
Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie – Prof. Aßmann – Model-Driven Softwrae Development in Technical Spaces

28. Megamodel Single Underlying Model (SUM)
with Orthographic Software Modeling (OSM) -
A 1-TS-Megamodel with Total Consistency

Prof. Dr. U. Aßmann

Technische Universität Dresden

Institut für Software- und
Multimediatechnik

http://st.inf.tu-dresden.de/teaching/
most

Version 19-1.1, 06.01.20

1) The megamodel “Single Underlying
Model (SUM)”

2) Skeleton-SUM

3) Flat Context-Based Skeleton SUM

1) Orthographic Software Modeling
(OSM)

4) Hierarchic Context-Based Skeleton
SUM

5) Delta-Based Lenses

6) SUM on ROSI-CROM

http://st.inf.tu-dresden.de/

 ©
 P

ro
f.

U
. A

ß
m

an
n

2 Model-Driven Software Development in Technical Spaces (MOST)

Software Factories with Only 1 Technical Space

Mega- and MacromodelsMega- and Macromodels

Tool EngineeringTool Engineering

Model Management
Mapping, Transf., Composition

Model Management
Mapping, Transf., Composition

Technical
Space
Bridges

Technical
Space
Bridges

Technical SpaceTechnical Space

Meta-
modeling

Meta-
modeling

Model Analysis
Querying, Interpretation

Model Analysis
Querying, Interpretation

Metapyramid (Metahierarchy) for Token ModelingMetapyramid (Metahierarchy) for Token Modeling

Software Factory

Multi-TS Megamodel

In this chapter:
1-TS Megamodels

SUM

 ©
 P

ro
f.

U
. A

ß
m

an
n

3 Model-Driven Software Development in Technical Spaces (MOST)

References

► Hettel, Thomas and Lawley, Michael J. and Raymond, Kerry (2008). Model
Synchronisation: Definitions for Round-Trip Engineering. In Proceedings ICMT2008 -
International Conference on Model Transformation: Theory and Practice of Model
Transformations LNCS 5063/2008, pages pp. 31-45, Zurich, Switzerland.

► Thomas Hettel. Model Round-Trip Engineering. PhD Thesis. Queensland University of
Technology, 2010

► Zinovy Diskin and Yingfei Xiong and Krzysztof Czarnecki. From State- to Delta-Based
Bidirectional Model Transformations: the Asymmetric Case. Journal of Object
Technology, 2011, vol. 10, 6, pp. 1-25,

■ http://dx.doi.org/10.5381/jot.2011.10.1.a6

► J. Nathan Foster and Michael B. Greenwald and Jonathan T. Moore and Benjamin C.
Pierce and Alan Schmitt. Combinators for Bi-Directional Tree Transformations: A
Linguistic Approach to the View Update Problem, ACM Transactions on Programming
Languages and Systems, Vol 29(3), pp. 17, 2007

■ http://www.cis.upenn.edu/~bcpierce/papers/newlenses-popl.pdf

 ©
 P

ro
f.

U
. A

ß
m

an
n

4 Model-Driven Software Development in Technical Spaces (MOST)

Overview Table for Macromodels

► RAGs are useful for all Macromodels, because they abbreviate dependencies in several
models with cross-model relations.

■ In a macromodel under an artificial root (rooted macromodel), attributions
can work on the SUM to ensure the constraints

► RelRAGs are useful, because they have bidirectional constraints

MDA Olympic
(De)composition

Skeleton SUM (partial
function extension)

 General SUM VSUM

Orthographi
c Software
Modeling
(OSM)

RAGs in
Repositories

Markings Marking of tree
nodes

get/put as higher-
order attributions

RAGs in Data-
flow
architectures

Needs trace
models

Slices In-place
transformations of
SUM

get/put as
model
transformatio
ns

Works well to generate derived
models

5

Software Engineering
Prof. Dr. Colin Atkinson 5

Overview

1. Find out why software engineering is important
■ see some software engineering failures

2. Get acquainted with –
■ the Chair of Software Engineering

■ the research

■ the people

■ the teaching

Synchronization of Projective Views on
a Single Underlying Model
(A Orthographic Macromodel)

Many slides are courtesy to:
Christian Vjekoslav Tunjic,
Prof. Colin Atkinson

Used by permission

L‘Aquila. Italy
21 July, 2015

Presented at: VAO 2015

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie – Prof. Aßmann – Model-Driven Softwrae Development in Technical Spaces

