A part with a “bad smell”
■ A structure with a bad smell
■ A query that proved a bad smell
■ A graph parse that recognized a bad smell

► A part with a “good smell” (standard solution)
■ A structure with a good smell
■ A query that proves a good smell
■ A graph parse that proves a good smell

► A part with “forces”
■ The context, rationale, and pragmatics
■ The needs and constraints

“bad smell” “good smell”

forces

P
ro

f.
 U

w
e

A
ß

m
an

n,
 D

r.
 S

. G
öt

z,
 D

es
ig

n
 P

a
tte

r n
s

an
d

F
ra

m
ew

or
ks

20

Structure for Design Pattern
Description (GOF Form)

► Name (incl. Synonyms) (also known as)
► Motivation (purpose)

■ also “bad smells” to be avoided

► Employment
► Solution (the “good smell”)

■ Structure (Classes, abstract classes, relations): UML class or object
diagram

■ Participants: textual details of classes
■ Interactions: interaction diagrams (MSC, statecharts, collaboration

diagrams)
■ Consequences: advantages and disadvantages (pragmatics)
■ Implementation: variants of the design pattern
■ Code examples

► Known Uses
► Related Patterns

P
ro

f.
 U

w
e

A
ß

m
an

n,
 D

r.
 S

. G
öt

z,
 D

es
ig

n
 P

a
tte

r n
s

an
d

F
ra

m
ew

or
ks

21

Purposes of Design Patterns

► Improve communication in teams
■ Between clients and programmers
■ Between designers, implementers and testers
■ For designers, to understand good design concepts

► Design patterns create an “ontology of software design”
■ Improvement of the state of the art of software engineering
■ Fix a glossary for software engineering
■ A “software engineer” without the knowledge of patterns is a programmer
■ Prevent re-invention of well-known solutions

► Design patterns document abstract design concepts
■ Patterns are “mini-frameworks”
■ Documentation, In particular frameworks are documented by design

patterns
■ May be used to capture information in reverse engineering
■ Improve code structure and hence, code quality

Design Patterns and Frameworks, © Prof. Uwe Aßmann, Dr. S. Götz 22

1.2 Different Kinds of Patterns

P
ro

f.
 U

w
e

A
ß

m
an

n,
 D

r.
 S

. G
öt

z,
 D

es
ig

n
 P

a
tte

r n
s

an
d

F
ra

m
ew

or
ks

23

What is a Pattern?

► There is not “the pattern”
► At least, research is done in the following areas:

■ Conceptual patterns
■ Design Patterns

. Different forms

■ Antipatterns
■ Implementation patterns (programming patterns, idioms, workarounds)
■ Enterprise patterns
■ Process patterns

. Reengineering patterns

■ Organizational patterns

► General definition:
■ A pattern is the abstraction from a concrete form which keeps recurring in

specific non-arbitrary contexts [Riehle/Zülinghoven, Understanding and
Using Patterns in Software Development]

P
ro

f.
 U

w
e

A
ß

m
an

n,
 D

r.
 S

. G
öt

z,
 D

es
ig

n
 P

a
tte

r n
s

an
d

F
ra

m
ew

or
ks

24

Conceptual Patterns

► A conceptual pattern is a pattern whose form is described by means
of the terms and concepts from an application domain

■ Based on metaphors in the application domain

► Example: conceptual pattern “desktop”
■ Invented in Xerox Parc from A. Kay and others

. Folders, icons, TrashCan

. Drag&Drop as move actions on the screen

■ Basic pattern for all windowing systems
■ Also for many CASE tools for visual programming
■ Question: what is here the “abstraction from the concrete form”?

