
Faculty of Computer Science Institute of Software and Multimedia Technology, Software Technology Group

WS2019/20 – Design Patterns and Frameworks

Architecture Mismatch Patterns
Professor: Prof. Dr. Uwe Aßmann
Lectuer: Dr.-Ing. Sebastian Götz
Tutor: Dr. rer. nat. Marvin Triebel

Task 1 Medi(t)ative Air

This exercise focuses on specific Design Patterns that allow for connecting possibly in-
compatible classes and structures [1].
In this task a flight booking service should be designed, which enables querying for

the cheapest flight to a destination of your choice out of a number of providers, as well
as booking a selected flight. For the sake of simplicity, assume that each airline provides
their own proprietary class, which provides operations for querying for connections and
booking a flight. To simplify the integration of the different proprietary classes your
application provides an IFlightProvider interface, which encompasses the following
generic methods:

• getConnections(departure,destination,date):List<Connection> permits query-
ing all connections from an airport of departure to a destination airport at a
given date (around the given time).

• getPrice(connection):double returns the price of the given connection in Euro
or throw an exception if the connection was invalid.

• bookFlight(connection,payment):boolean permits booking a given connection
providing the payment details. This method indicates its success returning true,
whereas its failure is indicated with an exception.

IFlightProvider

getConnections(departure:String,destination:String,date:LocalDateTime):List<Object>
getPrice(connection:Object):double
bookFlight(connection:Object,payment:String):boolean

1

a) Based on the IFlightProvider interface, the first task is to design and implement
a Class Adapter for the class provided by Best Wings, as depicted below:

BestWingsBooking

setSource(source:String)
setTarget(target:String)
setDate(date:ZonedDateTime)
canQuery():boolean
query():List<BWConnection>
book(connection:BWConnection,payment:String):boolean

BWConnectionRepository

INSTANCE

findAll():List<BWConnection>
add(connection):boolean

BWConnection

-source
-target
-date
-flightnumber

getPrice():Double
getDetails():String

«uses»

«uses» connections
*

Solution: To apply the Class Adapter design pattern, a subclass of the adapted
classBestWingsBooking has to be created, which implements the IFlightProvider
interface. This solution is feasible, due to two reasons. First, BestWingsBooking
has no direct references to other classes, as it only has implicit dependencies to
the Singleton BWConnectionRepository and BWConnection. Second, the class
BestWingsBooking already provides services that are very similar to those required
by the interface IFlightProvider.

Note an Object Adapter would also be suitable.

BestWingsBooking

setSource(source:String)
setTarget(target:String)
setDate(date:ZonedDateTime)
canQuery():boolean
query():List<BWConnection>
book(connection:BWConnection,payment:String):boolean

BWConnectionRepository

INSTANCE

findAll():List<BWConnection>
add(connection):boolean

BWConnection

-source
-target
-date
-flightnumber

getPrice():Double
getDetails():String

IFlightProvider

getConnections(departure,destination,date:LocalDateTime):List<Object>
getPrice(connection:Object):double
bookFlight(connection:Object,payment):boolean

BestWingsProvider

getConnections(departure,destination,date:LocalDateTime):List<Object>
getPrice(connection:Object):double
bookFlight(connection:Object,payment):boolean

«uses»

«uses» connections*

2

Following this design the BestWingsProvider is implemented below.

Listing 1: Implementation of the BestWingsProvider class.
1 public class BestWingsProvider extends BestWingsBooking implements

IFlightProvider{
2 public List <Object > getConnections(String departure , String

destination ,LocalDateTime date){
3 setSource(departure);
4 setTarget(destination);
5 setDate(date.toLocalDateTime ());
6 if (canQuery ())
7 return query();
8 else
9 return Collections.emptyList ();

10 }
11 public boolean bookFlight(Object connection , String payment){
12 if (! connection instanceof BWConnection)
13 return false;
14 return book((BWConnection) connection ,payment);
15 }
16 public double getPrice(Object connection){/*...*/}
17 }

3

b) The next task is be to design and implement an Object Adapter to the interface
IFlightProvider for the final class provided by Raining Air, shown below:

«final»
RainingBooking

payment

getRoute(from:String,to:String):RainingRoute
getFlights(route:RainingRoute,date:String):List<RainingFlight>
setPaymentDetail(payment:String)
book(flight:RaintingFlight):boolean

