
Faculty of Computer Science Institute of Software and Multimedia Technology, Software Technology Group

WS2019/20 – Design Patterns and Frameworks

Creational Patterns
Professor: Prof. Dr. Uwe Aßmann
Lectuer: Dr.-Ing. Sebastian Götz
Tutor: Dr. rer. nat. Marvin Triebel

Task 1 Amazing Creation

This exercise focuses on Creational Patterns as outlined in [1]. You are designing a
maze-based computer game (MazeGame). The game is based on a system of rectan-
gular rooms. Every room (Room) has 4 walls, either with a door to a neighboring room
(DoorWall) or without a door (Wall). The map of the whole system (Maze) consists
of these three element types. Figure 1 sketches the corresponding class diagram. Con-
versely, Listings 1 show an excerpt of the implementation of the Maze and Listing 2 the
construction of a MazeGame.

Listing 1: Java implementation of the Maze
1 public class Maze {
2 private Map <Integer , Room > rooms = new HashMap <Integer , Room >();
3 public void addRoom (Room r) { rooms.put (r.getRoomNo (), r); }
4 public Room roomNo (int r) { return rooms.get (r); }
5 }
6
7 public enum Direction { NORTH , EAST , SOUTH , WEST }
8 public class Room {
9 private Map <Direction , Wall > sides = new HashMap <Direction , Wall >();

10 private int roomNo;
11 public Room(int roomNo) {
12 this.roomNo = roomNo; }
13 public Wall getSide (Direction direction) {
14 return sides.get(direction); }
15 public void setSide(Direction direction , Wall wall) {
16 sides.put(direction , wall); }
17 /*...*/
18 }
19 public class Wall { /* ... */ }
20 public class DoorWall extends Wall {
21 private Room r1;
22 private Room r2;
23 private boolean isOpen;
24 public DoorWall (Room r1, Room r2) {
25 this.r1 = r1; this.r2 = r2; this.isOpen = false;
26 }
27 }

1



Maze

addRoom()
roomNo()

Room

roomNo

enter()
getSide()
setSide()

Wall

enter()

DoorWall

isOpen

enter()

MazeGame

createMaze()

rooms1 *

has sides
1

4

r1

r2

<<uses>>

<<uses>>
<<uses>><<uses>>

Figure 1: Class diagram of the MazeGame.

Listing 2: Construction of a Maze in the MazeGame
1 public class MazeGame {
2 public static void main(String [] argv) { createMaze (); }
3 private static Maze createMaze () {
4 Maze aMaze = new Maze();
5 Room r1 = new Room (1);
6 Room r2 = new Room (2);
7 DoorWall d = new DoorWall (r1, r2);
8 aMaze.addRoom(r1);
9 aMaze.addRoom(r2);

10 r1.setSide(Direction.NORTH , d)
11 r1.setSide(Direction.EAST , new Wall());
12 r1.setSide(Direction.SOUTH , new Wall());
13 r1.setSide(Direction.WEST , new Wall());
14 r2.setSide(Direction.NORTH , new Wall());
15 r2.setSide(Direction.EAST , new Wall());
16 r2.setSide(Direction.SOUTH , d);
17 r2.setSide(Direction.WEST , new Wall());
18 return aMaze;
19 }
20 }

Develop another game that uses the same plan of rooms. However, instead of simple
rooms, use magic rooms (containing booby traps that can only be survived if you know
a certain spell), and instead of simple doors, use doors that can be opened only with a
spell. Spells work, such that invoking a spell brings it into effect for the room in which
the player is located and for a certain amount of time, after which the effect wears off. If,
during this time, the player attempts to pass an enchanted door and if the spell invoked
is the spell required for the door, the player can pass the door. Otherwise, the player
cannot pass the door.

2



Since the construction of rooms (createMaze) is complex, do not duplicate the code.
Change the above design, such that the new program can create both the old and the
new game.

a) Use the design pattern AbstractFactory to achieve the desired flexibility. Draw a
modified class diagram and realize the implementation.

b) Alternatively, use the pattern FactoryMethod to achieve the desired flexibility.
Draw a modified class diagram and realize the implementation.

c) Now, look back to your design from (a). You have programmed 2 different factories.
Change the design to have only one concrete factory. To retain the same flexibility
employ the Prototype pattern.

d) Compare and evaluate your solutions of (a)–(c). Which solution is best for which
context?

Task 2 Building Mazes

In the previous task, we have looked at transparently and flexibly exchanging different
implementation classes for specific concepts. Creating a maze is still very complex,
though. In particular, it is easy to make mistakes because structural rules are not enforced
in any way.

a) To remedy this, use the Builder pattern to hide the complexity of the creation of
the rooms (createMaze). Design a builder for the original game and also for the
extension. Draw a modified UML class diagram and realize the implementation.

b) How does the Builder enforces structural rules?

Task 3 Creation in Parallel Hierarchies

Consider, you work for a company designing an UML figure editor. The model under
development can be looked at from different views. These views may be different dia-
grams showing different parts of the model, but they may also vary in the options for
manipulation they offer. Most importantly, there will be read-only views and mutable
views.
To this end, a class model for class diagrams, statecharts, and activity diagrams should

be developed. It should contain class hierarchies for some of the diagram elements:
classes and their inheritance arrows, states and their state transition arrows, activities
and their activity transition arrows.
An example of such an editor is ArgoUML.1 It is rather complex, but handles some of

the same issues treated in this exercise.

1http://argouml.tigris.org

3



a) What design pattern is useful for this type of application, where users need different
views on their data?

b) Design the required class hierarchies: Use separate class hierarchies for the read-only
and the mutable facets of a view. How are these facets linked? Which constraint
would you like to enforce for the classes in these hierarchies?

c) Now, in a second step, extend the read-only hierarchies with factory methods for
the writeable diagrams and diagram elements. Sketch the implementations of the
factory methods.

d) Now, refactor your design towards an AbstractFactory for manipulators. Discuss
the advantages and disadvantages of this approach.

the following exercise.

References

[1] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design patterns:
Elements of Reusable Object-Oriented Software. Pearson Education, 1994.

[2] Dave Steinberg, Frank Budinsky, Ed Merks, and Marcelo Paternostro. EMF: eclipse
modeling framework. Pearson Education, 2008.

4


	Amazing Creation
	Building Mazes
	Creation in Parallel Hierarchies