28.1. The Megamodel “Single-Underlying Model
(SUM)”

• [Atkinson]

7

Software Engineering
Prof. Dr. Colin Atkinson 7

Traditional View-based Development Environment

Java sourceUML classes

Behavior

code
RegEx

test
casesXMI

AFD

OpSpec

system

8

Software Engineering
Prof. Dr. Colin Atkinson 8

View 5

View 4

View 3

View 2

View 1

On-Demand View Generation in a SUM
(Flat Contexts Correspond to Colors or Tags)

Java sourceUML classes

Behavior

Single Underlying Model (SUM)
(all views merged)

Context 1

Context 2

Context 3

Context 4

Context 5
Requirements
texts

Deployment
diagrams

The SUM, if editable, provide a single-source view

9

Software Engineering
Prof. Dr. Colin Atkinson 9

10

Software Engineering
Prof. Dr. Colin Atkinson 10

11

Software Engineering
Prof. Dr. Colin Atkinson 11

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie – Prof. Aßmann – Model-Driven Softwrae Development in Technical Spaces

28.2. The Skeleton-SUM

[Hettel08]

[Seifert11]

 ©
 P

ro
f.

U
. A

ß
m

an
n

13 Model-Driven Software Development in Technical Spaces (MOST)

Skeletons and Flesh

► Skeleton splits models into

■ Skeletons (redundant) (several contexts)

■ and flesh (clothing) (locally different stuff in views, mono-context)

► Global invariants on skeletons vs. local „flesh“ variants

► Flesh must be non-overlapping, extending the skeleton

► Skeletons can have isomorphic, homomorphic, monotonically extended “skeleton” mappings,

■ or may be non-morphic

Skeleton

Flesh

 [Hettel08] [Seifert11]

non-morphic

non-morphic

isomorphic

 ©
 P

ro
f.

U
. A

ß
m

an
n

14 Model-Driven Software Development in Technical Spaces (MOST)

Mono-Skeleton-SUM

► Mono-Skeleton-SUM splits models into

■ One common Skeleton (redundant) (several contexts)

■ and flesh (clothing) (locally different stuff in views, mono-context)

► Global invariants on the ONE skeleton vs. local „flesh“ variants

► Flesh must be non-overlapping, extending the skeleton

Skeleton

Flesh

 [Hettel08] [Seifert11]

isomorphic

isomorphic

isomorphic

isomorphic

isomorphic

SUM

View 1
View 2

View 3

 Model-Driven Software Development in Technical Spaces (MOST) © Prof. U. Aßmann

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie

28.2.1 A Skeleton-SUM for Documentation

 ©
 P

ro
f.

U
. A

ß
m

an
n

16 Model-Driven Software Development in Technical Spaces (MOST)

Pkg

Class

Method

Class

Method Method

Comments

comments

comments

code

code code
code

code

comments

comments

comments

Example Skeleton-SUM:
Scope tree of a program (static structuring)

Attributes of Nodes:

► Comments (package, class, method, parameter)

► Code

► Visibility

► Metadata

► Unit tests

 ©
 P

ro
f.

U
. A

ß
m

an
n

17 Model-Driven Software Development in Technical Spaces (MOST)

Pkg

Class

Method

Class

Method Method

Projecting A Scope Tree for Skeleton

► put/get operations transform SU to views and back

► Get: partial function projection

► Put: partial function merge

► Ex: result of get operation for Scope Tree “Skeleton”

 ©
 P

ro
f.

U
. A

ß
m

an
n

18 Model-Driven Software Development in Technical Spaces (MOST)

Pkg

Class

Method

Class

Method Method

Comments

Comments

Comments

Projecting A Scope Tree for Skeleton

► Result of get operation for For Comment Context “Comment Flesh”

 ©
 P

ro
f.

U
. A

ß
m

an
n

19 Model-Driven Software Development in Technical Spaces (MOST)

Pkg

Class

Method

Class

Method Method

Code

Code

Projecting A Scope Tree for Skeleton

► Result of get operation for Code Context “Code Flesh”

 ©
 P

ro
f.

U
. A

ß
m

an
n

20 Model-Driven Software Development in Technical Spaces (MOST)

Merge of Partial Functions and Partial Trees in a Mono-
Skeleton-SUM

► Given two partial functions: attr: D E and attr2: D F→ →
► Their merge merged-attr:D E ◊ F→

■ Merged-attr(d) = attr (d) ◊ attr2(d)

► Skeleton-SUM are trees of objects
which work on a partial function space of attributes

■ Every view adds a new partial function

Method

Class

Method

code

code code

comments

comments

comments

Method

Class

Method

comments

comments

comments

Method

Class

Method

code

code
code

 ©
 P

ro
f.

