
Faculty of Computer Science Institute of Software and Multimedia Technology, Software Technology Group

WS2019/20 – Design Patterns and Frameworks

Creational Patterns
Professor: Prof. Dr. Uwe Aßmann
Lectuer: Dr.-Ing. Sebastian Götz
Tutor: Dr. rer. nat. Marvin Triebel

Task 1 Amazing Creation

This exercise focuses on Creational Patterns as outlined in [1]. You are designing a
maze-based computer game (MazeGame). The game is based on a system of rectan-
gular rooms. Every room (Room) has 4 walls, either with a door to a neighboring room
(DoorWall) or without a door (Wall). The map of the whole system (Maze) consists
of these three element types. Figure 1 sketches the corresponding class diagram. Con-
versely, Listings 1 show an excerpt of the implementation of the Maze and Listing 2 the
construction of a MazeGame.

Listing 1: Java implementation of the Maze
1 public class Maze {
2 private Map <Integer , Room > rooms = new HashMap <Integer , Room >();
3 public void addRoom (Room r) { rooms.put (r.getRoomNo (), r); }
4 public Room roomNo (int r) { return rooms.get (r); }
5 }
6
7 public enum Direction { NORTH , EAST , SOUTH , WEST }
8 public class Room {
9 private Map <Direction , Wall > sides = new HashMap <Direction , Wall >();

10 private int roomNo;
11 public Room(int roomNo) {
12 this.roomNo = roomNo; }
13 public Wall getSide (Direction direction) {
14 return sides.get(direction); }
15 public void setSide(Direction direction , Wall wall) {
16 sides.put(direction , wall); }
17 /*...*/
18 }
19 public class Wall { /* ... */ }
20 public class DoorWall extends Wall {
21 private Room r1;
22 private Room r2;
23 private boolean isOpen;
24 public DoorWall (Room r1, Room r2) {
25 this.r1 = r1; this.r2 = r2; this.isOpen = false;
26 }
27 }

1



Maze

addRoom()
roomNo()

Room

roomNo

enter()
getSide()
setSide()

Wall

enter()

DoorWall

isOpen

enter()

MazeGame

createMaze()

rooms1 *

has sides
1

4

r1

r2

<<uses>>

<<uses>>
<<uses>><<uses>>

Figure 1: Class diagram of the MazeGame.

Listing 2: Construction of a Maze in the MazeGame
1 public class MazeGame {
2 public static void main(String [] argv) { createMaze (); }
3 private static Maze createMaze () {
4 Maze aMaze = new Maze();
5 Room r1 = new Room (1);
6 Room r2 = new Room (2);
7 DoorWall d = new DoorWall (r1, r2);
8 aMaze.addRoom(r1);
9 aMaze.addRoom(r2);

10 r1.setSide(Direction.NORTH , d)
11 r1.setSide(Direction.EAST , new Wall());
12 r1.setSide(Direction.SOUTH , new Wall());
13 r1.setSide(Direction.WEST , new Wall());
14 r2.setSide(Direction.NORTH , new Wall());
15 r2.setSide(Direction.EAST , new Wall());
16 r2.setSide(Direction.SOUTH , d);
17 r2.setSide(Direction.WEST , new Wall());
18 return aMaze;
19 }
20 }

Develop another game that uses the same plan of rooms. However, instead of simple
rooms, use magic rooms (containing booby traps that can only be survived if you know
a certain spell), and instead of simple doors, use doors that can be opened only with a
spell. Spells work, such that invoking a spell brings it into effect for the room in which
the player is located and for a certain amount of time, after which the effect wears off. If,
during this time, the player attempts to pass an enchanted door and if the spell invoked
is the spell required for the door, the player can pass the door. Otherwise, the player
cannot pass the door.

2



Since the construction of rooms (createMaze) is complex, do not duplicate the code.
Change the above design, such that the new program can create both the old and the
new game.

a) Use the design pattern AbstractFactory to achieve the desired flexibility. Draw a
modified class diagram and realize the implementation.

Solution: The following class diagram and listings illustrates the design of the
AbstractFactory.

