
Future-Proof Software-Systems [Part 2]

© Prof. Dr. Frank J. Furrer: FPSS - WS 19/20 1
Version 0.1/06.08.2019

Future-Proof Software-Systems (FPSS)

h
ttp

s
:/

/
s
ta

tic
1
.s

q
u

a
re

s
p
a
c
e
.c

o
m

Part 2

Lecture WS 2019/20: Prof. Dr. Frank J. Furrer

https://static1.squarespace.com/

Future-Proof Software-Systems [Part 1]

© Prof. Dr. Frank J. Furrer: FPSS - WS 19/20 2

Our journey:

©
w

w
w

.1
2
3
rf.c

o
m

–
u

s
e
d

w
ith

p
e
rm

is
s
io

n

«Software

everywhere»

Managed Evolution

Strategy
Future-Proof

Software-Systems

Technial Debt

Architecture Erosion

Architecture

The Future-Proof Software-

Systems Engineer

Systems & Software

Engineering
Three devils of

Systems Engineering

Special Topics
Architecting for

Changeability

Architecting for

Dependability

http://www.123rf.com/

Future-Proof Software-Systems [Part 2]

© Prof. Dr. Frank J. Furrer: FPSS - WS 19/20 3

Content [Part 2]:

• Software Lifecycle

• Technical Debt

• Architecture Erosion

• Managed Evolution

• The Importance of Architecture

• Industrial Architecture Framework

• Architecture Principles and their Use

Future-Proof Software-Systems [Part 2]

© Prof. Dr. Frank J. Furrer: FPSS - WS 19/20 4

Software Lifecycle

Future-Proof Software-Systems [Part 2]

© Prof. Dr. Frank J. Furrer: FPSS - WS 19/20 5

Software Lifecycle

Idea

or

Market Need

Productive Life of the Sofware

Evolution

End of

Usefulness

h
ttp

s
:/

/
o
p
e
n

c
lip

a
rt.o

rg

https://openclipart.org/

Future-Proof Software-Systems [Part 2]

© Prof. Dr. Frank J. Furrer: FPSS - WS 19/20 6

Reqs Des Impl Int

Modification Project

Reqs Des Impl Int

Modification Project

CreateModify Delete

The software-system

evolves continuously

via modification projects

Module
Program
Application
Database

Dependency
Relationship

Development Team

Change

Uncertainty

Future-Proof Software-Systems [Part 2]

© Prof. Dr. Frank J. Furrer: FPSS - WS 19/20 7

«Software

Quality»

time

Complexity
Technical Debt

h
ttp

:/
/
th

o
re

a
u

.c
o
lo

n
ia

l.n
e
t

Architecture Erosion

Architects

http://thoreau.colonial.net/

Future-Proof Software-Systems [Part 2]

© Prof. Dr. Frank J. Furrer: FPSS - WS 19/20 8

Evolution: Add, change, delete

«Software

Quality»

time

Change UncertaintyComplexity

Technical Debt
Architecture Erosion

Development TeamsArchitects Managed Evolution

Future-Proof Software-Systems [Part 2]

© Prof. Dr. Frank J. Furrer: FPSS - WS 19/20 9

Evolution: Add, change, delete

«Software

Quality»

time

Change UncertaintyComplexity

Technical Debt
Architecture Erosion

Development TeamsArchitects Managed Evolution

Future-Proof Software-Systems [Part 2]

© Prof. Dr. Frank J. Furrer: FPSS - WS 19/20 10

Technical Debt

Future-Proof Software-Systems [Part 2]

© Prof. Dr. Frank J. Furrer: FPSS - WS 19/20 11

Can Software
deteriorate
(erode) over time?

h
ttp

:/
/
w

w
w

.s
u

e
d
d
e
u

ts
c
h

e
.d

e

http://www.sueddeutsche.de/

Future-Proof Software-Systems [Part 2]

© Prof. Dr. Frank J. Furrer: FPSS - WS 19/20 12

Can Software
deteriorate
(erode) over time?

h
ttp

:/
/
w

w
w

.s
u

e
d
d
e
u

ts
c
h

e
.d

e

h
ttp

:/
/
w

w
w

.la
c
d
p
.o

rg

Causes:

• Technical Debt

• Architecture

Erosion

http://www.sueddeutsche.de/
http://www.lacdp.org/

Future-Proof Software-Systems [Part 2]

© Prof. Dr. Frank J. Furrer: FPSS - WS 19/20 13

Technical Debt

Definition:

Technical debt in an IT-system is the

result of all those necessary things that

you choose not to do now, but will impede

future evolution if left undone

Ward Cunningham, 2007

Technical Debt:

is generated (mostly)

by internal factors

Future-Proof Software-Systems [Part 2]

© Prof. Dr. Frank J. Furrer: FPSS - WS 19/20 14

Causes of Technical Debt:

• Architecture Erosion

• Disruptive technology

• Accumulation of mistakes + shortcuts (e.g. breaking partitions)

• Dead code (missed explementations)

• Bad (or ignored) programming best practices & guidelines

• Violation of Architecture Principles, e.g. unmanaged redundancy

• Deferred refactoring

• Progress in software-engineering (e.g. programming languages)

• Careless or skipped upgrades

• Missing or bad documentation

… and some more

Future-Proof Software-Systems [Part 2]

© Prof. Dr. Frank J. Furrer: FPSS - WS 19/20 15

Technical debt sneaks into the system

– some time seen, some time unseen

h
tt

p
:/

/
w

w
w

.s
p
y
d
e
ro

n
li
n
e
s
.c

o
m

The continuous accumulation of technical debt

is many times justified by the statement:

«we know we should do it differently – but there is no time

now – we will fix it later» (… and forget about)

is a massive danger for any IT-system

h
ttp

:/
/
w

o
rld

a
rts

m
e
.c

o
m

http://www.spyderonlines.com/
http://worldartsme.com/

Future-Proof Software-Systems [Part 2]

© Prof. Dr. Frank J. Furrer: FPSS - WS 19/20 16

The first kind of technical debt is the kind that is incurred unintentionally

For example, a design approach just turns out to be error-prone or a junior

programmer just writes bad code. This technical debt is the result of doing a

poor job.

Steve McConnell, 2007

h
ttp

:/
/
c
re

d
it-c

o
lle

c
tio

n
s
.c

a

http://credit-collections.ca/

Future-Proof Software-Systems [Part 2]

© Prof. Dr. Frank J. Furrer: FPSS - WS 19/20 17

The second kind of technical debt is the kind that is incurred intentionally

This occurs when an organization makes a conscious decision to optimize for

the present rather than for the future

Steve McConnell, 2007

h
ttp

:/
/
c
re

d
it-c

o
lle

c
tio

n
s
.c

a

This includes decisions like "We don't have time to reconcile

these two databases, so we'll write some glue code that keeps

them synchronized for now and reconcile them after we ship“

http://credit-collections.ca/

Future-Proof Software-Systems [Part 2]

© Prof. Dr. Frank J. Furrer: FPSS - WS 19/20 18

Time

Quality

Properties

Technical

Debt Accumulation

Projects

Future-Proof Software-Systems [Part 2]

© Prof. Dr. Frank J. Furrer: FPSS - WS 19/20 19

http://dandev91.wordpress.com/

Cost of one source line of

embedded systems code:

€ 15.00 … € 40.00

Average Technical Debt

in each source line of

embedded systems code:

€ 2.70

[Deloitte Consulting LLP: Tech Trends 2014]

… worrying research:

http://dandev91.wordpress.com/

Future-Proof Software-Systems [Part 2]

© Prof. Dr. Frank J. Furrer: FPSS - WS 19/20 20

Example: Database Extension (1/3)

Application
Application
Application
Application
Application

New

ApplicationDB

Extensions

Solution 1: Extend DB2 Database

Application
Application
Application
Application
Application

New

Application

Ext Problem: New database standard = ORACLE

Future-Proof Software-Systems [Part 2]

© Prof. Dr. Frank J. Furrer: FPSS - WS 19/20 21

Example: Database Extension (2/3)

Solution 2: Full migration to ORACLE Database

Application
Application
Application
Application
ApplicationMigration

Ext New

Application

Solution 3: Bridging

New

Application

Application
Application
Application
Application

Bridging:

• Synchronization

• Alignment
«We will fix it later»

Future-Proof Software-Systems [Part 2]

© Prof. Dr. Frank J. Furrer: FPSS - WS 19/20 22

Example: Database Extension (3/3)

Solution 2: Full migration to ORACLE Database

Application
Application
Application
Application
ApplicationMigration

Ext New

Application

Solution 3: Bridging

New

Application

Application
Application
Application
Application

Bridging:

• Synchronization

• Alignment
«We will fix it later»

Future-Proof Software-Systems [Part 2]

© Prof. Dr. Frank J. Furrer: FPSS - WS 19/20 23

Example: 5th Language (1/3)

Deutsch: Kontostand am 31.12.2012

Französisch: Solde bancaire le 31.12.2013

Italienisch: Saldo il 31.12.2013

Englisch: Balance at 31.12.2013

Until 1995 Swiss banking IT-systems used 4 languages:

Spanisch: Saldo el 31.12.2013
Due to globalization,

in Y2000 Spanish

had to be offered to

the customers
PROGRAMM N

…

(1;12;Kontostand am x.y.z)

(2;12;Solde bancaire le x.y.z)

(3;12;Saldo il x.y.z)

(4;12;Balance at x.y.z)

…

Traditionally, the texts

were part of the

individual programs

identified by language

code and text code

Future-Proof Software-Systems [Part 2]

© Prof. Dr. Frank J. Furrer: FPSS - WS 19/20 24

PROGRAMM N

…

(1;12;Kontostand am x.y.z)

(2;12;Solde bancaire le x.y.z)

(3;12;Saldo il x.y.z)

(4;12;Balance at x.y.z)

(5;12;Saldo x.y.z)

…

Individually modify all the programs

which need Spanish output (ca. 5‘000

applications)

Solution 1:

Example: 5th Language (2/3)

PROGRAMM N

…

…

Create a central

language file

and export it to

all programs

Solution 2:

(1;12;Kontostand am x.y.z)

(2;12;Solde bancaire le x.y.z)

(3;12;Saldo il x.y.z)

(4;12;Balance at x.y.z)

(5;12;Saldo x.y.z)

PROGRAMM N

…

… PROGRAMM N

…

…

Future-Proof Software-Systems [Part 2]

© Prof. Dr. Frank J. Furrer: FPSS - WS 19/20 25

PROGRAMM N

…

(1;12;Kontostand am x.y.z)

(2;12;Solde bancaire le x.y.z)

(3;12;Saldo il x.y.z)

(4;12;Balance at x.y.z)

(5;12;Saldo x.y.z)

…

Individually modify all the programs

which need Spanish output (ca. 5‘000

applications)

Solution 1:

Example: 5th Language (3/3)

PROGRAMM N

…

…

Create a central

language file

and export it to

all programs

Solution 2:

(1;12;Kontostand am x.y.z)

(2;12;Solde bancaire le x.y.z)

(3;12;Saldo il x.y.z)

(4;12;Balance at x.y.z)

(5;12;Saldo x.y.z)

PROGRAMM N

…

… PROGRAMM N

…

…

Future-Proof Software-Systems [Part 2]

© Prof. Dr. Frank J. Furrer: FPSS - WS 19/20 26

Reqs Des Impl Int

Modification Project

Reqs Des Impl Int

Modification Project

CreateModify Delete
Technical debt is introduced

via projects

Future-Proof Software-Systems [Part 2]

© Prof. Dr. Frank J. Furrer: FPSS - WS 19/20 27

What can we do against the accumulation of technical debt?

Business

Value

Gain of Business Value

Quality Properties

Project Pn

Allow additional:

• Money (€, $)

• Time (TPn)

in each project

Fight

Technical

Debt

Accumulation

Future-Proof Software-Systems [Part 2]

© Prof. Dr. Frank J. Furrer: FPSS - WS 19/20 28

Technical Debt is hidden deep in the program code

– and is very difficult to find and to eliminate

Technical Debt is rarely documented

– it «just happens» and is forgotten

Accumulation of Technical Debt in a software system

is a very strong long-time risk

- and its elimination is costly and difficult

Future-Proof Software-Systems [Part 2]

© Prof. Dr. Frank J. Furrer: FPSS - WS 19/20 29

«We will fix it later»

… is the direct way to (software) hell

h
tt

p
s
:/

/
w

w
w

.b
e
h

a
n

c
e
.n

e
t

https://www.behance.net/gallery/312826/ROAD-TO-HELL

Future-Proof Software-Systems [Part 2]

© Prof. Dr. Frank J. Furrer: FPSS - WS 19/20 30

Textbook Textbook

Chris Sterling:

Managing Software Debt – Building for

Inevitable Change

Pearson Education, USA, 2013. ISBN 978-0-

321-94861-8

Philippe Kruchten, Robert Nord, Ipek Ozkaya:

Managing Technical Debt – Reducing

Friction in Software Development

Pearson Education, USA, 2019. ISBN 978-0-

135-64593-2

Future-Proof Software-Systems [Part 2]

© Prof. Dr. Frank J. Furrer: FPSS - WS 19/20 31

Architecture Erosion

Future-Proof Software-Systems [Part 2]

© Prof. Dr. Frank J. Furrer: FPSS - WS 19/20 32

«Architecture»

h
ttp

s
:/

/
w

w
w

.th
e
u

rb
a
n

d
e
v
e
lo

p
e
r.c

o
m

«Architecture»: We know the term from building, e.g. towns

… it means defining, planning, and drawing:

• the buildings

• the connecting infrastructure (roads, water supply, electricity, …)

• the services (emergency services, public transport, …)

 so that the town functions in a satisfactory way for the inhabitants and visitors

https://www.theurbandeveloper.com/

Future-Proof Software-Systems [Part 2]

© Prof. Dr. Frank J. Furrer: FPSS - WS 19/20 33

«Architecture»

h
tt

p
s
:/

/
w

w
w

.t
h

e
u

rb
a
n

d
e
v
e
lo

p
e
r.

c
o
m h

ttp
s
:/

/
w

w
w

.re
s
e
a
rc

h
g
a
te

.n
e
t

Layout of roads,

rails, bridges,

buildings, …

= Structure

Quality Poperties:

Emergency Services

etc.

Public Security

https://www.theurbandeveloper.com/
https://www.researchgate.net/

Future-Proof Software-Systems [Part 2]

© Prof. Dr. Frank J. Furrer: FPSS - WS 19/20 34

What does «Architecture» mean in software-engineering?

IT Architecture Definition:

“The fundamental organization of a system embodied in

its parts,

their relationships to each other

and to the environment,

and the principles guiding its design and evolution”
[adapted from IEEE00]

Structure

Elements

Principles

Future-Proof Software-Systems [Part 2]

© Prof. Dr. Frank J. Furrer: FPSS - WS 19/20 35

Parts

Relationships

Organization

Principles

Application

Landscape

Application

Component

Program,

Module

Future-Proof Software-Systems [Part 2]

© Prof. Dr. Frank J. Furrer: FPSS - WS 19/20 36

Technology-

independent

Technology-

dependent

• Operating System

• Protocols

• Progamming

Language

• DB-System

• …

Program,

Module

Application

Landscape

Application

Component

Component

architecture

architecture

architecture

A
rc

h
it

e
c
tu

re

design

design

D
e
s
ig

n

Future-Proof Software-Systems [Part 2]

© Prof. Dr. Frank J. Furrer: FPSS - WS 19/20 37

Lookahead: Importance of Software-Architecture

Later in the lecture we will demonstrate:

Software-Architecture is the single most important factor

for future-proof software-systems

h
ttp

:/
/
w

w
w

.c
p
tib

d
.c

o
m

http://www.cptibd.com/

Future-Proof Software-Systems [Part 2]

© Prof. Dr. Frank J. Furrer: FPSS - WS 19/20 38

Every system has an architecture

• If the architecture is implicit (not engineered, not visible, not documented) -

we can hardly influence it

• If the architecture is explicit (continuously engineered, well documented,

respected by all stakeholders) – we can explain it, reason about it, improve it

Reqs Des Impl Int

Project

External

impact

Architecture deterioration

Architecture improvement

Architecture erosion

Future-Proof Software-Systems [Part 2]

© Prof. Dr. Frank J. Furrer: FPSS - WS 19/20 39

Definition: Architecture Erosion

Architecture erosion is the process where an initially well-designed, adequate

architecture of a software-system is gradually destroyed by the activities of

evolution and maintenance of the software-system.

Architecture erosion sneaks into the system

– some times seen, some times unseen

… but it gradually destroys the system!

h
tt

p
:/

/
w

w
w

.s
p
y
d
e
ro

n
li
n
e
s
.c

o
m

http://www.spyderonlines.com/

Future-Proof Software-Systems [Part 2]

© Prof. Dr. Frank J. Furrer: FPSS - WS 19/20 40

Software systems are under constant pressure to adapt to changing requirements, new

technologies and to the environment.

