
Faculty of Computer Science Institute of Software and Multimedia Technology, Software Technology Group

WS2019/20 – Design Patterns and Frameworks

Role-Based Modeling for Design Patterns (Part 2)

Professor: Prof. Dr. Uwe Aßmann
Lecturer: Dr.-Ing. Sebastian Götz
Tutor: Dr. rer. nat. Marvin Triebel

Task 1 Role-based Design Pattern Catalog

This exercise focuses on finally applying the Compartment Role Object Model (CROM) [3]
to formalize and compose the various design patterns discussed in this course. In detail,
the first task is to create role-based models of various design patterns, ultimately, creating
a role-based design pattern catalog similar to Riehle’s design pattern catalog [4].

a) Design a compartment type and role model for the Observer design pattern.

Solution: The Observer design pattern encompasses two roles, i.e., Subject and
Observer. The corresponding CROM model is depicted below.

1



b) Design a compartment type and role model for the Bridge design pattern.

Solution: This design pattern involves two role hierarchies, i.e., one for abstrac-
tions and one for implementations, as shown below. There is a role-prohibition
between the Abstraction and the Implementation role type. Moreover, if an ob-
ject plays the Abstraction or Implementation role, then it must play a role in the
corresponding role groups Abstractions or Implementations, respectively.

c) Design a compartment type and role model for the Composite design pattern.

Solution: This design pattern establishes a graph or tree structure by means of
Parent and Child role types, which are linked with an irreflexive or acyclic rela-
tionship one-to-many. Each Node must be either a Parent or a Child (or both), as
indicated by the Elements role group. Moreover, there must be one Root, which is
prohibited to be a Child but must be a Parent.

2



Task 2 Applying and Composing Design Patterns

Applying a role-based design pattern entails assigning the domain classes to play the
appropriate role types from the design pattern.
In detail, this task focuses on a file system including files and directories. Both files

and directories have a modifiable name and return their size in Bytes. While files return
the size of their content, directories should return the accumulated size of all containing
directories and files. The properties of the File and Directory classes are depicted
below, whereas both are considered natural types.

3



Thus far, the Directory class does not encompass files and directories. Yet, neither
Directories nor Files do notify changes to their name or size to their parent directories.
Moreover, size changes should be propagated up to the root of the directory hierarchy.

a) First, apply the role-based Composite design pattern to organize the file system’s
structure, such that Directories can contain both Files and other Directories.

Solution: To apply the Composite design pattern, we simply declare that the
Directory fills all role types, whereas the File only fills the Child and Node
role types. Moreover, the sumSize() operation must be implemented in Parent
and Child. The Parent simply iteratively calls Child.sumSize() to summarize its
size. In contrast, the Child must dispatch to the Parent role, if it is simultaneously
played, and otherwise calls getSize() on its player. This ensures that the size is
accumulated throughout all levels of the tree. The resulting application is depicted
in the following CROM model.

4



b) Second, apply the role-based Observer design pattern to propagate any size changes
of a File up to its parent Directory.

Solution: Adding the Observer design pattern, requires to let the Observer role
type be filled by Directory and the Subject role type by both Directory and
File. In addition, the update() method is implemented to fetch the Parent role
from the Directory playing the Observer role and call sumSize() to accumulated
and setSize() to update the directory’s size. Finally, the setSize() method
of the Directory and the append() method of the File must be augmented to
invoke the Subject.notify() method after their execution. Notably though, this
change can also be done by implementing both methods in the Subject role type.
Nonetheless, the main downside of this approach, is the separate maintenance of
both the composite structure and the observes relationship, which can easily lead
to inconsistencies between the two.

5



c) Combine the role models of both the Observer and the Composite compartment
type by means of role constraints, to create a sound combination of both design
patterns in a new compartment type.

Solution: Utilizing role constraints it is rather simple to combine the role models
of the Composite design pattern and the Observer design pattern. In detail, a
new compartment type is created containing all role types, relationships, and role
constraints of both role models. Then both role models can be linked, by declaring
that any Child must be a Subject and any Parent must be a Subject, whereas
the observes relationship should mirror the children relationship.1 The resulting
CROM model for the combined design pattern is as follows:

1An advanced version of CROM introduces inter-relationship constraints for exactly that purpose.

6



d) Reapply the combined design pattern to the File and Directory classes of the file
system. Compare this solutions to their separate application.

Solution: The application of the combined CompositeObserver design pattern, is
done similar to the previous separate application, i.e., by defining the fulfillments of
the Directory and File classes accordingly. In contrast, the combined implemen-
tation, can internally ensure that for each Child added to a Parent a corresponding
Subject is added and observed by the parent’s Observer role. Consequently, this
guarantees that the Parent role exists in the Observer.update() method. Never-
theless, the main benefit of this approach, is the congruent management of both the
composite structure and observes relationship, which can be guaranteed by only
exposing the add() and remove() methods of the Parent role type to its player.
In conclusion, only the setSize() method of the Directory and the append()
method of the File must be augmented to invoke the Subject.notify() method
after their execution.

References

[1] Dirk Bäumer, Dirk Riehle, Wolf Siberski, and Martina Wulf. The role object pattern.
In Washington University Dept. of Computer Science. Citeseer, 1998.

[2] Erich Gamma. Extension object. In Pattern languages of program design

7



3, pages 79–88. Addison-Wesley Longman Publishing Co., Inc., 1997. URL
https://www.ecs.syr.edu/faculty/fawcett/handouts/CSE776/PatternPDFs/
ExtensionObject.pdf.

[3] Thomas Kühn, Böhme Stephan, Sebastian Götz, and Uwe Aßmann. A combined
formal model for relational context-dependent roles. In Proceedings of the 2015
ACM SIGPLAN International Conference on Software Language Engineering, pages
113–124. ACM, 2015. doi: 10.1145/2814251.2814255. URL http://dl.acm.org/
citation.cfm?id=2814255.

[4] Dirk Riehle. A role-based design pattern catalog of atomic and composite pat-
terns structured by pattern purpose. Ubilab Technical Report 97.1. 1., Union Bank
of Switzerland, Zürich, Switzerland, 1997. URL http://citeseerx.ist.psu.edu/
viewdoc/download?doi=10.1.1.496.7976&rep=rep1&type=pdf.

[5] Yannis Smaragdakis and Don Batory. Implementing layered designs with mixin
layers. In European Conference on Object-Oriented Programming, pages 550–570.
Springer, 1998. URL citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.23.
7182&rep=rep1&type=pdf.

8

https://www.ecs.syr.edu/faculty/fawcett/handouts/CSE776/PatternPDFs/ExtensionObject.pdf
https://www.ecs.syr.edu/faculty/fawcett/handouts/CSE776/PatternPDFs/ExtensionObject.pdf
http://dl.acm.org/citation.cfm?id=2814255
http://dl.acm.org/citation.cfm?id=2814255
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.496.7976&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.496.7976&rep=rep1&type=pdf
citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.23.7182&rep=rep1&type=pdf
citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.23.7182&rep=rep1&type=pdf

	Role-based Design Pattern Catalog
	Applying and Composing Design Patterns