Maze

addRoom()
roomNo()

Room

roomNo

enter()
getSide()
setSide()

Wall

enter()

DoorWall

isOpen

enter()

MagicWall

spell

enter()

MagicRoom

spell

enter()

MazeGame

initFactory()
createMaze()

MazeFactory

makeMaze()
makeRoom()
makeDoorWall()
makeWall()

MagicMazeFactory

makeRoom()
makeDoorWall()

rooms1 *

has sides
1

4

r1

r2

<<uses>>

factory

<<uses>>
<<uses>>

<<uses>>

<<uses>>

<<uses>> <<uses>>

Listing 3: Implementation of the AbstractFactory design pattern.
1 public class MazeFactory {
2 public Maze makeMaze (){ return new Maze(); }
3 public Maze makeRoom(int n){ return new Room(n); }
4 public Maze makeWall (){ return new Wall(); }
5 public Maze makeDoorWall(Room r1, Room r2){
6 return new DoorWall(r1 ,r2);
7 }
8 }
9 public class MagicMazeFactory extends MazeFactory {

10 private String pickSpell (){ /*...*/ }
11 public Maze makeRoom(int n){
12 return new MagicRoom(n,pickSpell ());
13 }
14 public Maze makeDoorWall(Room r1, Room r2){
15 return new MagicDoorWall(r1,r2 ,pickSpell ());
16 }
17 }

3



The effects of this design on the createMaze method is illustrated below.

Listing 4: Construction of a Maze using the AbstractFactory.
1 public class MazeGame {
2 public static void main(String [] argv) { initFactory ();

createMaze (); }
3 private static MazeFactory factory;
4 private static void initFactory (){
5 if (newversion)
6 factory=new MagicMazeFactory ();
7 else
8 factory=new MazeFactory ();
9 }

10 private static Maze createMaze () {
11 Maze aMaze = factory.makeMaze ();
12 Room r1 = factory.makeRoom (1);
13 Room r2 = factory.makeRoom (2);
14 DoorWall d = factory.makeDoorWall(r1, r2);
15 aMaze.addRoom(r1);
16 aMaze.addRoom(r2);
17 r1.setSide(Direction.NORTH , d)
18 r1.setSide(Direction.EAST , factory.makeWall ());
19 r1.setSide(Direction.SOUTH , factory.makeWall ());
20 r1.setSide(Direction.WEST , factory.makeWall ());
21 r2.setSide(Direction.NORTH , factory.makeWall ());
22 r2.setSide(Direction.EAST , factory.makeWall ());
23 r2.setSide(Direction.SOUTH , d);
24 r2.setSide(Direction.WEST , factory.makeWall ());
25 return aMaze;
26 }
27 }

4



b) Alternatively, use the pattern FactoryMethod to achieve the desired flexibility.
Draw a modified class diagram and realize the implementation.

Solution: The following class diagram and listings illustrates the FactoryMethod.

Maze

addRoom()
roomNo()

Room

roomNo

enter()
getSide()
setSide()

Wall

enter()

DoorWall

isOpen

enter()

MagicWall

spell

enter()

MagicRoom

spell

enter()

MazeGame

createMaze()
makeMaze()
makeRoom()
makeDoorWall()
makeWall()

MagicMazeGame

makeRoom()
makeDoorWall()

rooms1 *

has sides
1

4

r1

r2

<<uses>>

<<uses>>
<<uses>> <<uses>>

<<uses>> <<uses>>

Listing 5: Implementation of the FactoryMethod design pattern.
1 public class MazeGame {
2 public static void main(String [] argv) { new

MazeGame ().createMaze (); }
3 protected Maze createMaze () {/*...*/}
4 protected Maze makeMaze (){ return new Maze(); }
5 protected Maze makeRoom(int n){ return new Room(n); }
6 protected Maze makeWall (){ return new Wall(); }
7 protected Maze makeDoorWall(Room r1, Room r2){
8 return new DoorWall(r1 ,r2);
9 }

10 }
11 public class MagicMazeGame extends MazeGame {
12 public static void main(String [] argv) { new

MagicMazeGame ().createMaze (); }
13 private String pickSpell (){ /*...*/ }
14 public Maze makeRoom(int n){
15 return new MagicRoom(n,pickSpell ());
16 }
17 public Maze makeDoorWall(Room r1, Room r2){
18 return new MagicDoorWall(r1,r2 ,pickSpell ());
19 }
20 }

5



The effects of this design on the createMaze method is illustrated below.