Often, modifications made to the software system over a period of time damage its

structural integrity and violate its design principles – the initial, good architecture

continuously erodes!

h
tt

p
s
:/

/
w

w
w

.l
in

k
e
d
in

.c
o
m

Architecture Erosion

https://www.linkedin.com/

Future-Proof Software-Systems [Part 2]

© Prof. Dr. Frank J. Furrer: FPSS - WS 19/20 41

What is the impact of architecture erosion?

h
tt

p
s
:/

/
w

w
w

.l
in

k
e
d
in

.c
o
m

Architecture Erosion

• Merciless degradation of quality properties

• More and more difficult/expensive/slow to modify

• Hard/costly to maintain

https://www.linkedin.com/

Future-Proof Software-Systems [Part 2]

© Prof. Dr. Frank J. Furrer: FPSS - WS 19/20 42

time

Architecture

Quality

http://thoreau.colonial.net/Students/EricksonHoyt/erosion

The force of erosion

continuously

reduces

architecture quality

(and other quality

properties)

Modifications
[Projects]

http://thoreau.colonial.net/Students/EricksonHoyt/erosion

Future-Proof Software-Systems [Part 2]

© Prof. Dr. Frank J. Furrer: FPSS - WS 19/20 43

Any IT-architecture is continuously

degenerating due to many factors:

• Accumulation of technical debt

• SW Paradigm changes (e.g. SOA)

• New laws & regulations

• New standards (e.g. interoperability standards)

• New technology platforms (e.g. Web Services)

• Introduction of new architecture principles

• Complexity increase

• New malicious activities

… and some more

http://thoreau.colonial.net/Students/EricksonHoyt/erosion

Architecture Erosion:

Architecture Erosion

is generated by internal

& external factors

http://thoreau.colonial.net/Students/EricksonHoyt/erosion

Future-Proof Software-Systems [Part 2]

© Prof. Dr. Frank J. Furrer: FPSS - WS 19/20 44

External causes of architecture erosion:

In the history of software engineering there were many disruptive paradigm

changes which led to massive architecture erosion, e.g.:

✓ Procedural programming → Object-Orientation

✓ Local processing → distributed processing

✓ Monoliths → Client-Server architecture

✓ Remote procedure calls/CORBA → Web services

✓ Programming by people → Model-based code generation

✓ … and more to come

✓ Client-Server architecture → Service-oriented architecture

✓ Microservices

Future-Proof Software-Systems [Part 2]

© Prof. Dr. Frank J. Furrer: FPSS - WS 19/20 45

Example: Client-Server architecture → Service-oriented architecture (1/2)

h
tt

p
:/

/
w

w
w

.f
il
e
tr

a
n

s
fe

rp
la

n
e
t.

c
o
m

h
ttp

:/
/
w

w
w

.w
3
.o

rg

Gain of Changeability: 30%
[Estimate for large commercial systems]

http://www.filetransferplanet.com/
http://www.w3.org/

Future-Proof Software-Systems [Part 2]

© Prof. Dr. Frank J. Furrer: FPSS - WS 19/20 46

h
ttp

:/
/
w

w
w

.h
e
lle

n
ic

a
w

o
rld

.c
o
m

«Overnight» large numbers of applications became

technologically outdated, i.e. architecturally eroded!

Example: Client-Server architecture → Service-oriented architecture (2/2)

http://www.hellenicaworld.com/

Future-Proof Software-Systems [Part 2]

© Prof. Dr. Frank J. Furrer: FPSS - WS 19/20 47

Example: Mainframe Server architecture (1/2)

App A

App B

App C
App D

Request

Response

h
tt

p
s
:/

/
c
d
n

.m
o
s
.c

m
s
.f
u

tu
re

c
d
n

.n
e
t

IBM

Mainframe

Architecture

1 sec

1 sec

1 sec
1 sec

1 sec

1 sec

App A

App B

App C
App D

Request

Response

h
ttp

:/
/
w

e
c
lip

a
rt.c

o
m

Distributed

Server

Architecture

1..10 msec

1..10 msec

1..10 msec

1..10 msec

1..10 msec

1..10 msec

https://cdn.mos.cms.futurecdn.net/
http://weclipart.com/

Future-Proof Software-Systems [Part 2]

© Prof. Dr. Frank J. Furrer: FPSS - WS 19/20 48

Mainframe Infrastructure: Communications Latency is NOT a design criterium

Server Infrastructure: Communications Latency is a HEAVY design criterium

Example: Mainframe Server architecture (2/2)

Communications

Latency

 MASSIVE architecture consequences

= Time lost during

transmission

Future-Proof Software-Systems [Part 2]

© Prof. Dr. Frank J. Furrer: FPSS - WS 19/20 49

time

Architecture

quality

http://thoreau.colonial.net/Students/EricksonHoyt/erosion

We need additional

effort to improve

architectural quality

http://thoreau.colonial.net/Students/EricksonHoyt/erosion

Future-Proof Software-Systems [Part 2]

© Prof. Dr. Frank J. Furrer: FPSS - WS 19/20 50

Business Value

Changeability

Dependability

http://thoreau.colonial.net/Students/EricksonHoyt/erosion

You need additional

effort to improve

agility and resilience

Architecture Erosion

http://thoreau.colonial.net/Students/EricksonHoyt/erosion

Future-Proof Software-Systems [Part 2]

© Prof. Dr. Frank J. Furrer: FPSS - WS 19/20 51

Example: COBOL Programming

Gartner 1997:

Around 200 billion lines of COBOL code are in live operation

75% of the world’s business data, and 90% of financial transactions, are processed

in COBOL
http://en.wikipedia.org/wiki/COBOL

h
tt

p
:/

/
w

w
w

.w
e
w

e
re

w
e
b
.b

e
/
in

tr
o
d
u

c
ti

o
n

-a
u

-c
o
b
o
l/

2
0
1
2
/
0
1
/
2
2

COBOL (COmmon Business-Oriented Language,

1959) is a compiled programming language

designed for business, finance, and

administrative systems use.

Technical Erosion:

Replacement?

Since 15 years COBOL is not fit for new

applications

http://en.wikipedia.org/wiki/COBOL
http://www.wewereweb.be/introduction-au-cobol/2012/01/22

Future-Proof Software-Systems [Part 2]

© Prof. Dr. Frank J. Furrer: FPSS - WS 19/20 52

Is there a medicine against architecture erosion and

the accumulation of technical debt?

h
tt

p
:/

/
w

w
w

.t
h

e
p
a
re

n
tr

e
p
o
rt

.c
o
m

Managed Evolution: Management & Funding

 IT-Architecture: Technical Integrity & Principles

http://www.theparentreport.com/

Future-Proof Software-Systems [Part 2]

© Prof. Dr. Frank J. Furrer: FPSS - WS 19/20 53

Textbook Textbook

Huxi Li:

The Myth of Enterprise System Pollutions –

The Hidden Demons

CreateSpace Independent Publishing Platform,

2013. ISBN 978-1-4812-8050-1

George Fairbanks:

Just Enough Software Architecture – A Risk-

Driven Approach

Marshall & Brainerd, Boulder CO, USA, 2010.

ISBN 978-0-9846181-0-1

Future-Proof Software-Systems [Part 2]

© Prof. Dr. Frank J. Furrer: FPSS - WS 19/20 54

Managed Evolution

Some Definitions

Future-Proof Software-Systems [Part 2]

© Prof. Dr. Frank J. Furrer: FPSS - WS 19/20 55

h
tt

p
:/

/
c
re

e
p
y
p
a
s
ta

.w
ik

ia
.c

o
m

http://efdreams.com

Functionality:

• Fly the plane

autonomously

http://www.slate.com

Non-functional

properties:

• Handle errors

& malfunctions

 safety

• etc.

Software Properties: Functional and Non-Functional (= Quality Properties)

http://creepypasta.wikia.com/
http://efdreams.com/
http://www.slate.com/

Future-Proof Software-Systems [Part 2]

© Prof. Dr. Frank J. Furrer: FPSS - WS 19/20 56

http://efdreams.com

Functionality:

• Fly the plane

autonomously

• Understand Flight Conditions

• Adhere to Flight Plan

• Operate Engines, Rudder, Flaps etc.