► We will revisit in the Tools-And-Materials (TAM) pattern language
■ It works on conceptual patterns such as “Tool”, “Material”, “Automaton”

P
ro

f.
 U

w
e

A
ß

m
an

n,
 D

r.
 S

. G
öt

z,
 D

es
ig

n
 P

a
tte

r n
s

an
d

F
ra

m
ew

or
ks

25

Design Patterns

► “A design pattern superimposes a simple structure of a relation in the
static or dynamic semantics of a system”

■ Relations, interactions, collaborations
■ Nodes: objects, classes, packages

► “A design pattern is a named nugget of insight which conveys the
essence of a proven solution to a recurring problem within a certain
context amidst competing concerns” [Appleton]

P
ro

f.
 U

w
e

A
ß

m
an

n,
 D

r.
 S

. G
öt

z,
 D

es
ig

n
 P

a
tte

r n
s

an
d

F
ra

m
ew

or
ks

26

Different Types of Design Patterns

► Fundamental Design Pattern (FDP)
■ A pattern that cannot be expressed as language construct

► Programming Pattern, Language Dependent Design Pattern (LDDP)
■ A pattern that exists as language construct in another programming

language, but is not available in general
► Architectural pattern

■ A design pattern that describes the coarse-grain structure of a (sub)system
■ A design pattern on a larger scale, for coarse-grain structure (macro

structure)
► Framework Instantiation Patterns

■ Some design patterns couple framework variation points and application code
(framework instantiation patterns)

► Design patterns are “mini-frameworks” themselves
■ Since they contain common structure for many applications
■ Design patterns are used in frameworks (that's how they originated)
■ Hence, this course must also say many things about frameworks

P
ro

f.
 U

w
e

A
ß

m
an

n,
 D

r.
 S

. G
öt

z,
 D

es
ig

n
 P

a
tte

r n
s

an
d

F
ra

m
ew

or
ks

27

Programming Pattern (Idiom, LDDP)

► An idiom is a pattern whose form is described by means of
programming language constructs.

► Example: The C idiom of check-and-returns for contract checking
■ The first book on idioms was Coplien's Advanced C++ Programming

Styles and Idioms (1992), Addison-Wesley

public void processIt (Document doc) {
 // check all contracts of processIt
 if (doc == null) return;
 if (doc.notReady()) return;
 if (internalDoc == doc) return;

 // now the document seems ok
 internalProcessIt(doc);
}

private void internalProcessIt (Document doc) {
 // no contract checking anymore

 // process the document immediately
 walk(doc);
 print(doc);
}

P
ro

f.
 U

w
e

A
ß

m
an

n,
 D

r.
 S

. G
öt

z,
 D

es
ig

n
 P

a
tte

r n
s

an
d

F
ra

m
ew

or
ks

28

Workaround

► A workaround is an idiom that works around a language construct that
is not available in a language

► Example: Simulating polymorphism by if-cascades

public void processIt (Document doc) {
 // Analyze type of document
 if (doc->type == Text)

processText((Text)doc);
 else i f (doc->type == Figure)
 processFigure((Figure)doc);
 else
 printf(“unknown subtype of document”);
}

void processText(Text t) {..}
void process Figure(Figure f) {..}

P
ro

f.
 U

w
e

A
ß

m
an

n,
 D

r.
 S

. G
öt

z,
 D

es
ig

n
 P

a
tte

r n
s

an
d

F
ra

m
ew

or
ks

29

Antipatterns (Defect Patterns)

► Software can contain bad structure
■ No modular structure, only procedure calls
■ If-cascades instead of polymorphism
■ Casts everywhere
■ Spaghetti code (no reducible control flow graphs)
■ Cohesion vs Coupling (McCabe)

Defect pattern
(Bad smell)

Analysis 1 Analysis 2 Analysis 3

Software with
unknown structure

P
ro

f.
 U

w
e

A
ß

m
an

n,
 D

r.
 S

. G
öt

z,
 D

es
ig

n
 P

a
tte

r n
s

an
d

F
ra

m
ew

or
ks

30

Process Patterns

► Process patterns are solutions for the process of making something

State A State B

Step 1
Process
pattern 1

Process
pattern 2

Process
pattern 3

P
ro

f.
 U

w
e

A
ß

m
an

n,
 D

r.
 S

. G
öt

z,
 D

es
ig

n
 P

a
tte

r n
s

an
d

F
ra

m
ew

or
ks

31

Process Patterns

► When process patterns are automatized, they are called workflows
► Workflow management systems enable us to capture and design

processes
■ ARIS on SAP
■ Intentia
■ FlowMark (IBM)
■ and many others

► Example:
■ “Delegate-Task-And-Resources-Together”