Listing 6: Construction of a Maze using the FactoryMethod.
1 private static Maze createMaze () {
2 Maze aMaze = makeMaze ();
3 Room r1 = makeRoom (1);
4 Room r2 = makeRoom (2);
5 DoorWall d = makeDoorWall(r1, r2);
6 aMaze.addRoom(r1);
7 aMaze.addRoom(r2);
8 r1.setSide(Direction.NORTH , d)
9 r1.setSide(Direction.EAST , makeWall ());

10 r1.setSide(Direction.SOUTH , makeWall ());
11 r1.setSide(Direction.WEST , makeWall ());
12 r2.setSide(Direction.NORTH , makeWall ());
13 r2.setSide(Direction.EAST , makeWall ());
14 r2.setSide(Direction.SOUTH , d);
15 r2.setSide(Direction.WEST , makeWall ());
16 return aMaze;
17 }

c) Now, look back to your design from (a). You have programmed 2 different factories.
Change the design to have only one concrete factory. To retain the same flexibility
employ the Prototype pattern.

Solution: The following class diagram and listings illustrates the Prototype pat-
tern for factories.

Cloneable

clone():Object

Maze

addRoom()
roomNo()
clone():Maze

Room

roomNo

enter()
getSide()
setSide()
clone():Room

DoorWall

isOpen

enter()
clone():DoorWall

Wall

enter()
clone():Wall

MagicWall

spell

enter()
clone()
initialize()

MagicRoom

spell

enter()
clone()
initialize()

MazeGame

initFactory()
createMaze()

PrototypeMazeFactory

maze
room
wall
door

init(maze,room,wall,door)
makeMaze()
makeRoom()
makeWall()
makeDoorWall()

rooms1 *

has sides1

4

r1

r2

<<uses>>

factory

<<uses>>
<<uses>>

<<uses>> <<uses>>

6



Listing 7: Implementation of the Prototype design pattern.
1 public class PrototypeMazeFactory {
2 private Maze m; private Room r;
3 private Wall w; private DoorWall dw;
4
5 public init(Maze m, Room r, Wall w, DoorWall dw){
6 this.m=m; this.r=r; this.w=w; this.dw=dw;
7 }
8 public Maze makeMaze (){ return m.clone (); }
9 public Maze makeRoom(int n){

10 Room room=r.clone();
11 room.setNumber(n);
12 return room;
13 }
14 public Maze makeWall (){ return w.clone (); }
15 public Maze makeDoorWall(Room r1, Room r2){
16 DoorWall door=dw.clone();
17 door.setR1(r1);
18 door.setR2(r2);
19 return door;
20 }
21 }

The effects of this design on the createMaze method is illustrated below.

Listing 8: Construction of a Maze using the Prototype factory.
1 public class MazeGame {
2 public static void main(String [] argv) { initFactory ();

createMaze (); }
3 private static PrototypeMazeFactory factory=new

PrototypeMazeFactory ();
4 private static void initFactory (){
5 if (newversion)
6 factory.init(new Maze(), new MagicRoom (0),
7 new Wall(), new MagicDoorWall(null ,null));
8 else
9 factory.init(new Maze(), new Room (0),

10 new Wall(), new DoorWall(null ,null));
11 }
12 private static Maze createMaze () {
13 Maze aMaze = factory.makeMaze ();
14 Room r1 = factory.makeRoom (1);
15 Room r2 = factory.makeRoom (2);
16 DoorWall d = factory.makeDoorWall(r1, r2);
17 aMaze.addRoom(r1);
18 aMaze.addRoom(r2);
19 r1.setSide(Direction.NORTH , d)
20 r1.setSide(Direction.EAST , factory.makeWall ());
21 r1.setSide(Direction.SOUTH , factory.makeWall ());
22 r1.setSide(Direction.WEST , factory.makeWall ());
23 r2.setSide(Direction.NORTH , factory.makeWall ());
24 r2.setSide(Direction.EAST , factory.makeWall ());
25 r2.setSide(Direction.SOUTH , d);
26 r2.setSide(Direction.WEST , factory.makeWall ());
27 return aMaze;
28 }
29 }

7



d) Compare and evaluate your solutions of (a)–(c). Which solution is best for which
context?

Solution: Employing Prototypes does not pay off, if the prototype objects need
a lot of memory, because this would mean wasting of otherwise unused space.
Usually, this is negligible, but software for embedded systems is an example where
such issues become highly relevant. Also, the construction of a new object with
the standard allocator should be compared to copying. There may be differences:
use profiling to find out about it. Moreover, for prototypes, methods for cloning
and initializing must be programmed, which can be particularly difficult for deep
copies of complex objects.

The AbstractFactory pays off in comparison to FactoryMethods, if there are
several users of the set of factory methods, as then the factory can be published to
its users. Moreover, in contrast to FactoryMethods, AbstractFactories permit
changing the factory at runtime, allowing for switching from the old version of the
game to the new version.