«final»
RainingFlight

-date
-time
-flightnumber

getConnection():Connection
printFlight():String

«final»
RainingRoute

-from
-to
-pricemap

getPrice(date):double

flights *

routes* 1

Solution: To apply the Object Adapter design pattern, the RainingAirProvider
is created as a new class, which implements the IFlightProvider interface and has
a reference to a RainingBooking instance. This design is the only option, due to
two reasons. First, the class is marked as <<final>> and cannot be inherited
from. However, even if we could subclass it, the RainingBooking class still has two
composite relations that are filled by the framework upon instantiation. Hence, the
adapter class would lake the filled relations, if it is not instantiated by the Raining
Air framework. Consequently, the Object Adapter is the only viable solution.

«final»
RainingBooking

payment

getRoute(from:String,to:String):RainingRoute
getFlights(route:RainingRoute,date:String):List<RainingFlight>
setPaymentDetail(payment:String)
book(flight:RaintingFlight):boolean

«final»
RainingFlight

-date
-time
-flightnumber

getConnection():Connection
printFlight():String

«final»
RainingRoute

-from
-to
-pricemap

getPrice(date):double

IFlightProvider

getConnections(departure,destination,date:LocalDateTime):List<Object>
getPrice(connection:Object):double
bookFlight(connection:Object,payment):boolean

RainingAirProvider

getConnections(departure,destination,date:LocalDateTime):List<Object>
getPrice(connection:Object):double
bookFlight(connection:Object,payment):boolean

flights *

routes

*

1
booking 1

4

The corresponding implementation of the RainingAirProvider is sketched below.

Listing 2: Implementation of the RainingAirProvider class.
1 public class RainingAirProvider implements IFlightProvider{
2 private String format=/*...*/
3 private RainingBooking booking;
4 public RainingAirProvider(RainingBooking booking){
5 this.booking=booking;
6 }
7 public List <Object > getConnections(String departure , String

destination ,LocalDateTime date){
8 RainingRoute r=booking.getRoute(departure ,destination);
9 return booking.getFlights(r,date.format(formatter));

10 }
11 public boolean bookFlight(Object connection , String payment){
12 if (! connection instanceof RainingFlight)
13 return false;
14 booking.setPaymentDetail(payment);
15 return booking.book((RainingFlight) connection);
16 }
17 public double getPrice(Object connection){/*...*/}
18 }

5

c) Now the flight booking service can be designed, which enables clients to query
for the cheapest flights and book the preferred flight independent of the airline
providing it. Moreover, airlines should not require (and receive) any knowledge
from the flights of other airplanes on other flight providers known to the system.
Furthermore, the number and implementations details for each airline should be
hidden from the users and clients of your application.

Which design pattern could be used? Apply this pattern to design and implement
the flight booking service.

Solution: The Mediator design pattern would be a good choice, as it establishes
a common interface to the services of the different flight providers, i.e., querying
and booking, while hiding their implementation details.

IFlightProvider

getConnections(departure:String,destination:String,date:LocalDateTime):List<Object>
getPrice(connection:Object):double
bookFlight(connection:Object,payment:String):boolean

RainingAirProviderBestWingsProviderClient

FlightMediator

getOffers(departure,destination,date:LocalDateTime):List<FlightOffer>
book(offer:FlightOffer,payment:String):boolean

FlightOffer

connection:Object

book(payment:String):boolean
getPrice():double
toString():String

Comparator
T

compare(a:T,b:T):int

ByPriceComparator

compare(a:FlightOffer,b:FlightOffer):int

«uses» 1..*
providers

«creates»

provider 1

comparator 1

Following the Mediator design pattern the implementation of the FlightMediator
is shown below.