P
ro

f.
 U

w
e

A
ß

m
an

n,
 D

r.
 S

. G
öt

z,
 D

es
ig

n
 P

a
tte

r n
s

an
d

F
ra

m
ew

or
ks

32

Organizational Patterns

► Two well-known organizational patterns are
■ Hierarchical management

. In which all communication can be described by the organizational hierarchy

■ Matrix organization
. In which functional and organizational units talk to each other

P
ro

f.
 U

w
e

A
ß

m
an

n,
 D

r.
 S

. G
öt

z,
 D

es
ig

n
 P

a
tte

r n
s

an
d

F
ra

m
ew

or
ks

33

In This Course

► We will mainly treat design patterns
■ Conceptual patterns
■ Architectural patterns
■ Framework instantiation patterns

P
ro

f.
 U

w
e

A
ß

m
an

n,
 D

r.
 S

. G
öt

z,
 D

es
ig

n
 P

a
tte

r n
s

an
d

F
ra

m
ew

or
ks

34

Pattern Languages: Patterns in Context

► According to Alexander, patterns occur in pattern languages
■ A set of related patterns for a set of related problems in a domain
■ Similar to a natural language, the pattern language contains a vocabulary

for building artifacts

► A structured collection of patterns that build on each other to
transform forces (needs and constraints) into an architecture [Coplien]

■ Patterns rarely stand alone. Each pattern works in a context, and
transforms the system in that context to produce a new system in a new
context.

■ New problems arise in the new system and context, and the next “layer” of
patterns can be applied.

► We will treat one larger example, the TAM pattern language

Design Patterns and Frameworks, © Prof. Uwe Aßmann, Dr. S. Götz 35

Design Patterns and Frameworks

General Notes

P
ro

f.
 U

w
e

A
ß

m
an

n,
 D

r.
 S

. G
öt

z,
 D

es
ig

n
 P

a
tte

r n
s

an
d

F
ra

m
ew

or
ks

36

Elements of the Course

► Lecturing
■ Do not miss one, they should give you a short and concise overview of the

material

► Reading
► Exercise sheets

■ You have one week to solve them on your own
■ After that, solutions will be explained in the exercise seminars

► http://st.inf.tu-dresden.de → Studies → Courses → Design Patterns and
Frameworks

► http://st.inf.tu-dresden.de/teaching/dpf
► News are announced on this course page – check regularly!

http://st.inf.tu-dresden.de/
http://st.inf.tu-dresden.de/teaching/dpf

P
ro

f.
 U

w
e

A
ß

m
an

n,
 D

r.
 S

. G
öt

z,
 D

es
ig

n
 P

a
tte

r n
s

an
d

F
ra

m
ew

or
ks

37

Reading Along the Lectures

► Unfortunately, the course is not covered by any book
■ The GOF book is a prerequisite for the course, not it's contents!

► You have to read several research papers, available on the Internet
■ Marked by “Mandatory Literature (To Be Read)”

► Secondary Literature is non-mandatory, but interesting reading.
■ Can be done during the course

P
ro

f.
 U

w
e

A
ß

m
an

n,
 D

r.
 S

. G
öt

z,
 D

es
ig

n
 P

a
tte

r n
s

an
d

F
ra

m
ew

or
ks

38

Literature (To Be Read)

► During the course, read the following papers, if possible, in sequential order.
See also literature web page.

► Every week, read about 1 paper (3-4h work)
► Start here:

► A. Tesanovic. What is a pattern? Paper in Design Pattern seminar,
IDA, 2001. Available at home page.

