
Faculty of Computer Science Institute of Software and Multimedia Technology, Software Technology Group

WS2019/20 – Design Patterns and Frameworks

Frameworks
Professor: Prof. Dr. Uwe Aßmann
Lectuer: Dr.-Ing. Sebastian Götz
Tutor: Dr. rer. nat. Marvin Triebel

Task 1 Framework Hook Fundamentals

This exercise focuses on the framework hook patterns introduced by Pree [1] and extended
in the lecture.

a) Enumerate the framework hook patterns introduced in the lecture?

Solution: The following figure (cf. Task 1b) enumerates the different framework
hook patterns discussed in the lecture.

b) Classify these framework hook patterns with respect to whether they foster black-
box, gray-box, or white-box reuse?

Solution: In general, all design patterns, where hooks are only bound by means
of inheritance, only permit white-box reuse. In contrast, design patterns, which
bind hooks solely by means of delegation, fully facilitate black-box reuse. Besides
that, design patterns that employ both inheritance and delegation to bind hooks,
are denoted to permit gray-box reuse. Applying this simple classification to the
framework hook patterns yields the following figure.

1



Task 2 The Log4J Framework

Log4J is a Java-based logging framework supporting powerful logging statements.1 The
framework’s architecture2 revolves around different kinds of Loggers that use multiple
Appenders to Layout logging messages.3

a) Investigate the relation between the interfaces Appender and Layout. Which frame-
work hook pattern can be identified?

Solution: The following simplified class diagram can be retrieved from the Log4J
documentation:

Logger

name:String

LoggerConfig

name:String

LoggerContext Configuration StrSubstitutor StrLookup

Appender Layout

Filter

parent

1 1 1 1 1..*

1

*

* 1 * * 1 0..1

*

*
1

*

1

Apparently, there is a T–H pattern with Appender as the template and Layout as
the hook.

b) Investigate the relation between the interfaces Logger and Appender. Which frame-
work hook pattern can be identified?

Solution: There is a reference from Logger to LoggerConfig, whereas there is
another many-to-many reference from LoggerConfig to Appender. Consequently,
we can identify a n-T–H pattern from Logger as template to Appender as hook,
which is established via the LoggerConfig.

c) Following the identified hooks: Is Log4J rather a black-box or a white-box frame-
work?

Solution: As the framework hook patterns in Log4J are either T–H or n-T–H, it
can be classified as a black-box framework.

1http://logging.apache.org/log4j
2https://logging.apache.org/log4j/2.0/manual/architecture.html
3https://logging.apache.org/log4j/2.0/log4j-core/apidocs/index.html

2



Task 3 The JavaFX Framework

The JavaFX framework4 [2] is a state-of-the-art framework for the development of inter-
active user interfaces supporting both classic 2D applications as well as 3D applications.
The core concept of this framework revolves around scenes modeling the user interface,
events describing user interactions, and effects transforming elements in a scene.

a) Look at the core classes in javafx.scene and their relationships. Identify at least
one framework hook pattern?

Solution: The following class diagram, sketches a portion of the javafx.scene
package, which highlights the Composite design pattern employed to create complex
scenes.

Scene

Parent

Node

setEventHandler(eventType,eventHandler)
contains(x,y)
snapshot(params,image)

EventHandler

Pane

Stage

ShapeImageViewControl

FlowPane GridPane

*

1

1
1

*

Conversely, the prevalent framework hook pattern is the n-H<=T pattern, whereas
the Pane is the template and the Node is the hook. Besides that, there is a rela-
tionship between Node and EventHandler, which is a n-T–H pattern.

b) Look at the core classes in javafx.event and their relationships. Identify at least
one framework hook pattern?

Solution: In contrast to javafx.scenes, the following class diagram highlights
the core classes and interfaces of the javafx.event package.

4https://docs.oracle.com/javase/8/javafx/api/overview-summary.html

3



EventDispatchChain

append(eventDispatcher:EventDispatcher)
dispatchEvent(Event event):Event
prepend(eventDispatcher:EventDispatcher)

EventDispatcher

dispatchEvent(event:Event, tail:EventDispatchChain):Event

EventHandler
T extends Event

handle(event:T)

Event

-consumed:boolean

fireEvent(eventTarget:EventTarget, event:Event)
getEventType(): EventType<?>
getTarget():EventTarget
consume()
isConsumed():boolean

EventTarget

buildEventDispatchChain(tail:EventDispatchChain)

EventType
T extends Event

name:String

getName():String
getSuperType():EventType<? super T>

ActionEvent

getEventType():EventType<ActionEvent>

InputEvent

WindowEvent

MediaMarkerEvent

WeakEventHandler

handle(event)
isGarbegeCollected():boolean

«uses»

«uses»

«creates»

target

type«weak»

ref

First of all, the Proxy pattern between the EventHandler and the WeakEventHandler
yields the obvious H<=T framework hook pattern. Additionally, the EventDispatchChain
can be considered as an n-TH framework hook pattern.

c) Following the identified hooks: Is JavaFX rather a black-box or a white-box frame-
work?

Solution: As the framework hook patterns in JavaFX are mostly H<=T or n-
H<=T, it should be classified as a gray-box framework.

References

[1] Wolfgang Pree. Essential framework design patterns. Framework, 2:1–7. URL http:
//citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.28.5510&rank=1.

[2] Kim Topley. JavaFX Developer’s Guide. Pearson Education, 2010.

4

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.28.5510&rank=1
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.28.5510&rank=1

	Framework Hook Fundamentals
	The Log4J Framework
	The JavaFX Framework