• Autonomously fly long distance

• Support or autonomously land the plane

• …

h
tt

p
:/

/
c
re

e
p
y
p
a
s
ta

.w
ik

ia
.c

o
m

Software Properties: Functional and Non-Functional (= Quality Properties)

http://efdreams.com/
http://creepypasta.wikia.com/

Future-Proof Software-Systems [Part 2]

© Prof. Dr. Frank J. Furrer: FPSS - WS 19/20 57

h
ttp

:/
/
w

w
w

.s
la

te
.c

o
m

Non-functional properties [= Quality Attributes]

• Handle errors, malfunctions & unexpected situations

• Defend against attacks and failures (hacking)

• Cope with resources

• Comply with regulations & laws

• Adhere to industry standards

• Record malfunctions and errors

• Support pilots (e.g. stall warning)

• …

h
tt

p
:/

/
c
re

e
p
y
p
a
s
ta

.w
ik

ia
.c

o
m

Software Properties: Functional and Non-Functional (= Quality Properties)

http://www.slate.com/
http://creepypasta.wikia.com/

Future-Proof Software-Systems [Part 1]

© Prof. Dr. Frank J. Furrer: FPSS - WS 19/20 58

time

System at time tn

tn

System at time tn+y

tn+y

Project

Functionality

at tn

Properties

(Quality

Attributes) at

tn

Functionality

at tn+y

Properties

(Quality

Attributes) at

tn+y

Properties transformation

(satisfying quality requirements)

Functionality transformation

(satisfying business requirements)

Project = Functional and Property Transformation

Future-Proof Software-Systems [Part 1]

© Prof. Dr. Frank J. Furrer: FPSS - WS 19/20 59

time

System at time tn

tn

System at time tn+y

tn+y

Project

Functionality

at tn

Properties

(Quality

Attributes) at

tn

Functionality

at tn+y

Properties

(Quality

Attributes) at

tn+y

Improvement:

• Higher functionality

• Improved quality properties

Deterioration:

• Degraded quality properties

• Technical Debt

• Architecture Erosion

Future-Proof Software-Systems [Part 2]

© Prof. Dr. Frank J. Furrer: FPSS - WS 19/20 60

technical

debt

Architecture erosion

complexity

change

uncertainty

Future-Proof Software-Systems

Because of …

Disruptive environment

… our projects must continuously improve our software

Future-Proof Software-Systems [Part 2]

© Prof. Dr. Frank J. Furrer: FPSS - WS 19/20 61

Future-Proof Software-Systems

Evolution: Software Life-Cycle

… our projects must continuously improve our software

Continuous improvement: We need three positive powers

Good

architects

Future-Proof Software-Systems [Part 2]

© Prof. Dr. Frank J. Furrer: FPSS - WS 19/20 62

Managed Evolution

Managed Evolution Strategy for Software-Systems

Future-Proof Software-Systems [Part 2]

© Prof. Dr. Frank J. Furrer: FPSS - WS 19/20 63

DependabilityChangeabilityBusiness Value

Is the business

reason for

building and

operating the

software system

Is the key factor for

success in today’s

competitive

markets

Is the base for

survival in

today’s

dangerous

environment

Future-Proof Software-Systems

Primary Properties:

Future-Proof Software-Systems [Part 2]

© Prof. Dr. Frank J. Furrer: FPSS - WS 19/20 64

h
tt

p
s
:/

/
im

g
0
0
.d

e
v
ia

n
ta

rt
.n

e
t

Definition: Strategy

1. A method or plan chosen to bring about a

desired future, such as achievement of a goal

or solution to a problem (in our case:

building future-proof software-systems)

2. The art and science of planning and

managing resources for their most efficient

and effective use
http://www.businessdictionary.com/definition/strategy.html

https://img00.deviantart.net/
http://www.businessdictionary.com/definition/strategy.html

Future-Proof Software-Systems [Part 2]

© Prof. Dr. Frank J. Furrer: FPSS - WS 19/20 65

h
ttp

s
:/

/
s
p
in

.a
to

m
ic

o
b
je

c
t.c

o
m

1. The strategy must be understood and accepted by all

2. The strategy must be monitored, measured and enforced

3. The strategy must measurably lead to the desired goals

https://spin.atomicobject.com/

Future-Proof Software-Systems [Part 2]

© Prof. Dr. Frank J. Furrer: FPSS - WS 19/20 66

Managed Evolution Coordinate System

x: Business
Value

y: Dependability

z: Changeability

changeability

metric

d
e
p
e
n
d
a
b
i
l
i
t
y

m
e
t
r
i
c

Future-Proof Software-Systems [Part 2]

© Prof. Dr. Frank J. Furrer: FPSS - WS 19/20 67

x: Business
Value

y: Dependability

z: Changeability

At any point in time tn

a system has a quantified:

• Business value

• Dependability

• Changeability

Managed Evolution Coordinate System

Future-Proof Software-Systems [Part 2]

© Prof. Dr. Frank J. Furrer: FPSS - WS 19/20 68

Business
Value

Dependability

Changeability

Every project transforms the

system, i.e. it improves or

deteriorates the:

• Business value

• Dependability

• Changeability

Future-Proof Software-Systems [Part 2]

© Prof. Dr. Frank J. Furrer: FPSS - WS 19/20 69

gain in

business value

gain in

dependability

gain in

changeability

Business
Value

Dependability

Changeability

These are «good»

projects – improving

at the same time:

• Business value

• Changeability

• Dependability

of the system

Future-Proof Software-Systems [Part 2]

© Prof. Dr. Frank J. Furrer: FPSS - WS 19/20 70

gain in

business value

loss in

dependability

loss in

changeability

Business
Value

Dependability

Changeability

These are «bad» projects –

deteriorating at least one of the:

• Business value

• Changeability

• Dependability

of the system

Future-Proof Software-Systems [Part 2]

© Prof. Dr. Frank J. Furrer: FPSS - WS 19/20 71

Business
Value

Dependability

Changeability

Evolution Trajectory = Sequence of Projects A sequence of

projects builds a

transformation

trajectory of the

IT system (= the

evolution

trajectory)

gain in

changeability

gain in

business value

gain in

dependability

Strategy:
Managed Evolution

Future-Proof Software-Systems [Part 2]

© Prof. Dr. Frank J. Furrer: FPSS - WS 19/20 72

Business
Value

Dependability

Changeability

Business
Value

Dependability

Business
Value

Changeability3-D 2 x 2-D

Representation Simplification:

Future-Proof Software-Systems [Part 2]

© Prof. Dr. Frank J. Furrer: FPSS - WS 19/20 73

Future-Proof Software: 2 Managed Evolution Coordinate Systems

Business
Value

Changeability

Changeability Evolution Trajectory

Business
Value

Dependability

Dependability Evolution Trajectory

Loss of

dependability Gain of

Business value

Gain of

changeability

Gain of

Business value

All projects in time

Pi

All projects in time

Pj

Future-Proof Software-Systems [Part 2]

© Prof. Dr. Frank J. Furrer: FPSS - WS 19/20 74

Loss of

Changeability

Gain of Business

Value

Continuous development of

business value while neglecting

improvement of agility leads to a

petrification of the system

(= path to death)

Business

Value

Changeability Changeability

Trajectory Case 1:

Opportunistic Evolution

Future-Proof Software-Systems [Part 2]

© Prof. Dr. Frank J. Furrer: FPSS - WS 19/20 75

Business

Value

Changeability

Trajectory Case 1:

Opportunistic Evolution

10.0 k€/UCP

4.0 days/UCP

50.0 k€/UCP

10.0 days/UCP

Changeability
4.2 k€/UCP

0.8 days/UCP

Future-Proof Software-Systems [Part 2]

© Prof. Dr. Frank J. Furrer: FPSS - WS 19/20 76

Example Project:
Size: 250 UCP

4.2 k€/UCP

0.8 days/UCP

10.0 k€/UCP

4.0 days/UCP

50.0 k€/UCP

10.0 days/UCP

Project Cost: 1’050 k€

Time to Market: 200 days

Project Cost: 2’500 k€

Time to Market: 1’000 days

Project Cost: 12’500 k€

Time to Market: 2’500 days

Changeability

high

low

Future-Proof Software-Systems [Part 2]

© Prof. Dr. Frank J. Furrer: FPSS - WS 19/20 77

Dependability

Loss of

Dependability

Gain of Business

Value

Dependability

Business

Value

Continuous development of

business value while neglecting

improvement of resilience leads

to an undefendable system

(= path to death)

Trajectory Case 1:

Opportunistic Evolution

Future-Proof Software-Systems [Part 2]

© Prof. Dr. Frank J. Furrer: FPSS - WS 19/20 78

Dependability

Trajectory Case 1:

Opportunistic Evolution

Dependability Evolution Trajectory: What does it mean?

