

Summary of Lecture 08.01.2020

... Very condensed summary of the 08.01.2020 lecture

Low Risk

Future-Proof Software-Systems [Part 4A]

Architecting for Dependability:

Defining and implementing an **IT-structure** providing the

optimum defense against incidents,

based on a *risk management methodology*

and on proven *dependability architecture/design principles*

Nince

Moderate Ris

Dependability Engineer:

Responsible for the resilience

engineering *process* in a company

Dependability Principles & Patterns

DEFINITIONS

Summary 08.01.2020 R1: Policies

The set of *basic principles* and *associated guidelines*, formulated and enforced by the governing body of an organization, to direct and limit its actions in pursuit of *long-term goals*

http://www.businessdictionary.com/definition/policy.html

Good policies guide the course of a company in all relevant areas towards sustainable success

Good policies are a great help for the people implementing company objectives, especially *infrastructure projects* DEFINITIONS

Summary 08.01.2020 R2: Vertical Architectures

Cell X = Safety Concern in the Application Software

Architecture Framework Cells =

Allow assignment, structuring, and separating of the functionality and of the quality properties of IT-systems to enable partitioning and life-cycle management.

⇒ Formulation of Powerful Set of Architecture Principles, <u>e.g.:</u>
NEVER implement security functionality in the applications software
... but only allow calls to the security functionality

https://www.npmjs.com

«Canon of Orthogonality»

© Prof. Dr. Frank J. Furrer - WS 2019/20

The consequences of a *fault* – the ensuing *error* – can **propagate** either by an erroneous message or by an erroneous output action of the faulty part

Build **error** propagation boundaries around each system part

Summary 08.01.2020 R4: Single Points of Failure

A single point of failure (SPOF) is a part of a system that, if it *fails*, will stop the *entire* system from working

Summary 08.01.2020 | R5: Multiple Lines of Defense

Multiple lines of defense represents the use of *multiple* computer techniques to help mitigate the risk of one component of the defense being compromised or circumvented

Summary 08.01.2020 R6: Fail-Safe States

Fail-safe means that a system will not endanger lives or property when it fails.

DEFINITIONS

It will go into a *fail-safe state* and stop working.

[©] Prof. Dr. Frank J. Furrer - WS 2019/20

Summary 08.01.2020 | R8: Dependable Infrastructure

Resilience Infrastructure:

Set of proven resilience technologies and services supporting the dependability properties (availability, security, performance, ...) of software systems

DEFINITIONS

Summary 08.01.2020 R9: Monitoring

Summary 08.01.2020 R9: Monitoring

What should be monitored ?

Network: Operational Parameters

Infrastructure: Operational Parameters

Interfaces/Services: Timing, Syntax & Semantics

Configuration: Changes

Business KPI's: Statistics

Applications: Operational Parameters

Service Level Agreements: Operational Parameters

Dependability Properties: Activity & Parameters

Summary 08.01.2020 Chaos-Engineering

https://hub.packtpub.com

Summary 08.01.2020 Security

Information Security: The CIA-Triad

C: Confidentiality

Allows only *authorized users* to access sensitive information and functionality.

I: Integrity

The information and functionality in the system is *correct* and *consistent* at any time (as specified by the rightful owner).

A: Availability

Percentage of time a computer system's information and functionality is *ready* for the intended use.

Summary 08.01.2020 Security

Information security protects the confidentiality, integrity and availability of computer system data and functionality from unauthorized and malicious accesses

DEFINITIONS

Summary 08.01.2020 Security

Confidentiality

Future-Proof Software-Systems: Summary 08.01.2020

Announcements

Summary 08.01.2020

Oral Exam

Participants can receive a grade via an **oral exam** (3 credits ECTS)

Exam Dates:

Monday, 17-Feb-2020 / 09:00 - 17:30

Thursday, 18-Feb-2020 / 09:00 - 13:30

Please agree the date/time with: Sebastian Goetz,

Lehrstuhl für Softwaretechnologie

Note: Because I am living in Switzerland, my availability in Dresden is limited

27

com/photo 115434623

Used with permission {28.12.2019}

https://www.123rf.

0

Hauptseminar SS 2020:

«Engineering Safety and Security for Cyber-Physical Systems»

Prof. Dr. Frank J. Furrer

Kick-Off Meeting 27. April 2020

SS 2020: Engineering Safety and Security for Cyber-Physical Systems

Computersystem **Serious Concerns:** Security

https://www.fosterwallace.com

com https://safety.lovetoknow.com

SS 2020: Engineering Safety and Security for Cyber-Physical Systems

Hauptseminar = A course, where a small number of students work intensely and interactively with the teacher

to acquire new skills and/or new knowledge

ask

challenge

contribute

•	write a good	paper
		_

- hold a convincing presentation
- learn peer-reviewing

© Prof. Dr. Frank J. Furrer – SS 2020

"Engineering Safety and Security for Cyber-Physical Systems"

 ≤ 7

Time-Table

Hauptseminar Kick-Off	Monday, April 27 , 2020:	Introductory Lecture by
Meeting	09:20 - 10:50 (2. DS) Room APB/INF 2101	Prof. Frank J. Furrer

1 st Seminar Day	Monday, May 25, 2020:	Participants
	09:20 - 10:50/11:10 -	presentations
	12:40 (2. + 3. DS)	 Peer discussions,
	Room APB/INF 2101	Feedback on style & content

2 nd Seminar Day	Monday, July <mark>6</mark> , 2020: 09:20 – 10:50/11:10 - 12:40 (2. + 3. DS)	 2nd participants presentation Peer discussions,
	Room APB/INF 2101	Feedback on style and content

Our journey:

