
Faculty of Computer Science Institute of Software and Multimedia Technology, Software Technology Group

WS2018/19 – Design Patterns and Frameworks

Architecture Mismatch Patterns
Professor: Prof. Dr. Uwe Aßmann
Lectuer: Dr.-Ing. Sebastian Götz
Tutor: Dr.-Ing. Thomas Kühn

Task 1 Medi(t)ative Air

This exercise focuses on specific Design Patterns that allow for connecting possibly in-
compatible classes and structures [1].
In this task a flight booking service should be designed, which enables querying for

the cheapest flight to a destination of your choice out of a number of providers, as well
as booking a selected flight. For the sake of simplicity, assume that each airline provides
their own proprietary class, which provides operations for querying for connections and
booking a flight. To simplify the integration of the different proprietary classes your
application provides an IFlightProvider interface, which encompasses the following
generic methods:

• getConnections(departure,destination,date):List<Connection> permits query-
ing all connections from an airport of departure to a destination airport at a
given date (around the given time).

• getPrice(connection):double returns the price of the given connection in Euro
or throw an exception if the connection was invalid.

• bookFlight(connection,payment):boolean permits booking a given connection
providing the payment details. This method indicates its success returning true,
whereas its failure is indicated with an exception.

IFlightProvider

getConnections(departure:String,destination:String,date:LocalDateTime):List<Object>
getPrice(connection:Object):double
bookFlight(connection:Object,payment:String):boolean

1



a) Based on the IFlightProvider interface, the first task is to design and implement
a ClassAdapter for the class provided by Best Wings, as depicted below:

BestWingsBooking

setSource(source:String)
setTarget(target:String)
setDate(date:ZonedDateTime)
canQuery():boolean
query():List<BWConnection>
book(connection:BWConnection,payment:String):boolean

BWConnectionRepository

INSTANCE

findAll():List<BWConnection>
add(connection):boolean

BWConnection

-source
-target
-date
-flightnumber

getPrice():Double
getDetails():String

«uses»

«uses» connections
*

b) The next task is be to design and implement an ObjectAdapter to the interface
IFlightProvider for the final class provided by Raining Air, shown below:

«final»
RainingBooking

payment

getRoute(from:String,to:String):RainingRoute
getFlights(route:RainingRoute,date:String):List<RainingFlight>
setPaymentDetail(payment:String)
book(flight:RaintingFlight):boolean

«final»
RainingFlight

-date
-time
-flightnumber

getConnection():Connection
printFlight():String

«final»
RainingRoute

-from
-to
-pricemap

getPrice(date):double

flights *

routes* 1

c) Now the flight booking service can be designed, which enables clients to query
for the cheapest flights and book the preferred flight independent of the airline
providing it. Moreover, airlines should not require (and receive) any knowledge
from the flights of other airplanes on other flight providers known to the system.
Furthermore, the number and implementations details for each airline should be
hidden from the users and clients of your application.

Which design pattern could be used? Apply this pattern to design and implement
the flight booking service.

2



Task 2 Facade Travel Agency

After introducing the flight booking service, this task extends it to a full travel booking
service, which permits planning and booking the whole trip from selecting the cheapest
flight to picking the best hotel. For simplicity, it is assumed that there exist a similar
hotel booking service, i.e., a class for querying and booking hotels. However, the clients
should only need to interact with one service class.

a) Which design pattern should be employed? What is its structure?

b) Design and implement the travel booking service.

c) Usually, users do not immediately book their travel, yet keep several trip plans
before they finally book one. As the implementation details of these plans should be
hidden from the client, employ the Memento design pattern. Draw a corresponding
class diagram.

Task 3 Homework for Next Exercise

In preparation for the exam, the homework assigns you to explore the relations between
the various design patterns.

a) Compare TemplateMethod and TemplateClass. What are commonalities and dif-
ferences? How do they facilitate variability? What is their relation to the Template
Hook and the Objectifier patterns?

b) Compare the extensibility patterns, such as, Decorator, Composite, Observer, and
ChainOfResponsibility. Which mechanisms permits extensibility? What is the
relation of these patterns to TemplateClass and ObjectRecursion?

c) Now compare the glue patterns Adapter, Facade, and Mediator. How do these
address architectural mismatch? What is their relation to the variability and ex-
tensibility patterns?

d) Sketch a chart highlighting the relations between the following design patterns
TemplateMethod, TemplateClass, Objectifier, Bridge, Strategy, State, Proxy,
Visitor, Adapter, Facade, Mediator, ObjectRecursion, Decorator, Composite,
ChainOfResponsibility, and Observer. Use arrows to indicate specialization, e.g,
based on class structure, behaviour, or intent. If necessary, add helper concepts
to represent commonalities, which have not yet been abstracted into an individual
pattern.

References

[1] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design patterns:
Elements of Reusable Object-Oriented Software. Pearson Education, 1994.

3


	Medi(t)ative Air
	Facade Travel Agency
	Homework for Next Exercise