Business

Value

Future-Proof Software-Systems [Part 2]

© Prof. Dr. Frank J. Furrer: FPSS - WS 19/20 79

Which is the successful strategy

for Future-Proof Software-Systems ?

h
tt

p
s
:/

/
im

g
0
0
.d

e
v
ia

n
ta

rt
.n

e
t

Answer:

Managed Evolution

https://img00.deviantart.net/

Future-Proof Software-Systems [Part 2]

© Prof. Dr. Frank J. Furrer: FPSS - WS 19/20 80

Business

Value

Changeability

Gain of

changeability

Gain of Business

Value

Managed

Evolution

Channel

Continuous development of both business value

and changeability leads to a sustainable system

(= path to future-proof software-systems)

Trajectory Case 2:

Managed Evolution

Future-Proof Software-Systems [Part 2]

© Prof. Dr. Frank J. Furrer: FPSS - WS 19/20 81

Business

Value

Dependability

Gain of

Dependability

Gain of Business

Value

Managed

Evolution

Channel

Continuous development of both business value

and dependability leads to a sustainable system

(= path to future-proof software-systems)

h
ttp

:/
/
e
n

.w
ik

ip
e
d
ia

.o
rg

/
w

ik
i/

C
z
e
c
h

o
s
lo

v
a
k
_
b
o
rd

e
r_

fo
rtific

a
tio

n
s

http://en.wikipedia.org/wiki/Czechoslovak_border_fortifications

Future-Proof Software-Systems [Part 2]

© Prof. Dr. Frank J. Furrer: FPSS - WS 19/20 82

Manifesto of Managed Evolution

1. Business value, changeability and dependability are

continuously improved,

2. Business value, changeability and dependability are

expressed and tracked by reliable metrics,

3. All (other) quality attributes are as good as necessary,

4. The system evolves in manageable, risk-controlled steps

Future-Proof Software-Systems [Part 2]

© Prof. Dr. Frank J. Furrer: FPSS - WS 19/20 83

Managed

Evolution

Channel

Business Value

Changeability

Dependability

Project Pj

Future-Proof Software-Systems [Part 2]

© Prof. Dr. Frank J. Furrer: FPSS - WS 19/20 84

Business

Value

Changeability

Project Pn

Implementing an

amount of functionality

(= business value)

requires:

• Money (€, $)

• Time (TPn)

Dependability

Gain of Business

Value

Future-Proof Software-Systems [Part 2]

© Prof. Dr. Frank J. Furrer: FPSS - WS 19/20 85

Business

Value

Changeability

Improving changeability

and dependability

requires additional:

• Money (€, $)

• Time (TPn)
Dependability

Gain of Business Value

Gain of

changeability &

dependability

Future-Proof Software-Systems [Part 2]

© Prof. Dr. Frank J. Furrer: FPSS - WS 19/20 86

Managed

Evolution

Channel

Business Value

Changeability

Dependability

Time & Money

Investment in

Functionality

Time & Money

Investment in

Changeability &

Dependability

Future-Proof Software-Systems [Part 2]

© Prof. Dr. Frank J. Furrer: FPSS - WS 19/20 87

h
ttp

s
:/

/
s
p
in

.a
to

m
ic

o
b
je

c
t.c

o
m

The execution of the managed evolution strategy assures:

1. The optimum generation of business value

2. The continuous improvement of changeability

3. The reliable increase in dependability

4. The guarantee of the other quality attributes

 therefore: The sustainable increase of the value of the software

https://spin.atomicobject.com/

Future-Proof Software-Systems [Part 2]

© Prof. Dr. Frank J. Furrer: FPSS - WS 19/20 88

… sounds good, but …

h
tt

p
:/

/
w

w
w

.b
la

c
k
s
h

e
e
p
p
ro

d
u

c
ti

o
n

s
.c

o
m

Is there an obstacle to managed evolution?

http://www.blacksheepproductions.com/

Future-Proof Software-Systems [Part 2]

© Prof. Dr. Frank J. Furrer: FPSS - WS 19/20 89

Is there an obstacle to managed evolution?

http://wohleranzeiger.ch/seilziehen/index.html

Business

People

CIO &

IT-Architects

Business wants:

• (Very) short time to market

• Low cost

• Only essential functionality

• Newest technology

CIO & Architecture want:

• Improving Changeability

• Improving Dependability

• Limit growth in complexity

• No technical debt & architecture erosion

http://wohleranzeiger.ch/seilziehen/index.html

Future-Proof Software-Systems [Part 2]

© Prof. Dr. Frank J. Furrer: FPSS - WS 19/20 90

Is there an obstacle to managed evolution?

http://wohleranzeiger.ch/seilziehen/index.html

Business

People

CIO &

IT-Architects

Business wants:

• (Very) short time to market

• Low cost

• Only essential functionality

• Newest technology

CIO & Architecture want:

• Improving Changeability

• Improving Dependability

• Limit growth in complexity

• No technical debt & architecture erosion

Conflict of Interests: Time-to-Market, Development Cost vs. Clean implementation

http://wohleranzeiger.ch/seilziehen/index.html

Future-Proof Software-Systems [Part 2]

© Prof. Dr. Frank J. Furrer: FPSS - WS 19/20 91

Is there a significant obstacle to managed evolution?

h
ttp

://w
o

h
leran

zeiger.ch
/seilzieh

en
/in

d
ex.h

tm
l

Business

People

CIO &

IT-Architects

Necessary:

• Good IT-business alignment

• Trust and respect between business and IT department

• Adequate architecture process

Management
& Governance

Issue

http://wohleranzeiger.ch/seilziehen/index.html

Future-Proof Software-Systems [Part 2]

© Prof. Dr. Frank J. Furrer: FPSS - WS 19/20 92

Is there an obstacle to managed evolution? Improving changeability and

dependability requires additional:

• Money (€, $)

• Time (TPn)

Changeability Dependability

Gain of

changeability &

dependability

h
ttp

:/
/
s
g
s
-u

a
e
.c

o
m

Are your business people

prepared to pay?
For every project?

http://sgs-uae.com/

Future-Proof Software-Systems [Part 2]

© Prof. Dr. Frank J. Furrer: FPSS - WS 19/20 93

Example: Boeing 787

(787 Dreamliner Grounding)
https://www.scientificamerican.com/article/how-

lithium-ion-batteries-grounded-the-dreamliner

Highly dangerous:

Business requirements

massively overruled

engineering requirements

At 10:21 on Jan. 7, 2013, about a minute

after all 183 passengers and 11 crew

members from Japan Airlines Flight 008

disembarked at Boston's Logan

International Airport, a member of the

cleaning crew spotted smoke in the aft

cabin of the Boeing 787-8.

The reason was a fire in the lithium-ion battery.

As a consequence, the U.S. Federal Aviation

Administration grounded the entire 787 fleet

https://www.scientificamerican.com/article/how-lithium-ion-batteries-grounded-the-dreamliner/

Future-Proof Software-Systems [Part 2]

© Prof. Dr. Frank J. Furrer: FPSS - WS 19/20 94

Managed

Evolution

Channel

Business Value

Changeability

Dependability

Which guidance do we have?

ARCHITECTURE !!

Future-Proof Software-Systems [Part 1]

© Prof. Dr. Frank J. Furrer: FPSS - WS 19/20 95

Textbook Textbook

Stephan Murer, Bruno Bonati, Frank J. Furrer:

Managed Evolution – A Strategy for Very

Large Information Systems

Springer-Verlag, Germany, 2011. ISBN 978-3-

642-01632-5

Joe Peppard, John Ward:

The Strategic Management of Information

Systems – Building a Digital Strategy

John Wiley & Sons, USA, 2016. ISBN 978-0-

470-03467-5

Future-Proof Software-Systems [Part 2]

© Prof. Dr. Frank J. Furrer: FPSS - WS 19/20 96

The Importance of Architecture

Future-Proof Software-Systems [Part 2]

© Prof. Dr. Frank J. Furrer: FPSS - WS 19/20 97

Software-Architecture is the single most important

factor for future-proof software-systems

h
ttp

:/
/
w

w
w

.c
p
tib

d
.c

o
m

Functionality

[Business Value]

Changeability

Dependability

Other

Quality Attributes

http://www.cptibd.com/

Future-Proof Software-Systems [Part 2]

© Prof. Dr. Frank J. Furrer: FPSS - WS 19/20 98

Definition:

A future-proof software-system is a structure

that enables the management

of complexity, change and uncertainty

with the least effort, with acceptable risk and with specified quality properties

Parts of the system

and their relationsships

→ Architecture

Future-Proof Software-Systems [Part 2]

© Prof. Dr. Frank J. Furrer: FPSS - WS 19/20 99

h
tt

p
:/

/w
w

w
.0

lll
.c

o
m

/a
rc

h
it

ec
tu

re
-e

xh
ib

it
io

n
s/

?g
al

=2
4

h
ttp

://w
w

w
.asisb

iz.co
m

/in
d

ex.h
tm

l

Which structure is easier to expand and evolve?