► Brad Appleton. Patterns and Software: Essential Concepts and
terminology.
http://www.sci.brooklyn.cuny.edu/~sklar/teaching/s08/cis20.2/papers/appleton-patterns-intro.pdf

Compact introduction into patterns.

► K. Beck, J. Coplien, R. Crocker, L. Dominick, G. Meszaros, F.
Paulisch, J. Vlissides. Industrial Experience with Design
Patterns. Int. Conference on Software Engineering (ICSE) 1996.
http://dl.acm.org/citation.cfm?id=227747

http://www.sci.brooklyn.cuny.edu/~sklar/teaching/s08/cis20.2/papers/appleton-patterns-intro.pdf
http://dl.acm.org/citation.cfm?id=227747

P
ro

f.
 U

w
e

A
ß

m
an

n,
 D

r.
 S

. G
öt

z,
 D

es
ig

n
 P

a
tte

r n
s

an
d

F
ra

m
ew

or
ks

39

Literature (To Be Read)

► [GOF, Gamma] E. Gamma, R. Helm, R. Johnson, J. Vlissides: Design
Patterns. Addison-Wesley 1995. Standard book belonging to the shelf
of every software engineer.

■ Prerequisite for the course
■ The book is called GOF (Gang of Four), due to the 4 authors

► Alternatively to GOF can be read:
■ Head First Design Patterns. Eric Freeman & Elisabeth Freeman, mit Kathy Sierra

& Bert Bates.O'Reilly, 2004, ISBN 978-0-596-00712-6
■ German Translation: Entwurfsmuster von Kopf bis Fuß. Eric Freeman & Elisabeth

Freeman, mit Kathy Sierra & Bert Bates. O'Reilly, 2005, ISBN 978-3-89721-421-7

► Alternatively, available at home page. If you have already studied
GOF, do not read these. These paper stem from a Design Pattern
seminar at Linköpings Universitet, IDA, 2001:

■ T. Panas. Design Patterns, A Quick Introduction. (on Composite, Visitor)
■ Veaceslav Caisin. Creational Patterns.
■ P. Pop. An overview of the automation of patterns.

P
ro

f.
 U

w
e

A
ß

m
an

n,
 D

r.
 S

. G
öt

z,
 D

es
ig

n
 P

a
tte

r n
s

an
d

F
ra

m
ew

or
ks

40

Secondary Literature

► M. Fowler. Refactoring. Addision-Wesley, 1999.
► D. Riehle, H. Züllighoven, Understanding and Using Patterns in

Software Development. Theory and Practice of Object Systems, 1996
http://dirkriehle.com/computer-science/research/1996/tapos-1996-survey.html

► D. Garlan, R. Allen, J. Ockerbloom. Architectural mismatch – or why it
is so hard to build systems out of existing parts. Int. Conf. On
Software Engineering (ICSE 95).
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=469757

► A. Abel. Design Pattern Relationships and Classification. Paper in
Design Pattern seminar, IDA, 2001. Available at home page.

► T. Pop. Multi-Paradigm Design. Paper in Design Pattern seminar,
IDA, 2001. Available at home page.

http://dirkriehle.com/computer-science/research/1996/tapos-1996-survey.html
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=469757

P
ro

f.
 U

w
e

A
ß

m
an

n,
 D

r.
 S

. G
öt

z,
 D

es
ig

n
 P

a
tte

r n
s

an
d

F
ra

m
ew

or
ks

41

Other Literature

► T. Reenskaug, P. Wold, O. A. Lehne. Working with objects Manning.
■ The OOram Method, introducing role-based design, role models and

many other things. A wisdom book for design. Out of print. Preversion
available on the internet at
http://heim.ifi.uio.no/~trygver/1996/book/WorkingWithObjects

► K. Beck. Extreme Programming. Addison-Wesley.
► H. Allert, P. Dolog, W. Nejdl, W. Siberski, F. Steimann. Role-Oriented

Models for Hypermedia Construction – Conceptual Modelling for the
Semantic Web.
http://people.cs.aau.dk/~dolog/pub/ht2003.pdf

http://heim.ifi.uio.no/~trygver/1996/book/WorkingWithObjects
http://people.cs.aau.dk/~dolog/pub/ht2003.pdf

P
ro

f.
 U

w
e

A
ß

m
an

n,
 D

r.
 S

. G
öt

z,
 D

es
ig

n
 P

a
tte

r n
s

an
d

F
ra

m
ew

or
ks

42

Please, Please Be Aware –
There Will Be Pain!

