
Faculty of Computer Science Institute of Software and Multimedia Technology, Software Technology Group

WS2019/20 – Design Patterns and Frameworks

Variability Patterns
Professor: Prof. Dr. Uwe Aßmann
Lectuer: Dr.-Ing. Sebastian Götz
Tutor: Dr. rer. nat. Marvin Triebel

Task 1 Template Method vs Template Class

This exercise focuses on patterns for variability as introduced in theGang of Four book [1].
Consider, for example, you have to write a tool for architects that visualizes buildings of
different types. Usually, a building is structured from levels, levels are structured from
corridors, and corridors from rooms.
There are different classes of buildings: skyscrapers, bungalows, and huts.

a) Create a hierarchy of building types and another hierarchy defining the building’s
structure. Use TemplateMethod to make sure structural constraints (for exam-
ple, only corridors may contain rooms) are maintained for the building parts of a
concrete building.

Hint: Apply Composite‚ to define the building’s structure.

Solution: The following class diagram shows a possible solution. It uses the
Composite pattern to define the various elements of buildings. Elements can be
added to a building using BuildingPart’s add() method. For composite parts, this
method is implemented using TemplateMethod. add() is the template, canAdd()
the hook. canAdd() can now be implemented variously so as to enforce the struc-
tural constraints as needed.

Building

build()

SkyScrapter

build()

Hut

build()

Bungalow

build()

BuildingPart

draw()

CompositePart

add(BuildingPart bp)
canAdd(BuildingPart bp)

if (canAdd(bp))
parts.add(bp);

Level

canAdd(BuildingPart bp)

Corridor

canAdd(BuildingPart bp)

LeafPart

Room

levels
parts

1



b) Design an iterator algorithm that walks over all types of buildings and draws them
room by room on the screen (we assume that only rooms draw themselves). Apply
TemplateMethod.

Solution: For the following class diagram a similar technique is used. Here, draw()
is the template and drawPart() the hook.

Building

build()

SkyScraper

build()

Hut

build()

Bungalow

build()

BuildingPart

draw()

CompositePart

draw()
drawPart()

drawPart();
for(p:parts)

p.draw();

Level

drawPart()

Corridor

drawPart()

Room

draw()

LeafPart

levels
parts

c) Now, change the TemplateMethod into a TemplateClass pattern (or Strategy).
Zip out all hook methods from the concrete template class and put them into a
separate hierarchy. Which advantages and disadvantages has your new design?

Solution: The new design, depicted below, creates a BuildingPartDrawer for
printing (pattern Objectifier, TemplateClass, or Strategy). It creates two ob-
jects for drawing a building item at runtime. Hence, it wastes space and allocation
time. Also, polymorphic dispatch must be done twice, if the template and the hook
classes can be varied. Hence, an application will be slower.

Building

build()

SkyScraper

build()

Hut

build()

Bungalow

build()

BuildingPart

draw()

drawer.draw(this);

CompositePart

draw()

drawer.draw(this);
for(p:parts)

p.draw();

Level Corridor

Room

draw()

LeafPart

BuildingPartDrawer

draw(BuildingPart bp)

EmptyDrawer

RoomDrawer

levels

parts

drawer

2



d) So far, only rooms are drawn. Now, draw all elements of a building (building,
level, corridor, room) on the screen. Note that for every class of building and
every building element you have to vary the behavior separately; that is, different
buildings require different ways of drawing their individual elements.

Hint: Again use TemplateClass.

Why is it impossible to use TemplateMethod?

Solution: The design from the previous subtask (see above) can be used without
problems; only the implementations for the classes LevelDrawer and CorridorDrawer
have to be added, substituting empty printers.

The design would be impossible to do with TemplateMethod, because with that
pattern, levels are printed as levels, corridors are printed as corridors, and rooms
are printed as rooms, independent of which building they are used for. With
the above design, however, levels, corridors, and rooms can be configured with
building-specific printer objects. (Of course, one would use an AbstractFactory
for the printer objects, which allocates precisely what a building needs.)

3



Person

eat()

Employee

Professor PhDstudent

Student

Figure 1: Hierarchy of persons.

Task 2 Objectifier, Reifying Methods

Consider the simple class hierarchy depicted in Figure 1.

a) Reify the method eat to the pattern Objectifier (or Strategy). Distinguish
omnivores, vegetarians, gourmets, and gourmands.

Solution: The Person class gets a reference to the new class hierarchy of Eaters,
as depicted below:

Person

eat()
eater.doIt()

Employee

Professor PhDstudent

Student

Eater

doIt()

Omnivore

VegetarianGourmet Gourmand

eater

b) Which linguistic process corresponds to the reification of methods, i.e., to the
Objectifier?

Solution: Turning a verb into a noun.

c) What is the problem, if you group all 4 classes of eaters into one class hierarchy?

4



Solution: They consider different facets of eaters, i.e., do not partition the class
Eater. Hence, they are not really comparable and should be split into two dimen-
sional hierarchies.

d) Split the eater hierarchy with a simple DimensionalClassHierarchies (or Bridge)
pattern.

Solution: Splitting the Eater hierarchy into another Bridge gives rise to a se-
quenced double bridge:

Person

eat()
eater.doIt()

Employee

Professor PhDstudent

Student

Eater

doIt()
taste()

specialist .tasteIt()

Omnivore Vegetarian

Specialist

tasteIt()

Gourmet Gourmand

eater specialist

e) Now split all facets of a person (including the Eater hierarchy) into Bridges using
Person as the central class.

Solution: The solution changes the inheritance between Person and Employee/Student
into an aggregation to a new class WorkType:

5



Person

eat()
work()

specialist .tasteIt()
eater.doIt()

worker.work()

Employee

Professor PhDstudent

WorkType

workIt()

Student

Eater

doIt()

Omnivore Vegetarian

Specialist

tasteIt()

Gourmet Gourmand

worker

eater

specialist

This way, no facet gets special attention as the primary facet. For performance
reasons, it may be useful to make one of the facets the primary one in the imple-
mentation, but this should be an implementation decision based on usage, rather
than a design decision based on no good reason at all.

6



Task 3 Comparison of Variability Patterns

a) Compare Bridge and TemplateMethod. What are commonalities, what are differ-
ences?

Solution: Bridge and TemplateMethod have in common that they define abstract
methods in super classes which are implemented in subclasses. The difference
is that an instance of a TemplateMethod implements the abstract method, but
a Bridge hides how the abstract methods are implemented; interface and imple-
mentation are split. In a Bridge, abstraction and implementation can be refined
separately; this is impossible with a TemplateMethod.

b) Compare TemplateMethod and Strategy. What are commonalities, what are dif-
ferences?

Solution: TemplateMethod is used when parts of an algorithm should be varied.
With a Strategy, the entire algorithm is varied.

The pattern TemplateMethod is checked by the compiler. It can already discover in-
consistencies in the inheritance relation, and the typing. With Strategy, problems
occur at runtime and cannot be discovered statically.

c) Compare TemplateClass and GenericTemplateClass.

Solution: TemplateClass uses polymorphism to dispatch to the concrete hook
classes. In GenericTemplateClass, the polymorphic dispatch is expanded at com-
pile time, by the generic expansion. Hence, there is more type safety. The de-
sign pattern GenericTemplateClass flattens the inheritance hierarchy of the hook
classes. Hence, if there are too deep inheritance structures resulting, the designer
can flatten parts of the hierarchies by generic expansion.

7



Task 4 Homework for Next Exercise (optional)

In this task you shall investigate Search,1 a small framework encapsulating a variety of
search algorithms.

a) Go through the code and identify three Variability Patterns introduced in the
framework and outline their intend.

b) Create a class diagram for each found Variability Pattern highlighting the employed
design pattern.

References

[1] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design patterns:
Elements of Reusable Object-Oriented Software. Pearson Education, 1994.

1https://github.com/Eden-06/Search

8


	Template Method vs Template Class
	Objectifier, Reifying Methods
	Comparison of Variability Patterns
	Homework for Next Exercise (optional)