Which structure has the better properties, e.g. quality of life?

Which structure is future-proof (expandable)?

Analogy: Town Architecture

http://www.0lll.com/architecture-exhibitions/?gal=24
http://www.asisbiz.com/index.html

Future-Proof Software-Systems [Part 2]

© Prof. Dr. Frank J. Furrer: FPSS - WS 19/20 100

Why is structure important? What determines structure?

h
tt

p
:/

/w
w

w
.n

ew
s.

w
is

c.
ed

u
/n

ew
sp

h
o

to
s/

ir
o

n
V

I.
h

tm
l

Structure is the

foundation for ordered,

managed evolution

Th
e to

w
er

o
f

b
ab

elb
y

P
ieter B

ru
egelth

e
Eld

er
(1

5
6

3
)

Architecture! Architecture!

Architecture!

http://www.news.wisc.edu/newsphotos/ironVI.html

Future-Proof Software-Systems [Part 2]

© Prof. Dr. Frank J. Furrer: FPSS - WS 19/20 101

Example: Access Control

(Applications Security)

Impact of a change: 5’000 privacy-

critical banking applications

Digital
Certificate

Digital
Certificate

Access Control

Application

Access Control

Application

Access Control

Application

Access Control

Application

Access Control

Application

Access Control

Application

UID,PW

Structure 1: Distributed Access Control

Application

Application

Application
Application

Application
Application

UID,PW

Access Control

Structure 2: Central Access Control

Digital
Certificate New Requirement:

Authentication by
Digital Certificate

Future-Proof Software-Systems [Part 2]

© Prof. Dr. Frank J. Furrer: FPSS - WS 19/20 102

IT Architecture Definition:

“The fundamental organization of a system

embodied in its parts, their relationships to

each other and to the environment, and the

principles guiding its design and evolution”
[adapted from IEEE00]

Definition: IT Architecture

Future-Proof Software-Systems [Part 2]

© Prof. Dr. Frank J. Furrer: FPSS - WS 19/20 103

System Boundary

Parts of the System

Internal Dependencies

(Relationships)

External Dependencies

(Relationships)

Properties

Behaviour

Properties

Behaviour

Properties

Behaviour

Definition:

IT Architecture

Future-Proof Software-Systems [Part 2]

© Prof. Dr. Frank J. Furrer: FPSS - WS 19/20 104

Business
Value

Agility

Business
Value

Dependability

+ Quality Properties:
• Performance

• Usability

• …

The structure of the system

– i.e. its architecture –

determines to a large extent

the properties of the system

Architecture

is the most important factor

for

future-proof software-systems

Future-Proof Software-Systems [Part 2]

© Prof. Dr. Frank J. Furrer: FPSS - WS 19/20 105

Architecture

Levels

Program

Module

Application

Integration

Application

Landscape

Integration

Integration

Systems-of-Systems

Technology-

dependence

Technology-

independence

Integration

Component

Program-/Module-

Design

Component-

Design

Component-

Architecture

Application-

Architecture

Application

Landscape

Architecture

Enterprise-

Architecture

SoS-

Architecture

Future-Proof Software-Systems [Part 2]

© Prof. Dr. Frank J. Furrer: FPSS - WS 19/20 106

Architecture of the

existing system:

• Parts

• Relationships

Architecture of the new element:

• Parts

• Relationships

Project Types:

a) «Greenfield»: b) «Integration»:

h
tt

p
s
:/

/
c
1
.s

ta
ti

c
fl
ic

k
r.

c
o
m

The system is new and can be

built from scratch

 Rare case!

The new parts must

be integrated into an

existing system

https://c1.staticflickr.com/

Future-Proof Software-Systems [Part 2]

© Prof. Dr. Frank J. Furrer: FPSS - WS 19/20 107

System/Software Engineering/Development Process

h
tt

p
:/

/
w

w
w

.o
v
o
c
re

a
ti

v
e
s
.c

o
m

h
tt

p
:/

/
s
te

v
e
n

d
w

o
o
d
.c

o
m

Sum of all

decisions

IT Architect

http://www.ovocreatives.com/
http://stevendwood.com/

Future-Proof Software-Systems [Part 2]

© Prof. Dr. Frank J. Furrer: FPSS - WS 19/20 108

System/Software Engineering/Development Process

optimum

fit into

existing

system

Design, Implementation,

Deployment

Architecture

Development

adequate

architecture

of new parts

&

relationships

Architecture development is a

front activity, i.e. it must be done

(mostly) before the actual

software development starts

How much shall we invest into

architecture devlopment?

• Money (5%, 12%, 27%, …) ?

• Time (3%, 11%, 21%) ?

Future-Proof Software-Systems [Part 2]

© Prof. Dr. Frank J. Furrer: FPSS - WS 19/20 109

Architecture work

Project effort (€)

10 %

100 %

?
?

How much Architecture is enough? h
ttp

:/
/
2
.b

p
.b

lo
g
s
p
o
t.c

o
m

G. Fairbanks / ISBN 978-0-9846181-0-1

Answer:

• System creation/extensions with high risk need much

architecture work

• System creation/extensions with low risk need little

architecture work
(George Fairbanks - ISBN 978-0-9846181-0-1, 2010)

http://2.bp.blogspot.com/

Future-Proof Software-Systems [Part 2]

© Prof. Dr. Frank J. Furrer: FPSS - WS 19/20 110

How much Architecture is enough?

h
ttp

:/
/
w

w
w

.s
k
y
s
c
ra

p
e
rn

e
w

s
.o

rg

High Risk

Architecture work

Project effort (€)

10 %

100 %h
tt

p
:/

/
w

w
w

.d
im

e
n

s
io

n
s
in

fo
.c

o
m

/
d
im

e
n

s
io

n
s
-o

f-
a
-d

o
g
-h

o
u

s
e

Low Risk

http://www.skyscrapernews.org/
http://www.dimensionsinfo.com/dimensions-of-a-dog-house

Future-Proof Software-Systems [Part 2]

© Prof. Dr. Frank J. Furrer: FPSS - WS 19/20 111

How much Architecture is enough?

h
ttp

:/
/
2
.b

p
.b

lo
g
s
p
o
t.c

o
m

When have we done enough architecture work?

How do we know that we have a good architecture?

Architecture Principles

Architecture Evaluation

http://2.bp.blogspot.com/

Future-Proof Software-Systems [Part 2]

© Prof. Dr. Frank J. Furrer: FPSS - WS 19/20 112

A
rc

h
ite

c
tu

re

D
e
v
e
lo

p
m

e
n

t

Architecture options

Existing

system

architecture

A
rc

h
ite

c
tu

re

E
v
a
lu

a
tio

n

Target architecture

weighting

trade-offs

Requirements
• functional

• properties

Requirements

Engineering

stakeholders

Architecture

Top-Level

Process

completeness,

consistency

Future-Proof Software-Systems [Part 2]

© Prof. Dr. Frank J. Furrer: FPSS - WS 19/20 113

Example: Sanction Filter
(Financial embargo enforcement)

Application

Application
Application

Application

Application
Application

Application
Application

Application

Application
Application

Application

Application
Application

Application
Application

Application
Application

Application

Application

several 10‘000 applications

in >40 countries

SIC XYZSWIFT SWIFT SWIFT SWIFT SWIFT SWIFT SIC XYZ

hundreds of clearing hubs worldwide

w
o
rld

w
id

e
c
o
n

n
e
c
tiv

ity

New legal requirement:

„Strictly enforce embargo

lists worldwide“

several 1‘000

connections to

clearing hubs

S
a
n

c
ti

o
n

fi
lt

e
r

several 1‘000

connections to

clearing hubs

Future-Proof Software-Systems [Part 2]

© Prof. Dr. Frank J. Furrer: FPSS - WS 19/20 114

Example: Sanction Filter
(Financial embargo enforcement)

Application

Application
Application

Application

Application
Application

Application
Application

Application

Application
Application

Application

Application
Application

Application
Application

Application
Application

Application

Application

several 1‘000 applications

in >40 countries

SIC XYZSWIFT SWIFT SWIFT SWIFT SWIFT SWIFT SIC XYZ

hundreds of clearing hubs worldwide

S
a
n

c
ti

o
n

fi
lt

e
r

Architecture option 1:
Fully decentralized installation

Future-Proof Software-Systems [Part 2]