► This course is a research-oriented course
► It treats rather advanced material
► No book exists on all of that at all

■ GOF only prerequisite
■ Please, collaborate! Read the articles, ask questions!
■ Do the exercise sheets

► Warning: The oral exams can only be done if you have
visited all lectures and solved all exercise sheets

■ The GOF Book alone is not sufficient
► Learn continuously!
► Be aware: you have not yet seen larger systems

■ Middle-size systems start over 100KLOC

P
ro

f.
 U

w
e

A
ß

m
an

n,
 D

r.
 S

. G
öt

z,
 D

es
ig

n
 P

a
tte

r n
s

an
d

F
ra

m
ew

or
ks

43

Learning Java with INLOOP

► If you don't know Java, yet...
► In our basic course on software technology, we have published a

web-based self-learning system for Java
■ into which you can enter Java programs
■ which tests style and syntax of the programs
■ and runs a test suite against your program

► INLOOP gives you feedback about your programming abilities in Java

► INLOOP is an opportunity for you, please use it!

https://inloop.inf.tu-dresden.de/

https://inloop.inf.tu-dresden.de/

P
ro

f.
 U

w
e

A
ß

m
an

n,
 D

r.
 S

. G
öt

z,
 D

es
ig

n
 P

a
tte

r n
s

an
d

F
ra

m
ew

or
ks

44

The Positive Side

► If you follow carefully, you will discover an exciting world of beauty in
software

► If you know all the patterns of the course, you will be a much better
software engineer than the standard programmer

■ Most of the work has been discovered in the last 10 years, and is
unknown to many programmers

► You will also be a much better manager,
■ because patterns and frameworks teach you how to master large systems

and product lines in your company

► The gain is worthwhile the pain!

P
ro

f.
 U

w
e

A
ß

m
an

n,
 D

r.
 S

. G
öt

z,
 D

es
ig

n
 P

a
tte

r n
s

an
d

F
ra

m
ew

or
ks

45

Oral and/or Written Exam/s

► There will be two weeks for oral exams
► Somewhen between February and March 2020
► The exam weeks will be announced early January.
► There will be no oral exams during the lecture period of summer

term 2020. The next examination period will be August/September
2020.

► You can enroll by sending an Email to
st-exams@mailbox.tu-dresden.de

► In your mail you need to indicate:
■ The preferred time (e.g., end of February) and/or times when you

are away
■ The module you want to take the exam for (e.g., BAS3)
■ Your course of study (e.g., Master MINF)

mailto:st-exams@mailbox.tu-dresden.de

P
ro

f.
 U

w
e

A
ß

m
an

n,
 D

r.
 S

. G
öt

z,
 D

es
ig

n
 P

a
tte

r n
s

an
d

F
ra

m
ew

or
ks

46

The End

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Alexander’s Laws on Beauty
	Definition
	Example: Model/View/Controller (MVC)
	Views as Observer
	Model/View/Controller
	Folie 19
	Structure for Design Pattern
	Purpose Design Pattern
	Folie 22
	Folie 23
	Folie 24
	Folie 25
	Folie 26
	Folie 27
	Folie 28
	Folie 29
	Folie 30
	Folie 31
	Folie 32
	Folie 33
	Folie 34
	Folie 35
	Folie 36
	Folie 37
	Folie 38
	Folie 39
	Folie 40
	Folie 41
	Folie 42
	Folie 43
	Folie 44
	Folie 45
	Folie 46

