
Faculty of Computer Science Institute of Software and Multimedia Technology, Software Technology Group

WS2018/19 – Design Patterns and Frameworks

Extensibility Patterns
Professor: Prof. Dr. Uwe Aßmann
Lectuer: Dr.-Ing. Sebastian Götz
Tutor: Dr. rer. nat. Marvin Triebel

Task 1 The Degree of Polynomials

Consider the set of polynomials over one variable (x) and their degree1. Examples are:

2x2 − 5 with degree 2 (1)
x(177x− 15x) with degree 2 (2)(

x− 2x2
)
(2 + 4x) with degree 3 (3)

a) Which design pattern can be used for representing polynomials? Draw the class
diagram!

Solution: We can use the Composite Pattern, as shown in the following diagram.

Polynomial

CompositePolynomial LeafPolynomial

VarPolynomial ConstPolynomialProductPolynomial SumPolynomial

b) What is the smallest yet reasonable amount of classes in the diagram?

1https://en.wikipedia.org/wiki/Degree_of_a_polynomial

1

https://en.wikipedia.org/wiki/Degree_of_a_polynomial

Solution: As discussed in the exercise, this depends on the context and many
variations exist. One may also include a composite class for Exponentiation or for
Brackets. One way to have a smaller number of classes is to merge LeafPolynomial
into one class:

Polynomial

CompositePolynomial
LeafPolynomial

int degree
double coeff icient

ProductPolynomial SumPolynomial

c) The function int countSigns() shall count the number of minus signs in a given
polynomial. Which design patterns are suitable? Which patterns have which
(dis)advantages?

Solution: The Visitor Pattern can be applied as follows.

Polynomial

acceptVisitor(PolyVisitor v)

CompositePolynomial

getOperand1(): Polynomial
getOperand2(): Polynomial

LeafPolynomial

VarPolynomial

acceptVisitor(PolyVisitor v)

v.visitVar(this)

ConstPolynomial

double getValue()
acceptVisitor(PolyVisitor v)

v.visitConst(this)

ProductPolynomial

acceptVisitor(PolyVisitor v)

v.visitProd(this)

SumPolynomial

acceptVisitor(PolyVisitor v)

v.visitSum(this)

PolyVisitor

visitConst(ConstPolynomial c)
visitProd(ProdPolynomial p)
visitSum(SumPolynomial s)
visitVar(VarPolynomial v)

SignVisitor

int signCounter

visitConst(ConsPolynomial c)
visitVar(VarPolynomial v)
visitProd(ProdPolynomial p)
visitSum(SumPolynomial s)

if (c.getValue() < 0) signCounter+ + ;

s.getOperand1().acceptVisitor(this); s.getOperand2().acceptVisitor(this);

Alternatively, it is also possible to apply Object Recursion.

d) Which design pattern can be used to compute the degree of a polynomial?

Solution: We may apply Object Recursion as shown in the following figure. Al-
ternatively, it is also possible to apply again the Visitor pattern.

e) Implement the function int degree() in the created class of a polynomial.

2

Solution: We implement the Object Recursion as follows:

Polynomial

degree(): int

CompositePolynomial LeafPolynomial

VarPolynomial

degree()

return 1;

ConstPolynomial

double getValue()
degree()

return 0;

ProductPolynomial

Polynomial f1
Polynomial f2

degree()

return Integer.max(f1.countSigns(), f2.countSigns());

SumPolynomial

Polynomial s1
Polynomial s2

degree()

return s1.degree() + s2.degree();

Note: In the shown data structure x2 is encoded as x ·x, thus every VarPolynomial
has degree 1. Alternatively, the degree may be an integer property of VarPolyno-
mial.

Task 2 Secant Method of polynomials

The secant method2 is a simple way to find a zero of a polynomial numerically. A
pseudcode version can be found on the Wikipedia article. The secant method evaluates
the polynomial for each iteration at a new x.

a) What is the Interpreter pattern? What is its structure?

Solution: The structure is as follows:

Client

AbstractExpression

interpret(Context c)

Context Terminal

interpret(Context c)

NonTerminal

interpret(Context c)

«uses»

b) Implement the method evaluate(double x) in the class Polynomial of the previ-
ous task. Use the Interpreter pattern.

Listing 1: Implementation of Interpreter in pseudo code.
1 class Assignment {
2 Assignment(double x) {

2https://en.wikipedia.org/wiki/Secant_method

3

https://en.wikipedia.org/wiki/Secant_method

3 this.x=x;
4 }
5 double getX() {
6 return this.x;
7 }
8 }
9

10 class SumPolynomial {
11 /* ... */
12 double interpret(Assignment a) {
13 return this.operand1.interpret(a) + this.operand2.interpret(a);
14 }
15 }
16
17 class ProdPolynomial {
18 /* ... */
19 double interpret(Assignment a) {
20 return this.operand1.interpret(a) * this.operand2.interpret(a);
21 }
22 }
23
24 class VarPolynomial {
25 /* ... */
26 double interpret(Assignment a) {
27 return a.getX();
28 }
29 }
30
31 class ConstPolynomial {
32 /* ... */
33 double interpret(Assignment a) {
34 return this.getValue ();
35 }
36 }

c) optional: Implement the secand method and test the Polynomial class and evalu-
ation function.

d) You want to extend your class Polynomial to geometric functions (sinus, cosinus,
tangens) of polynimals. Which design pattern can you use for the extension?

Solution: We can use the Decorator design pattern.

Listing 2: Implementation of Interpreter in pseudo code.
1 class SinusPolynomial extends Polynomial {
2 Polynomial p;
3 SinusPolynomial(Polynomial p) {
4 this.p=p;
5 }
6 double interpret(Assignment a) {
7 return Math.Sinus(this.p.interpret(a));
8 }
9 }

4

Task 3 Chained Observer

Consider the chained variant of the observer design pattern with three agents A, B, and
C. Consider the following case: A observers B and B observes C.

a) Draw a sequence diagram of the given scenario, where C notifies its observers.

Solution:

A

A

B

B

C

C

register

register

setChanged

not ify

not ify

b) Now assume that also C observes A. Which problem occurs? How can we fix that
problem?

Solution: We have cyclic observers and subjects. Thus, notification will never ter-
minate. We can fix the problem using a ChangeManager. The solution is described
in slide set 4, slide 49 from the lecture.

c) Draw a sequence diagram of your solution.

Solution: The change managet informas every interested participant and assure

termination.

A

A

B

B

ChangeManager

ChangeManager

C

C

register(B)

register(C)

register(A)

setChanged

not ify

not ify

not ify

not ify

d) In your solution, did you apply the Mediator design pattern?

Solution: Yes, the ChangeManager is a special case of the Mediator pattern.

5

	The Degree of Polynomials
	Secant Method of polynomials
	Chained Observer