© Prof. Dr. Frank J. Furrer: FPSS - WS 19/20 115

Example: Sanction Filter
(Financial embargo enforcement)

Application

Application
Application

Application

Application
Application

Application
Application

Application

Application
Application

Application

Application
Application

Application
Application

Application
Application

Application

Application

several 1‘000 applications

in >40 countries

SIC XYZSWIFT SWIFT SWIFT SWIFT SWIFT SWIFT SIC XYZ

hundreds of clearing hubs worldwide

Architecture option 2:
Fully centralized installation

centralized, high-performance

sanction filter

Future-Proof Software-Systems [Part 2]

© Prof. Dr. Frank J. Furrer: FPSS - WS 19/20 116

Example: Sanction Filter
(Financial embargo enforcement)

Application

Application
Application

Application

Application
Application

Application
Application

Application

Application
Application

Application

Application
Application

Application
Application

Application
Application

Application

Application

several 1‘000 applications

in >40 countries

SIC XYZSWIFT SWIFT SWIFT SWIFT SWIFT SWIFT SIC XYZ

hundreds of clearing hubs worldwide

Architecture option 3:
Sub-clustering

Sanction

list

centrally

maintained

Future-Proof Software-Systems [Part 2]

© Prof. Dr. Frank J. Furrer: FPSS - WS 19/20 117

Example: Sanction Filter
(Financial embargo enforcement)

A
rc

h
ite

c
tu

re

E
v
a
lu

a
tio

n

Target architecture

weighting

trade-offs

Criteria Option 1: fully

decentralized

Option 2: fully

centralized

Option 3: Sub-

clustering

Performance 3 1 2

Security 1 3 2

Maintainability 1 3 3

Dependability 3 1 2

Implementation cost 1 2 3

Operational cost 1 3 2

Match with
organizational
structure

1 1 3

Governance 1 1 3

Legal & compliance
conformance

2 3 3

Archiving 1 3 2

Assessment 15 21 25

1 = low

2 = average

3 = good

Future-Proof Software-Systems [Part 2]

© Prof. Dr. Frank J. Furrer: FPSS - WS 19/20 118

Bad

Architecture:

Good

Architecture:

• Manages essential complexity

• Minimizes accidental complexity

• Provides optimal changeability

(= minimum resistance to change, DevC, TtM)

• Enables dependability and other quality

properties

• Reduces the impact of uncertainty

• «Fun to work»

• Difficult to understand, maintain and evolve

• Messy dependencies («far effects»)

• Erosion: «Path to Death»

• Entangled quality properties (Orthogonality)

• Demotivating, «overpriced» work

Future-Proof Software-Systems [Part 2]

© Prof. Dr. Frank J. Furrer: FPSS - WS 19/20 119

The structure of a system is defined by its architecture.

The architecture must be adequate and follow proven architecture principles.

Architecture is a continuously evolving, managed, highly valuable key artefact!

h
tt

p
s
:/

/
w

w
w

.l
in

k
e
d
in

.c
o
m

https://www.linkedin.com/

Future-Proof Software-Systems [Part 1]

© Prof. Dr. Frank J. Furrer: FPSS - WS 19/20 120

Textbook Textbook

Neal Ford, Rebecca Parsons, Patrick Kua:

Building Evolutionary Architectures –

Support Constant Change

O'Reilly UK Ltd., 2017. ISBN 978-1-491-98636-3

Robert C. Martin:

Clean Architecture – A Craftsman's Guide to

Software Structure and Design

Prentice Hall Inc., USA, 2017. ISBN 978-0-134-

49416-6

Future-Proof Software-Systems [Part 2]

© Prof. Dr. Frank J. Furrer: FPSS - WS 19/20 121

Industrial Architecture Framework

Future-Proof Software-Systems [Part 2]

© Prof. Dr. Frank J. Furrer: FPSS - WS 19/20 122

h
tt

p
:/

/
ro

b
e
rt

v
b
in

d
e
r.

c
o
m

Complex System

h
tt

p
s
:/

/
w

w
w

.i
n

d
o
o
rt

re
n

d
.c

o
m

Categorization

Framework = Definition of Categories

An architecture framework

establishes a common practice

for creating, interpreting,

analyzing and using

architecture descriptions

within a particular domain of

application or stakeholder

community.
http://www.iso-architecture.org/42010/cm

http://robertvbinder.com/
https://www.indoortrend.com/
http://www.iso-architecture.org/42010/cm

Future-Proof Software-Systems [Part 2]

© Prof. Dr. Frank J. Furrer: FPSS - WS 19/20 123

Definition: Industrial Architecture Framework

Industrial Architecture Framework =

A conceptual framework for structuring and separating the functionality and the

quality properties of IT-systems to enable partitioning and life-cycle management.

h
tt

p
:/

/
w

w
w

.d
e
d
o
o
s
e
.c

o
m

Objective:

Separate and partition the dimensions of an IT-

system in order to organize and manage both

complexity and the stakeholders

Long-lived, industrially or commercially relevant IT-system

http://www.dedoose.com/

Horizontal Architecture Layers

Vertical

Architecture

Layers

Business

Architecture

Application

Architecture

Information

Architecture

Integration

Architecture

Technical

Architecture

Hierarchy

Prof. Dr. Frank J. Furrer: FPSS - WS 19/20 124

Horizontal Architecture Layers

Vertical

Architecture

Layers

Business

Architecture

Application

Architecture

Information

Architecture

Integration

Architecture

Technical

Architecture

S
a
fe

ty

S
e
c
u

ri
ty

R
e
a
l-

T
im

e
…

Hierarchy

Prof. Dr. Frank J. Furrer: FPSS - WS 19/20 125

Horizontal Architecture Layers

Vertical

Architecture

Layers

Business

Architecture

Application

Architecture

Information

Architecture

Integration

Architecture

Technical

Architecture

S
a
fe

ty

S
e
c
u

ri
ty

R
e
a
l-

T
im

e
…

Hierarchy

SoS

Application Landscape

Application

Component

Sensor/Actuator

Prof. Dr. Frank J. Furrer: FPSS - WS 19/20 126

Horizontal Architecture Layers

Vertical

Architecture

Layers

Business

Architecture

Application

Architecture

Information

Architecture

Integration

Architecture

Technical

Architecture

S
a
fe

ty

S
e
c
u

ri
ty

R
e
a
l-

T
im

e
…

Hierarchy

SoS

Application Landscape

Application

Component

Sensor/Actuator

Cell X

Cell X

=
Safety Concern

in the

Application

Software

Prof. Dr. Frank J. Furrer: FPSS - WS 19/20 127

Future-Proof Software-Systems [Part 2]

© Prof. Dr. Frank J. Furrer: FPSS - WS 19/20 128

Industrial Architecture Framework Cells =

Allow assignment, structuring, and separating of the functionality and of the quality

properties of IT-systems to enable partitioning and life-cycle management.

Cell X = Safety Concern in the Application Software

 Formulation of Powerful Set of Architecture Principles,

e.g.:

NEVER implement security functionality in the applications

software

… but only allow calls to the security functionality

h
ttp

s
:/

/
w

w
w

.n
p
m

js
.c

o
m

«Canon of Orthogonality»

https://www.npmjs.com/

Future-Proof Software-Systems [Part 2]

© Prof. Dr. Frank J. Furrer: FPSS - WS 19/20 129

Information (Data)

Architecture
(Information & Data)

Technical

Architecture
(Technical

Infrastructure)

Integration

Architecture
(Cooperation

Mechanisms)

Applications

Architecture
(Functionality)

Business

Architecture
(Business Processes)

Security

Architecture

(Defense)

Safety

Architecture

(Accidents)

Performance

Architecture

(Real-Time)

System

Management

Architecture

(Control)

e
tc

.