Listing 3: Implementation of the FlightMediator class.
1 public class FlightMediator{
2 private final Comparator <FlightOffer > comparator=
3 new ByPriceComparator ();
4 public List <FlightOffer > getOffers(String departure , String

destination , LocalDateTime date){
5 List <FlightOffer > result=new ArrayList <>();
6 for (IFlightProvider p:providers)
7 for (Object c:p.getConnections(departure ,destiantion ,date))
8 result.add(new FlightOffer(c,p));
9 Collections.sort(result ,comparator);

10 return result;
11 }
12 public boolean book(FlightOffer offer , String payment){
13 return offer.book(payment);
14 }
15 }

6

Task 2 Facade Travel Agency

After introducing the flight booking service, this task extends it to a full travel booking
service, which permits planning and booking the whole trip from selecting the cheapest
flight to picking the best hotel. For simplicity, it is assumed that there exist a similar
hotel booking service, i.e., a class for querying and booking hotels. However, the clients
should only need to interact with one service class.

a) Which design pattern should be employed? What is its structure?

Solution: The Facade design pattern [1], depicted below, could be employed, as
it hides the complex interactions of multiple objects.

PackageA PackageB PackageC

ClassA

task1(b:ClassB):ClassC

ClassB

task2(a:ClassA, c:ClassC):boolean

ClassC

task3():ClassA

Client Facade

doComplexTask():boolean;

ClassA a=new ClassA();
ClassB b=new ClassB();
ClassC c=a.task1(b);
return b.task2(c.task3(),c);

«uses» «uses» «uses»

ClassA

ClassB

ClassC

Client

Client

Facade

Facade ClassA ClassB ClassC

doComplexTask

new ClassA

new ClassB

task1(b)

new ClassC

task3()

result

task2(result,c)

7

b) Design and implement the travel booking service.

Solution: Accordingly, the faced of the Travel Agency encapsulated the querying
and booking of the flight to, the flight back, as well as the hotel. The resulting
structure is depicted below.

Client

TravelAgencyFacade

closestAirport(city:String):String
travelTo(fromcity:String,tocity:String,from:LocalDateTime,to:LocalDateTime):List<TravelPlan>
bookTrip(offer:TravelPlan,payment:String):boolean
getFlightsTo(plan:TravelPlan):List<FlightOffer>
changeFlightTo(plan:TravelPlan,offer:FlightOffer):boolean
getFlightsFrom(plan:TravelPlan):List<FlightOffer>
changeFlightFrom(plan:TravelPlan,offer:FlightOffer):boolean

FlightMediator

getOffers(departure,destination,date:LocalDateTime):List<FlightOffer>
book(offer:FlightOffer,payment:String):boolean

HotelMediator

getOffers(arrival:LocalDateTime,nights:int,city:String):List<HotelOffer>
isAvailable(offer:HotelOffer):boolean
book(offer:HotelOffer,payment:String):boolean

TravelPlan

-fromcity
-from
-tocity
-to

book(payment:String):boolean
getPrice():double
toString():String

FlightOffer

connection:Object

book(payment:String):boolean
getPrice():double
toString():String

HotelOffer

hotelstay:Object

isAvailable():boolean
book(payment:String):boolean
getPrice():double
toString():String

IHotelProvider

IFlightProvider

«uses»

1
flights

1
hotels

«creates»

1
flightTo

1
flightBack

1
stay

1..*
providers

«creates»

provider 1

1..*
providers

«creates»

provider 1

The complex process of assembling TravelPlans to a given destination city is
implemented into the travelTo method shown below.

Listing 4: Implementation of the travelTo method.
1 public List <TravelPlan > travelTo(fromcity:String , tocity:String ,

from:LocalDateTime , to:LocalDateTime){
2 String departure=closestAirport(fromcity);
3 String destination=closestAirport(tocity);
4 int nights=ChronoUnit.DAYS.between(from , to);
5 List <TravelPlan > result=new ArrayList <>();
6 for (HotelOffer hotel : hotels.getOffers(from ,nights ,tocity)){
7 //Pick cheapest flights
8 FlightOffer fromcity =

flights.getOffers(departure ,destination ,from).first ();
9 FlightOffer tocity =

flights.getOffers(destination ,departure ,to).first();
10 result.add(new TravelPlan(fromcity , from , flightto , hotel ,

tocity , to, flightback));
11 }
12 return result;
13 }

8

c) Usually, users do not immediately book their travel, yet keep several trip plans
before they finally book one. As the implementation details of these plans should
be hidden from the client, employ the Memento design pattern [1]. Draw a corre-
sponding class diagram and implement your design.
Solution: The general structure of the Memento design pattern is as follows:

Caretaker

Originator

-state

save():Memento
restore(m:Memento)

Memento

-state

-getState():state
-setState(state)

Memento save(){
Memento m=new Memento();
m.setState(state);
returnm;

}

void restore(Memento m){
this.state = m.getState();

}

«creates»

This design permits a Caretaker to save the state of the Originator and later
restore it, without violating the integrity of the internal state of the Originator.

