TECHNISCHE
UNIVERSITAT
DRESDEN

Software
Technology
Group

Faculty of Computer Science Institute of Software and Multimedia Technology, Software Technology Group

WS2018/19 — Design Patterns and Frameworks

Extensibility Patterns

Professor: Prof. Dr. Uwe Amann
Lectuer: Dr.-Ing. Sebastian Gotz
Tutor: Dr.rer.nat. Marvin Triebel

Task 1 The Degree of Polynomials

Consider the set of polynomials over one variable (z) and their degree!. Examples are:

222 — 5 with degree 2 (1)
(1772 — 15x) with degree 2 (2)
(z — 2:1:2) (2 + 4z) with degree 3 (3)

a) Which design pattern can be used for representing polynomials? Draw the class
diagram!

Solution: We can use the Composite Pattern, as shown in the following diagram.

Polynomial
CompositePolynomial LeafPolynomial

D AN

ProductPolynomial SumPolynomial VarPolynomial ConstPolynomial

b) What is the smallest yet reasonable amount of classes in the diagram?

https://en.wikipedia.org/wiki/Degree_of _a_polynomial

https://en.wikipedia.org/wiki/Degree_of_a_polynomial

Solution:

As discussed in the exercise, this depends on the context and many

variations exist. One may also include a composite class for Exponentiation or for
Brackets. One way to have a smaller number of classes is to merge LeafPolynomial

into one class:

Polynomial

%S

CompositePolynomial

LeafPolynomial

int degree
double coefficient

ProductPolynomial

SumPolynomial

c¢) The function int countSigns() shall count the number of minus signs in a given

polynomial.
(dis)advantages?

Solution:

PolyVisitor

visitConst(ConstPolynomial c)
visitProd (ProdPolynomial p)
visitSum(SumPolynomial s)
visitVar(VarPolynomial v)

SignVisitor

int signCounter

isitConst (ConsPolynomial & [~ if(c.getValue() < 0) signCounter+ +;]

visitVar (VarPolynomial v)
visitProd(ProdPolynomial p)
visitsum(SumPolynomial s)

s.getOperand1().acceptVisitor(this); s.getOperand2().acceptVisitor(this); Iﬁ

The Visitor Pattern can be applied as follows.

Polynomial

acceptVisitor (PolyVisitor v)

CompositePolynomial

i 1

getOperand1(): Poly I]

getOperand2(): Polynomial Zr

ProductPolynomial

[sumPolynomial VarPolynomial

Which design patterns are suitable? Which patterns have which

ConstPolynomial

|
i

[
[

v)

|
i

[|
| = >

[accept v

v.visitProd(this)

v.\nsns;m(m.s)H

v.visitVar(this)

Alternatively, it is also possible to apply Object Recursion.

d) Which design pattern can be used to compute the degree of a polynomial?

Solution:

ternatively, it is also possible to apply again the Visitor pattern.

e) Implement the function int degree() in the created class of a polynomial.

double getValue()
acceptVisitor (PolyVisitor v)

We may apply Object Recursion as shown in the following figure. Al-

Solution: We implement the Object Recursion as follows:

Polynomial f1
Polynomial f2

degree()

i

ProductPolynomial / SumPolynomial

Polynomial

degree(): int

CompositePolynomial

Polynomial s1
Polynomial s2

degree()

‘ return Integer.max(f1.countSigns(), f2AcountSigns()):|ﬁ

‘ return sl.degree() + deegree();lﬁ

LeafPolynomial

AN

VarPolynomial ConstPolynomial
degree() gg; t’;g etValue()

return 1; %

Note: In the shown data structure x

2

is encoded as x - x, thus every VarPolynomial

has degree 1. Alternatively, the degree may be an integer property of VarPolyno-

mial.

Task 2 Secant Method of polynomials

The secant method? is a simple way to find a zero of a polynomial numerically. A
pseudcode version can be found on the Wikipedia article. The secant method evaluates
the polynomial for each iteration at a new =x.

a) What is the Interpreter pattern? What is its structure?

Solution: The structure is as follows:

Client

|

AbstractExpression

interpret(Context c)

//’ «uses» ;j

Terminal

Context

NonTerminal

interpret(Context c)

interpret(Context c)

b) Implement the method evaluate(double x) in the class Polynomial of the previ-
ous task. Use the Interpreter pattern.

Listing 1: Implementation of Interpreter in pseudo code.

1| class Assignment {
2 Assignment (double x) {

’https://en.wikipedia.org/wiki/Secant_method

https://en.wikipedia.org/wiki/Secant_method

3 this.x=x;

4 ¥

5 double getX () {

6 return this.x;

7 }

8|}

9

10| class SumPolynomial {

11 /* .. */

12 double interpret (Assignment a) {
13 return this.operandl.interpret(a) + this.operand2.interpret(a);
14 }

15|}

16

17| class ProdPolynomial {

18 /* .. %/

19 double interpret(Assignment a) {
20 return this.operandl.interpret(a) * this.operand2.interpret(a);
21 }

22|}

23

24| class VarPolynomial {

25 /* .. %/

26 double interpret(Assignment a) {
27 return a.getX();

28 ¥

29| }

30

31| class ConstPolynomial {

32 VA SR Y

33 double interpret(Assignment a) {
34 return this.getValue();

35 }

36|}

c) optional: Implement the secand method and test the Polynomial class and evalu-
ation function.

d) You want to extend your class Polynomial to geometric functions (sinus, cosinus,
tangens) of polynimals. Which design pattern can you use for the extension?
Solution: We can use the Decorator design pattern.

Listing 2: Implementation of Interpreter in pseudo code.

1| class SinusPolynomial extends Polynomial {
2 Polynomial p;

3 SinusPolynomial (Polynomial p) {

4 this.p=p;

5 ¥

6 double interpret(Assignment a) {

7 return Math.Sinus(this.p.interpret(a));
8 }

9| >

Task 3 Chained Observer

Consider the chained variant of the observer design pattern with three agents A, B, and
C. Consider the following case: A observers B and B observes C.

a) Draw a sequence diagram of the given scenario, where C' notifies its observers.

1 1
1
1
1
1
1
1

I
register _1
—>
1
1 register
EEEm—
| :setChanged
1
I
I notify
I —
I
notify 1
€———
1

b) Now assume that also C' observes A. Which problem occurs? How can we fix that
problem?

1
1
1
1
1
|
1
1
1
1
1 1
1 1
1 1
1 1
1 1
1
1

Solution:

Solution: We have cyclic observers and subjects. Thus, notification will never ter-
minate. We can fix the problem using a ChangeManager. The solution is described
in slide set 4, slide 49 from the lecture.

c) Draw a sequence diagram of your solution.

Solution: The change managet informas every interested participant and assure

ChangeManager
T T T T
' '
'
I

: regis‘ter(B)

' register(C) 3 !
: register(A) 3
| | setChanged

' !

1 _ notify !

: notify : |
| non‘ify i
: notify

] I
' ' !
I ‘ 1

ChangeManager

termination.

d) In your solution, did you apply the Mediator design pattern?

Solution: Yes, the ChangeManager is a special case of the Mediator pattern.

	The Degree of Polynomials
	Secant Method of polynomials
	Chained Observer

