
© Prof. Dr. Frank J. Furrer - WS 2019/20 1

Summary of Lecture 11.12.2019

h
tt

p
:/

/
e
n

g
li
s
h

s
k
il
ls

.s
e

Future-Proof Software-Systems: Summary

... Very condensed summary of the 11.12.2019 lecture

h
ttp

s://d
e.fo

to
lia.co

m

http://englishskills.se/
https://de.fotolia.com/

Future-Proof Software-Systems: Summary 11.12.2019

© Prof. Dr. Frank J. Furrer - WS 2019/20 2

Summary 11.12.2019

▪ A1: Architecture Layer Isolation

▪ A2: Partitioning, Encapsulation and Coupling

▪ A3: Conceptual Integrity

▪ A4: Redundancy

▪ A5: Interoperability

▪ A6: Common Functions

▪ A7: Reference Architectures, Frameworks and Patterns

▪ A8: Reuse and Parametrization

▪ A9: Industry Standards

▪ A10: Information Architecture

▪ A11: Formal Modeling

▪ A12: Complexity and Simplification

Horizontal

Architecture Layer

Principles

Future-Proof Software-Systems: Summary 11.12.2019

© Prof. Dr. Frank J. Furrer - WS 2019/20 3

Summary 11.12.2019

▪ A1: Architecture Layer Isolation

▪ A2: Partitioning, Encapsulation and Coupling

▪ A3: Conceptual Integrity

▪ A4: Redundancy

▪ A5: Interoperability

▪ A6: Common Functions

▪ A7: Reference Architectures, Frameworks and Patterns

▪ A8: Reuse and Parametrization

▪ A9: Industry Standards

▪ A10: Information Architecture

▪ A11: Formal Modeling

▪ A12: Complexity and Simplification

Horizontal

Architecture Layer

Principles

Future-Proof Software-Systems: Summary 11.12.2019

© Prof. Dr. Frank J. Furrer - WS 2019/20 4

Summary 11.12.2019 Why models?

Adequate Models provide:

h
tt

p
:/

/
w

w
w

.p
o
rt

la
n

d
a
rt

.n
e
t

 Clarity

 Committment

 Communication

 Control

The 4 C‘s of models

http://www.portlandart.net/

Future-Proof Software-Systems: Summary 11.12.2019

© Prof. Dr. Frank J. Furrer - WS 2019/20 5

Summary 11.12.2019

Committment
All stakeholders have

accepted the model, its

representation and the

consequences (agreement)

Communication
The model truly and sufficiently

represents the key properties

of the real world to be mapped

into the IT-solution

Control
The model is used for the

assessment of

specifications, design,

implementation, reviews

and evolution

Clarity
The concepts, relationships, and

their attributes are

unambigously defined and

understood by all stakeholders

The 4 C‘s of models

Future-Proof Software-Systems: Summary 11.12.2019

© Prof. Dr. Frank J. Furrer - WS 2019/20 6

Summary 11.12.2019

How can we handle model size & complexity?

Views ToolsHierarchical
refinement

Domains

Future-Proof Software-Systems: Summary 11.12.2019

© Prof. Dr. Frank J. Furrer - WS 2019/20 7

Summary 11.12.2019

h
tt

p
:/

/
w

w
w

.u
b
iz

o
o
.d

e

Which are today‘s engineering

modeling solutions?

Mature and in wide use:

✓ Domain Models

✓ Business Object Models

✓ Web-Standards (WSDL, …)

✓ OCL

✓ Ontologies (OWL-DL)

✓ UML, SysML + Profiles

✓ State machines

✓ Timed automata

✓ Simulink Models

✓ ERD for Databases

Emerging and in selected use:

✓ Domain Specific Languages

✓ Contracts (CSLs)

✓ (Coloured) Petri Nets

✓ Annotated, directed hypergraphs

✓ Graph rewriting

✓ Role-based modeling (RoSI)

Waiting in the trenches:

✓ «Z»-Language

✓ «Event-B» Language

✓ Certified Code generators

✓ Correctness provers

http://www.ubizoo.de/

Future-Proof Software-Systems: Summary 11.12.2019

© Prof. Dr. Frank J. Furrer - WS 2019/20 8

Summary 11.12.2019

SysML expresses systems engineering semantics

(interpretations of notations) better than than UML.