Im
p

a
ct o

n
 a

ll h
o

riz
o

n
ta

l la
y

e
rs

Im
p

a
ct o

n
 a

ll h
o

riz
o

n
ta

l la
y

e
rs

Im
p

a
ct o

n
 a

ll h
o

riz
o

n
ta

l la
y

e
rs

Im
p

a
ct o

n
 a

ll h
o

riz
o

n
ta

l la
y

e
rs

«Canon of Orthogonality»

Future-Proof Software-Systems [Part 2]

© Prof. Dr. Frank J. Furrer: FPSS - WS 19/20 130

Example: Access Control (Security Architecture)

Information

Architecture

Technical

Architecture

Integration

Architecture

Applications

Architecture

Business

Architecture

Security Safety Perfor-

mance

System

Manage-

ment

User

Name

ID

Credentials

Protection Object

Name

ID

Confidentiality Level

Constraints

Role

Role Name

ID
1…*1…*

MemberOf

1…*1…*

isAuthorizedfor

Right

AccessType

Credentials

checkRights

http://www.techwench.com

Rights DB

Access Control

APPLICATION

Rights

Security

Functio-

nality

Call/Service

«Canon of Orthogonality»

NO security or technical

functionality is

implemented in the

application software –

these are all provided via

calls/services

http://www.techwench.com/

Future-Proof Software-Systems [Part 2]

© Prof. Dr. Frank J. Furrer: FPSS - WS 19/20 131

Engineering

Discipline

Architecture

Principles

Architecture

Guidelines &

Best Practices

Architecture

Metrics

Architecture

Standards

Governance

Instrument

IT Standards

Enforcement

Technology

Portfolio

Management

Applications

Portfolio

Management

Service

Portfolio

Management

Architecture

Process

IT Standards

Development

Complexity

Management

Architect‘s

Training

Business – IT

Alignment

Architecture

Communication

Industrial Architecture: Multiple Meanings

Architecture Development

Architecture Enforcement

Result: Structure („Architecture“)

Structure

Business

Architecture

Applications

Architecture

Integration

Architecture

Information

Architecture

Technical

Architecture

Vertical

Architectures

…

Future-Proof Software-Systems [Part 2]

© Prof. Dr. Frank J. Furrer: FPSS - WS 19/20 132

Architecture Principles
and their Use

Future-Proof Software-Systems [Part 2]

© Prof. Dr. Frank J. Furrer: FPSS - WS 19/20 133

Information (Data)

Architecture
(Information & Data)

Technical

Architecture
(Technical

Infrastructure)

Integration

Architecture
(Cooperation

Mechanisms)

Applications

Architecture
(Functionality)

Business

Architecture
(Business Processes)

Security

Architecture

(Defense)

Safety

Architecture

(Accidents)

Performance

Architecture

(Real-Time)

System

Management

Architecture

(Control)

e
tc

.

For each of the horizontal

and vertical architectures there are:

• Architecture Principles

• Architecture Patterns

• Frameworks

• Reference Architectures

• Industry Standards

• Best Practices

Future-Proof Software-Systems [Part 2]

© Prof. Dr. Frank J. Furrer: FPSS - WS 19/20 134

Architecture Principles:

→ highly valuable architecture knowledge in proven & easily

accessible form

→ teachable & enforcable

→ the foundation for the design, implementation and evolution

of future-proof software-systems

Architecture Principles:

Fundamental insights – formulated as enforcable rules – how a good software-

system should be built [«Eternal Truths»] h
ttp

:/
/
im

a
g
e
s
.a

ll-fre
e
-d

o
w

n
lo

a
d
.c

o
m

http://images.all-free-download.com/

Future-Proof Software-Systems [Part 2]

© Prof. Dr. Frank J. Furrer: FPSS - WS 19/20 135

… the birth of architecture principles (1972):

h
tt

p
:/

/d
at

ap
ea

k.
n

et
/c

o
m

p
u

te
rs

ci
en

ti
st

s.
h

tm

David L. Parnas

* February 10, 1941 in Pittsburgh, USA

Communications of the ACM, Volume 15, Number 12, December 1972

Available at: http://www.cs.umd.edu/class/spring2003/cmsc838p/Design/criteria.pdf

http://datapeak.net/computerscientists.htm
http://www.cs.umd.edu/class/spring2003/cmsc838p/Design/criteria.pdf

Future-Proof Software-Systems [Part 2]

© Prof. Dr. Frank J. Furrer: FPSS - WS 19/20 136

… a little bit of history:

The first computer program:

Lady Ada Lovelace (1843)

„Computation of Bernoulli Numbers“
http://axsoris.com

2019:

The world software market exceeds

$ 500 billion

(not including embedded software!)
http://www.itp.net

… Software production has become a major industry

 and needs industrial rules, methods, processes

http://axsoris.com/ada-the-daughter-of-famed-poet-lord-byron-augusta.html
http://www.itp.net/

Future-Proof Software-Systems [Part 2]

© Prof. Dr. Frank J. Furrer: FPSS - WS 19/20 137

… some more history:

1843 – 1972: Software engineering is

somewhat of a „black art“, mastered by

experienced, talented individuals only

w
w

w
.1

2
3
rf.c

o
m

/
p
h

o
to

_
9
3
5
3
0
7
2

1972 – today:

Software engineering slowly becomes an engineering

discipline with increasing maturity. Principles for good

software engineering are discovered, applied and formal

methods appearh
tt

p
:/

/d
at

ap
ea

k.
n

et
/c

o
m

p
u

te
rs

ci
en

ti
st

s.
h

tm

David L. Parnas

2025 (?) … ?: Software engineering will evolve to

formal model engineering with automatic software

generation and provably correct programs

h
ttp

s
:/

/
s
ta

tic
.lla

m
a
s
o
ft.c

o
m

http://www.123rf.com/photo_9353072
http://datapeak.net/computerscientists.htm
https://static.llamasoft.com/

Future-Proof Software-Systems [Part 2]

© Prof. Dr. Frank J. Furrer: FPSS - WS 19/20 138

Recipes for good – i.e. future-proof – software-systems:

• Architecture Principles

• Patterns

Architecture Principles:

Fundamental insights – formulated as enforcable rules – how a good software-system should

be built

Patterns:

Proven, generic solutions to clearly specified architectural problems which can be adapted to

the task at hand

Architecture principles and patterns are not directly

applicable to construct an architectural solution.

They need the future-proof software-systems engineer

to implement and enforce them.

Future-Proof Software-Systems [Part 2]

© Prof. Dr. Frank J. Furrer: FPSS - WS 19/20 139

How many architecture principles are needed ?

Information Architecture

Technical Architecture

Integration Architecture

Applications Architecture

Business Architecture Business

architecture principles

Technical

architecture principles

Application

architecture principles

S
o
ft

w
a
re

 S
tr

u
c
tu

re
:
H

o
ri

z
o
n

ta
l

P
ri

n
c
ip

le
s

Security Safety Performance … etc.

Vertical architecture principles („Quality properties“)

Fundamental Principles:

12
(presented in this lecture)

Examples

Examples

Future-Proof Software-Systems [Part 2]

© Prof. Dr. Frank J. Furrer: FPSS - WS 19/20 140

▪ A1: Architecture Layer Isolation

▪ A2: Partitioning, Encapsulation and Coupling

▪ A3: Conceptual Integrity

▪ A4: Redundancy

▪ A5: Interoperability

▪ A6: Common Functions

▪ A7: Reference Architectures, Frameworks and Patterns

▪ A8: Reuse and Parametrization

▪ A9: Industry Standards

▪ A10: Information Architecture

▪ A11: Formal Modeling

▪ A12: Complexity and Simplification

Fundamental Architecture Principles

http://www.holyoke.org

http://www.holyoke.org/

Future-Proof Software-Systems [Part 2]

© Prof. Dr. Frank J. Furrer: FPSS - WS 19/20 141

The future-proof software-systems engineer must know and understand

the architecture principles and patterns. He must correctly apply them to

his/her design

Architecture principles and patterns are the knowledge-carriers

for future-proof software-systems

Future-Proof Software-Systems [Part 2]

© Prof. Dr. Frank J. Furrer: FPSS - WS 19/20 142

©
N

A
TU

R
E

Architecture

Principles

=

Knowledge

Toolbox

of the

Systems Architect

Future-Proof Software-Systems [Part 1]

© Prof. Dr. Frank J. Furrer: FPSS - WS 19/20 143

Textbook Textbook

Ian Gorton:

Essential Software Architecture

Springer-Verlag, Germany, 2nd edition, 2011.

ISBN 978-3-642-19175-6

Nick Rozanski, Eoin Woods:

Software Systems Architecture – Working

With Stakeholders Using Viewpoints and

Perspectives

Addison Wesley, USA, 2nd revised edition,

2011. ISBN 978-0-321-71833-4

Future-Proof Software-Systems [Part 1]

© Prof. Dr. Frank J. Furrer: FPSS - WS 19/20 144

Textbook Textbook

Frank J. Furrer: Future-Proof Software-

Systems

Springer Vieweg, Wiesbaden, Germany, 2019.

ISBN 978-3-658-19937-1

Alan McSweeney: Introduction to Solution

Architecture. Independently published,

2019. ISBN 978-1-7975-6761-7

Future-Proof Software-Systems [Part 2]

© Prof. Dr. Frank J. Furrer: FPSS - WS 19/20 145

Part 2