U
. A

ß
m

an
n

21 Model-Driven Software Development in Technical Spaces (MOST)

A Simple Metamodel-based Mono-Skeleton-SUM

SUM

Comment
View

Code
View

CodeView and CommentView
unify along the skeleton

 ©
 P

ro
f.

U
. A

ß
m

an
n

22 Model-Driven Software Development in Technical Spaces (MOST)

► The Skeleton need not be a link tree; it can be an arbitrary graph data structure
■ But RAGs can model Mono-Skeleton-SUMs very easily: inherit the flesh

attributes to all nodes

► Between Skeleton and Flesh there holds a key dependency
■ A partial function describes the mapping between skeleton and flesh
■ Different partial functions exist for every view
■ Flesh-skeleton unification employs partial function merge (feature term

unification)

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie – Prof. Aßmann – Model-Driven Softwrae Development in Technical Spaces

28.3. Context-Based Skeleton-SUM

[Hettel08]

[Seifert11]

 ©
 P

ro
f.

U
. A

ß
m

an
n

24 Model-Driven Software Development in Technical Spaces (MOST)

Skeleton-SUM

► Clothing can be associated to context (context-aware clothing)
■ Code context
■ Comment context

► If all clothings have mono-context, the SUM is called flat contextual SUM.

Context Context
Context
Hierarchy

 ©
 P

ro
f.

U
. A

ß
m

an
n

25 Model-Driven Software Development in Technical Spaces (MOST)

A Metamodel-based Skeleton-SUM with Flat Context Hierarchy

SUM

Comment
View

Code
View

Signature
View

TestCase
View

Views unify along the skeleton
Context

Context
Hierarchy

Active context determines
the view

 Model-Driven Software Development in Technical Spaces (MOST) © Prof. U. Aßmann

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie

28.3.1. Orthographic Software Modeling (OSM)
as a Dimensional, Context-Based Skeleton-SUM

[Hettel08]

[Seifert11]

27

Software Engineering
Prof. Dr. Colin Atkinson 27

Orthographic Software Modeling (OSM) as a
Dimensional Skeleton-SUM

■ Many engineering disciplines have a long and successful tradition of
technical drawing - orthographic projection

■ so why don't we do this in software engineering?

Operational
projection

Behavioral
projection

Structural
projectioncom

ponent

■ On demand view generation
(projective views)

■ Dimension-based navigation

■ View-based methodology

28

Software Engineering
Prof. Dr. Colin Atkinson 28

Dimension Based Navigation

■ views organized in a multi-dimensional cube

■ one choice always “selected” from each dimension

■ each cell represents a viewpoint

28

Cell

...

...

... ...

 ©
 P

ro
f.

U
. A

ß
m

an
n

29 Model-Driven Software Development in Technical Spaces (MOST)

OSM is a Flat Contextual Skeleton-SUM

► OSM defines n-dimensional contexts, i.e., every model element is related to n contexts.

► OSM can be realized by a Skeleton-SUM providing n mono-contextual clothings
■ i.e., n mono-contextual attributes for every model element (link tree node).

► The n Contexts are used for projection

► Instead of attributes, model elements have roles (CROM-Skeleton-SUM)

► ROSIMA is a CROM-Skeleton-SUM

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie – Prof. Aßmann – Model-Driven Softwrae Development in Technical Spaces

28.4. Hierarchic Context-Based Skeleton-SUM

[Hettel08]

[Seifert11]

 ©
 P

ro
f.

U
. A

ß
m

an
n

31 Model-Driven Software Development in Technical Spaces (MOST)

Hierarchic Skeleton-SUM

► Clothing can be associated to structured context
■ Code context

. Signatures

. Implementation
■ Comment context

► If som clothings have an inner (structured) context, the SUM is called hierarchic
contextual SUM.

Context
Context
Hierarchy

Test Comment

Implementation Signature

Code

 ©
 P

ro
f.