SysML is smaller and easier to learn than UML. Since

SysML removes many software-centric constructs, the

overall language is smaller as measured in diagram

types (9 vs. 13) and total constructs.

h
ttp

s://w
w

w
.th

egen
iu

sw
o

rks.co
m

SysML:

Systems Modeling Language

Software

System

The Systems Modeling Language (SysML) is a general-purpose modeling language for systems

engineering applications. It supports the specification, analysis, design, verification and validation of a

broad range of systems and systems-of-systems.

https://www.thegeniusworks.com/

Future-Proof Software-Systems: Summary 11.12.2019

© Prof. Dr. Frank J. Furrer - WS 2019/20 9

Summary 11.12.2019 The Future: Contract-Based Systems Engineering

Component,

Application

Interface

Service
Contract

Component,

Application

Interface

Service
Contract

Component,

Application

Interface

Service
Contract

Component,

Application

Interface

Service
Contract C

o
m
p
o
si
ti
o
n

Contract Model

Composition Model

Component Model

Future-Proof Software-Systems: Summary 11.12.2019

© Prof. Dr. Frank J. Furrer - WS 2019/20 10

Summary 11.12.2019

▪ A1: Architecture Layer Isolation

▪ A2: Partitioning, Encapsulation and Coupling

▪ A3: Conceptual Integrity

▪ A4: Redundancy

▪ A5: Interoperability

▪ A6: Common Functions

▪ A7: Reference Architectures, Frameworks and Patterns

▪ A8: Reuse and Parametrization

▪ A9: Industry Standards

▪ A10: Information Architecture

▪ A11: Formal Modeling

▪ A12: Complexity and Simplification

Horizontal

Architecture Layer

Principles

Future-Proof Software-Systems: Summary 11.12.2019

© Prof. Dr. Frank J. Furrer - WS 2019/20 11

Summary 11.12.2019

“Complexity is that property of an IT-system which makes it

difficult to formulate its overall behaviour, even when given

complete information about its parts and their relationships“

Complexity = (IT-) Risk

Future-Proof Software-Systems: Summary 11.12.2019

© Prof. Dr. Frank J. Furrer - WS 2019/20 12

Summary 11.12.2019

Essential complexity Accidental Complexity

… is the inherent complexity

of the system to be built.

Essential complexity for a

given problem cannot be

reduced.

It can only be lessened by

simplifying the requirements

for the system extension.

… is introduced in addition

to the essential complexity

by our development activities

or by constraints from our

environment.

This is unnecessary and

threatening complexity!

 However, essential

complexity can be managed

and its negative effects can

be minimized by good

architecture

 Avoiding and eliminating

accidental complexity is a

continuous task in the

development process – from

requirements to deployment!

Future-Proof Software-Systems: Summary 11.12.2019

© Prof. Dr. Frank J. Furrer - WS 2019/20 13

Summary 11.12.2019

Complexity
Known (identified)
Complexity

Unknown (hidden)
Complexity

Necessary (desired)
Complexity

[Essential Complexity]

Unnecessary

(undesired)
Complexity

[Accidental Complexity]

manage it use it carefully

avoid it
eliminate it

attack it

Managing Complexity
• OS

• DBMS

• TCP/IP Stack

• etc.

• Technical debt

• Architecture

erosion

Future-Proof Software-Systems: Summary 11.12.2019

© Prof. Dr. Frank J. Furrer - WS 2019/20 14

Summary 11.12.2019

http://blogs.proquest.com

Implement a process step „simplification“ in your development process

Periodically carry out re-architecture programs „complexity reduction“

Reqs Specs Arch Design Build TestSimplify

Check-

list

Application Landscape

Technology Portfolio

Re-Architecture Program 2014

➢ Eliminate …

➢ Refactor …

➢ Replace …

➢ Redesign …

➢ etc.

Effort:

1‘100 MM

Cost:

27 M€

http://blogs.proquest.com/

Future-Proof Software-Systems: Summary 11.12.2019

© Prof. Dr. Frank J. Furrer - WS 2019/20 15

Summary 11.12.2019

... Continue with Part 4A

Dependability