Memento

Caretaker

Caretaker

Originator

Originator Memento

save()

new Memento

setState(Originator.state)

return Memento

restore(Memento)

Memento.getState()

return State

Note that the Originator can only access the private methods of the
Memento, if it was implemented as an inner class.

9

By employing the Memento design pattern, the travel agency can be refactored to
permit Clients to save their favorite TravelPlans, whereas the FavoritePlan rep-
resents the Memento.

Client

FavoritePlan

toString():String

TravelAgencyFacade

closestAirport(city:String):String
travelTo(fromcity:String,tocity:String,from:LocalDateTime,to:LocalDateTime):List<TravelPlan>
bookTrip(offer:TravelPlan,payment:String):boolean
getFlightsTo(plan:TravelPlan):List<FlightOffer>
changeFlightTo(plan:TravelPlan,offer:FlightOffer):boolean
getFlightsFrom(plan:TravelPlan):List<FlightOffer>
changeFlightFrom(plan:TravelPlan,offer:FlightOffer):boolean
restore(favorite:FavoritePlan):TravelPlan

FavoritePlanImpl

-fromcity
-from
-tocity
-to
-flightTo:FlightOffer
-flightBack:FlightOffer
-stay:HotelOffer

-FavoritePlanImpl()
toString():String

TravelPlan

-fromcity
-from
-tocity
-to
-flightTo:FlightOffer
-flightBack:FlightOffer
-stay:HotelOffer

book(payment:String):boolean
getPrice():double
toString():String
save():FavoritePlan
restore(favorite:FavoritePlan)

FavoritePlan save(){
return new FavoritePlanImpl(
fromcity,
from,
tocity, /*...*/

);
}

void restore(FavoritePlan favorite){
fromcity = favorite.fromcity;
from = favorite.from;
tocity = favorite.tocity;
//...
}

*
favorites

«uses»

«creates»

«creates»

10

Task 3 Homework (optional)

In preparation for the exam, the homework assigns you to explore the relations between
the various design patterns.

a) Compare TemplateMethod and TemplateClass. What are commonalities and dif-
ferences? How do they facilitate variability? What is their relation to the Template
Hook and the Objectifier patterns?

b) Compare the extensibility patterns, such as, Decorator, Composite, Observer, and
ChainOfResponsibility. Which mechanisms permits extensibility? What is the
relation of these patterns to TemplateClass and ObjectRecursion?

c) Now compare the glue patterns Adapter, Facade, and Mediator. How do these
address architectural mismatch? What is their relation to the variability and ex-
tensibility patterns?

11

d) Sketch a chart highlighting the relations between the following design patterns
TemplateMethod, TemplateClass, Objectifier, Bridge, Strategy, State, Proxy,
Visitor, Adapter, Facade, Mediator, ObjectRecursion, Decorator, Composite,
ChainOfResponsibility, and Observer. Use arrows to indicate specialization, e.g,
based on class structure, behaviour, or intent. If necessary, add helper concepts
to represent commonalities, which have not yet been abstracted into an individual
pattern.

Solution: The following sketch shows the relations of the various design patterns.

Extensibility

Variability

Template Method Template Class

Objectifier

Bridge

Strategy‘Delegation’

Object Recursion

CompositeDecorator

Proxy

variation of
the template

identical

signatures

In pr
eH

an
dl

eR
eq

ue
st

,
po

st
H

an
dl

eR
eq

ue
st

by intent

delegation to sibling
delegation

to super

multiplicity *

successor defined

by structural rules
multiplicity 1

State

Chain of Responsibility

delegation to self

Observer

Glue

Mediator

Adapter

Facade

wrap many classes

multiplicity *

Visitor

double

dispatch

Template Hook
alloc. to

same class
reify
hook

References

[1] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design patterns:
Elements of Reusable Object-Oriented Software. Pearson Education, 1994.

12

	Medi(t)ative Air
	Facade Travel Agency
	Homework (optional)