If you solely want to allow for changing the kinds of objects that are constructed
in a given class or simply defer the decision to a later point in time, the simplest
solution would be to employ FactoryMethods.

Task 2 Building Mazes

In the previous task, we have looked at transparently and flexibly exchanging different
implementation classes for specific concepts. Creating a maze is still very complex,
though. In particular, it is easy to make mistakes because structural rules are not enforced
in any way.

a) To remedy this, use the Builder pattern to hide the complexity of the creation of
the rooms (createMaze). Design a builder for the original game and also for the
extension. Draw a modified UML class diagram and realize the implementation.

Solution: The following class diagram and listings illustrates the Builder pattern
to simplify the creation of the Maze.

Note: The design could be improved if it utilizes FactoryMethods for
creating the objects inside the builder.

8



Maze

addRoom()
roomNo()

Room

roomNo

enter()
getSide()
setSide()

Wall

enter()

DoorWall

isOpen

enter()

MagicWall

spell

enter()

MagicRoom

spell

enter()

MazeGame

createMaze()

MazeBuilder

buildMaze()
buildRoom()
buildDoorWall()
getMaze():Maze

MagicMazeBuilder

buildRoom()
buildDoorWall()

rooms1 *

has sides
1

4

r1

r2

<<uses>>

builder

<<uses>>
<<uses>>

<<uses>>

<<uses>>

<<uses>> <<uses>>

9



Listing 9: Implementation of the Builder design pattern.
1 public class MazeBuilder {
2 private Maze maze;
3
4 public getMaze (){ return maze; }
5 public void buildMaze (){
6 maze=new Maze();
7 }
8 public void buildRoom(int n){
9 if (maze.roomNo(n)==null){

10 Room r=new Room(n);
11 maze.addRoom(r);
12 r.setSide(Direction.NORTH , new Wall());
13 r.setSide(Direction.EAST , new Wall());
14 r.setSide(Direction.SOUTH , new Wall());
15 r.setSide(Direction.WEST , new Wall());
16 }
17 }
18 private static Direction oposite(Direction d){
19 switch(d){
20 case Direction.NORTH: return Direction.SOUTH;
21 case Direction.SOUTH: return Direction.NORTH;
22 case Direction.EAST: return Direction.WEST;
23 case Direction.WEST: return Direction.EAST;
24 }
25 }
26 public void buildDoor(int nr1 ,Direction d, int nr2){
27 Room r1=maze.roomNo(nr1);
28 Room r2=maze.roomNo(nr2);
29 if (r1!=null && r2!=null){
30 DoorWall dw = new DoorWall (r1 , r2);
31 r1.setSide(d, dw);
32 r2.setSide(oposite(d), dw);
33 }
34 }
35 }
36 public class MagicMazeBuilder extends MazeBuilder {
37 private String pickSpell (){ /*...*/ }
38 public void buildRoom(int n){
39 if (maze.roomNo(n)==null){
40 Room r=new MagicRoom(n,pickSpell ());
41 /*...*/
42 }
43 }
44 public void buildDoor(int nr1 ,Direction d, int nr2){
45 /*...*/
46 if (r1!=null && r2!=null){
47 DoorWall dw=new MagicDoorWall(r1 ,r2 ,pickSpell ());
48 /*...*/
49 }
50 }
51 }

10



The effects of this design on the createMaze method is illustrated below.

Listing 10: Construction of a maze using the Builder.
1 public class MazeGame {
2 public static void main(String [] argv) { initBuilder ();

createMaze (); }
3 private static MazeBuilder builder;
4 private static void initBuilder (){
5 if (newversion)
6 builder=new MagicMazeBuilder ();
7 else
8 builder=new MazeBuilder ();
9 }

10 private static Maze createMaze () {
11 builder.buildMaze ();
12 builder.buildRoom (1);
13 builder.buildRoom (2);
14 builder.buildDoor(1, Direction.NORTH ,2);
15 return builder.getMaze ();
16 }
17 }

b) How does the Builder enforces structural rules?
Solution: The Builder encapsulates the current product (Maze) and allows for
modifying it only through specifically provided operations in its interface. Inter-
nally the builder can check and verify logical and structural constraints.