U
. A

ß
m

an
n

32 Model-Driven Software Development in Technical Spaces (MOST)

A Mono-Skeleton-SUM
with Hierarchic Contexts

SUM

Comment
View

Code
View

Code
View

TestCase
View

Context
Context
Hierarchy

Views of
structured context
can be further
decomposed

Signature
View

Implementation
View

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie – Prof. Aßmann – Model-Driven Softwrae Development in Technical Spaces

28.5 Delta-Based Lenses for Incremental
Modifications for Scalability and Applicability of
Skeleton-SUMs

[Diskin]

34

Software Engineering
Prof. Dr. Colin Atkinson 34

Delta-Based Lenses for
Scalability and Applicability

■ A technical approach must scalable for the chosen field of applicabilty

■ Simple minded implementation approach –
■ uni-directional exhaustive transformations (SUM-to-view, view-to-SUM)

■ create a new (version of the) view whenever there is a change in the
SUM

■ create a new (version of the) SUM whenever there is a change in a
view

■ No incrementality

■ Would work but -
■ not scalable (inefficient)

■ transformation more complex than necessary

■ too large grained

Þ Delta-based bidirectional lenses

35

Software Engineering
Prof. Dr. Colin Atkinson 35

Delta-Based Lenses and Skeleton SUMs

■ Lenses (Pierce et al. 2007) are bidirectional transformations based on get
(exhaustive projection, decomposition, checkout) and put (exhaustive
integration, checkin) operations on models
■ axioms for well-behaved lenses

■ axiom for very well behaved lenses

■ Delta-based Lenses optimize the checkin/checkout (Diskin et al. 2011)
■ Incremental delta operations: dput and dget operations driven by the

changes to the views

■ much more fine-grained and scalable

■ Skeleton-SUMs fulfill the DeltaPUTPUT rule

if s = dput(v, s), then dget(s) = v // DeltaPUTPUT rule

v: View; s:SUM
get(put(v, s)) = v // PUTGET invariant rule
put(get(s), s) = s // GETPUT invariant rule

put(v’, put(v, s)) = put(v’, s) // PUTPUT invariant rule

36

Software Engineering
Prof. Dr. Colin Atkinson 36

OSM Context

■ In OSM, the SUM is much larger than the views
■ the views are relatively small and compact

■ Views can be updated concurrently
■ axioms only applicable locally (i.e. to one view at a time)

■ Usually have one-to-one correspondences between view elements and SUM
elements
■ changes can conveniently be

traced to the affected element

■ View elements cannot be changed
just locally
■ for example, cannot delete

an element from just the
view, but not the SUM

37

Software Engineering
Prof. Dr. Colin Atkinson 37

Hybrid Approach

■ use get to create views from the SUM

■ use dput to update the SUM when a view is changed

■ Skeleton-SUM (and therefore OSM9) fulfill the DeltaPutPut rule

get

v
dput

s

if s = dput(v, s), then dget(s) = v // DeltaPUTPUT rule

38

Software Engineering
Prof. Dr. Colin Atkinson 38

Pros and Cons

■ Traces allow affected SUM elements to be efficiently identified
■ can be generated most mainstream transformation engines

■ Traces also allow the open views impacted by a change to be identified
■ must be updated dynamically a la MVC pattern

■ Use of get to create views reduces the complexity of the transformation with
little extra overhead
■ no need to update trace information

■ Use of dput to update the SUM greatly enhances the efficiency of updating
SUM
■ the SUM is only ever updated via changes to views

■ However, it increases the amount of information that needs to be stored on
the server
■ part of the SUM?

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie – Prof. Aßmann – Model-Driven Softwrae Development in Technical Spaces

28.6 Skeleton-SUM on RoSI CROM

 ©
 P

ro
f.

U
. A

ß
m

an
n

40 Model-Driven Software Development in Technical Spaces (MOST)

28.6 Skeleton-SUM on RoSI CROM

► The SUM principle can be played on all metalanguages, e.g., CROM

► CROM supports Mono-Skeleton-SUM for all
■ Contexts provide viewpoints
■ Cores provide Skeleton, Roles provide flesh/clothing
■ Role-play provides partial functions from objects to roles for a SkeletonSUM

over cores and roles

Theorem: A CROM-based Skeleton-SUM fulfils the delta-putput invariant.Theorem: A CROM-based Skeleton-SUM fulfils the delta-putput invariant.

 ©
 P

ro
f.

U
. A

ß
m

an
n

41 Model-Driven Software Development in Technical Spaces (MOST)

The End

► Explain, how partial functions between objects and attributes enable the projections
(get) and the merge functions (put) of a Skeleton-SUM

► Why are contexts important for views?

► Which are the contexts of OSM?

► Why does ROSI-CROM enable Skeleton-SUM?