Listing 11: Structural constraints.
1 public void buildDoor(int nr1 ,Direction d, int nr2){
2 Room r1=maze.roomNo(nr1);
3 if (r1==null)
4 throw new IllegalArgumentException ();
5 if (r1.getSide(d) instanceof DoorWall)
6 throw new IllegalArgumentException(
7 "Room "+nr1+" already has a Door in Direction "+d);
8 Room r2=maze.roomNo(nr2);
9 if (r2==null)

10 throw new IllegalArgumentException ();
11 if (r2.getSide(oposite(d)) instanceof DoorWall)
12 throw new IllegalArgumentException(
13 "Room "+nr2+" already has a Door in Direction "+oposite(d));
14 DoorWall dw = new DoorWall (r1 , r2);
15 r1.setSide(d, dw);
16 r2.setSide(oposite(d), dw);
17 }

While this still allows to connect arbitrary rooms with doors, the Builder could
also employ a local grid storing the room numbers. This is then used to add rooms
to a grid location and check their gird location when connecting rooms with doors.

Task 3 Creation in Parallel Hierarchies

Consider, you work for a company designing an UML figure editor. The model under
development can be looked at from different views. These views may be different dia-
grams showing different parts of the model, but they may also vary in the options for

11



manipulation they offer. Most importantly, there will be read-only views and mutable
views.
To this end, a class model for class diagrams, statecharts, and activity diagrams should

be developed. It should contain class hierarchies for some of the diagram elements:
classes and their inheritance arrows, states and their state transition arrows, activities
and their activity transition arrows.
An example of such an editor is ArgoUML.1 It is rather complex, but handles some of

the same issues treated in this exercise.

a) What design pattern is useful for this type of application, where users need different
views on their data?

Solution: The ModelViewController design pattern is very often used in such
situations. It allows for separating the data (model) from the views and the ma-
nipulation gestures (controller).

b) Design the required class hierarchies: Use separate class hierarchies for the read-only
and the mutable facets of a view. How are these facets linked? Which constraint
would you like to enforce for the classes in these hierarchies?

Solution: There are three hierarchies, one for the model, one for the read-only
figures, and one for the manipulators. We need to enforce a parallelism constraint
between these hierarchies, so that a ClassManipulator is always associated with
a ClassFigure, which in turn is always associated with a Class model object.

Model ModelElement

ModelRelation

ClassDiagram StateDiagram ActivityDiagram Class

Inheritance Association

State

StateTransition

Activity

ActivityTransition

Figure

ClassFigure

InheritanceLine

AssociationLineStateFigureStateTransitionLine

ActivityFigureActivityTransitionLine

Manipulator

ClassManipulator

InheritanceManipulator

AssociationManipulator StateManipulatorStateTransitionManipulator

ActivityManipulatorActivityTransitionManipulator

elements

from to

1http://argouml.tigris.org

12



c) Now, in a second step, extend the read-only hierarchies with factory methods for
the writeable diagrams and diagram elements. Sketch the implementations of the
factory methods.

Solution: Add a createManipulator() method to the top-level class of the figure
hierarchy. This is implemented in concrete figures, thus enforcing the parallelism
constraint.

Figure

createManipulator():Manipulator

ManipulatorClassFigure

InheritanceLine AssociationLine StateFigure

StateTransitionLineActivityFigureActivityTransitionLine

ClassManipulator

StateManipulator ActivityManipulator InheritanceManipulator

AssociationManipulatorStateTransitionManipulatorActivityTransitionManipulator

d) Now, refactor your design towards an AbstractFactory for manipulators. Discuss
the advantages and disadvantages of this approach.

Solution: The abstract factory has only one method createManipulatorFor(Figure
f), which uses the class of f to decide on the manipulator to create.

This solution has the advantage that it permits different kinds of manipulations
(e.g., resizing, deleting) for the same figure. On the downside, we need to use
reflection to obtain the class of the figure and switch on this information. This
decision is better handled by the polymorphic createManipulator() method from
the factory method design.

Figure

createManipulator():Manipulator

Manipulator

ClassFigure

InheritanceLine AssociationLine StateFigure

StateTransitionLine

ActivityFigureActivityTransitionLine ClassManipulator

StateManipulator ActivityManipulator InheritanceManipulator

AssociationManipulator

StateTransitionManipulatorActivityTransitionManipulator

ManipulatorFactory

INSTANCE:ManipulatorFactory

createManipulator(f:Figure):Manipulator

the following exercise.

References

[1] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design patterns:
Elements of Reusable Object-Oriented Software. Pearson Education, 1994.

[2] Dave Steinberg, Frank Budinsky, Ed Merks, and Marcelo Paternostro. EMF: eclipse
modeling framework. Pearson Education, 2008.

13


	Amazing Creation
	Building Mazes
	Creation in Parallel Hierarchies

