
 Model-Driven Software Development in Technical Spaces (MOST) © Prof. U. Aßmann

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie

29. Composition of Stream-Based Tools (Data
Exchange) and the Resulting Macromodels

Prof. Dr. Uwe Aßmann

Technische Universität Dresden

Institut für Software- und
Multimediatechnik

http://st.inf.tu-dresden.de

Version 19-1.1, 06.01.20

1) Architecture of Stream-
Based Software Factories

2) Extension of Stream-Based
Tools

3) Stream-based Macromodels

4) Stream-based XML-
Mashups

5) End
1) Aspect-Oriented Extension

2) EAI-Decomposition of Tools

3) EAI-Based Composition of Tools

http://st.inf.tu-dresden.de/

 ©
 P

ro
f.

U
. A

ß
m

an
n

2 Model-Driven Software Development in Technical Spaces (MOST)

Literatur

► Informatik Forum http://www.infforum.de/

► Structured Analysis Wiki
http://yourdon.com/strucanalysis/wiki/index.php?title=Introduction

► Ed Yourdon. Just Enough Structured Analysis. Free pdf-book on:
– http://www.yourdon.com/jesa/pdf/JESA_xtru.pdf

► De Marco, T.: Structured Analysis and System Specification; Yourdon Inc. 1978/1979.
Siehe auch Vorlesung ST-2

► McMenamin, S., Palmer, J.: Strukturierte Systemanalyse; Hanser Verlag 1988

► Raasch, J.: Systementwicklung mit Strukturierten Methoden; Hanser Verlag (3.Aufl.)
München 1993

► [Altinel07] Mehmet Altinel, Paul Brown, Susan Cline, Rajesh Kartha, Eric Louie, Volker
Markl, Louis Mau, Yip-Hing Ng, David E. Simmen, and Ashutosh Singh. DAMIA - A data
mashup fabric for intranet applications. In C. Koch, et.al., editors, VLDB, pages 1370-
1373. ACM, 2007.

http://www.infforum.de/
http://yourdon.com/strucanalysis/wiki/index.php?title=Introduction

 Model-Driven Software Development in Technical Spaces (MOST) © Prof. U. Aßmann

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie

29.1 Architecture of Stream-Based Software Factories

An Integrated Development Environment is a Tool Suite
with Data, Control, Process, and UI-Integration.

 ©
 P

ro
f.

U
. A

ß
m

an
n

4 Model-Driven Software Development in Technical Spaces (MOST)

UNIX Programmers Workbench (PWB): Stream- and File-
Based

► Bell Labs developed a stream-based UNIX Programmers' Workbench (PWB) in 1976
■ UNIX had introduced the file system and streams (for C programs and shell scripts)

■ http://en.wikipedia.org/wiki/Programmer%27s_Workbench_UNIX

► CACM publication:
■ http://delivery.acm.org/10.1145/360000/359856/p746-ivie.pdf?

key1=359856&key2=5161309211&coll=GUIDE&dl=GUIDE&CFID=55168257&CFTOK
EN=9543918

► “Notable firsts in PWB include:

■ The Source Code Control System, the first revision control system, written by Marc J.
Rochkind

■ The remote job entry batch-submission system

■ The PWB shell, written by John R. Mashey, which preceded Steve Bourne's Bourne shell

■ The restricted shell (rsh), an option of the PWB shell

■ The troff -mm (memorandum) macro package, written by John R. Mashey and Dale W.
Smith

■ The make utility for build automation

■ Utilities like find, cpio, expr, all three written by Dick Haight, xargs, egrep and fgrep

■ yacc and lex, which, though not written specifically for PWB, were available outside of Bell
Labs for the first time in the PWB distribution”

 Model-Driven Software Development in Technical Spaces (MOST) © Prof. U. Aßmann

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie

29.2 Extension of Stream-Based Tools by Workflow
Languages and DFD

And composition of stream-based tools

 ©
 P

ro
f.

U
. A

ß
m

an
n

6 Model-Driven Software Development in Technical Spaces (MOST)

Q6: Architecture of Stream-Based Transformation Tools
(Filters)

Workflow language

Repository
(Internal)

Filter
Tool-Core

Import Export Output StreamInput Stream

Layer B
(boundary)

Layer C
(Control)

Layer E
(Entity)

Layer D
(Database)

Consistency

► In a filter tool, the work, the transformation of a material, is done on one (or few)
material(s) at a time

► By a DFD or Workflow (Mashup), simple tools can be composed to more complex
tools, written in a DFD- or Workflow-language

User Interface

 ©
 P

ro
f.

U
. A

ß
m

an
n

7 Model-Driven Software Development in Technical Spaces (MOST)

Composition of Tools by Stream Merging

► The architecture and composition of stream-based tools can be described by DFD,
workflows, or (Web-)mashups

► Three composition operations are important:
– Input stream synchronization: does a process read from input channels

synchronously or alternatingly?
– Input stream merge: how does a process merge two input channels?
– Output stream replication: does a process replicate output data in

different streams or produce different output formats?

Documents
(Schema 1)

in:Schema1

out:Schema5Documents
(Schema 2)

Documents
(Schema 4)

Filter A
(Transformation)

out2:Schema4

in2:Schema2

Internal
storage

in2:Schema3

Documents
(Schema 5)

Filter I1
(Transformation)

Filter I2
(Transformation)

Filter I3
(Transformation)

Filter 01
(Transformation)

Filter 02
(Transformation)

 ©
 P

ro
f.

U
. A

ß
m

an
n

8 Model-Driven Software Development in Technical Spaces (MOST)

Tool Extension by
Stream Duplication and Asynchronous Merge

► DFD are easily extensible, because input streams can be replicated to deliver their
content into the processes of the extension (extension listening on stream of core)

► Output streams of extensions can write asynchronously into output storages or
streams (asynchronous merge)

out:Schema5Documents
(Schema 2)

Documents
(Schema 4)

Filter A
(Transformation)

out2:Schema4

in1:Schema1

Table
storage

in2:Schema2

Documents
(Schema 5)

Filter B
(Extension)

out:Schema5

out2:Schema4

Extension

Filter Tool

 ©
 P

ro
f.

U
. A

ß
m

an
n

9 Model-Driven Software Development in Technical Spaces (MOST)

Synchronizing Extension of Core Tool

► Output streams of extensions can write synchronously into output storages by adding
new synchronizing activities guarding output storages

out:Schema5Documents
(Schema 2)

Documents
(Schema 4)

Process A
(Transformation)

out2:Schema4

in1:Schema1

Table
storage

in2:Schema2

Documents
(Schema 5)

Filter B
(Extension)

out:Schema4

Filter A
(Transformation)

ExtensionExtension

Filter Tool

 ©
 P

ro
f.

U
. A

ß
m

an
n

10 Model-Driven Software Development in Technical Spaces (MOST)

Example: Shell Script Extension in Linux

► Streams are text streams (untyped)

► tee is a filter replicating a text stream

► paste or lam are filters merging two streams

Text file 1

Text file 3

Filter A
(Transformation)

Table
storage

Text file 2

Filter B
(Extension)

out2:Schema4

tee paste

 Model-Driven Software Development in Technical Spaces (MOST) © Prof. U. Aßmann

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie

29.3. Extensible Stream-Based Tools:
DQL und DTL in DFD-Mashups

Ex.: Technical Space Treeware-XML

XML Mashups are special DFD

The example can be transferred to Graphware or
Grammarware using other DQL and DTL

 ©
 P

ro
f.

U
. A

ß
m

an
n

12 Model-Driven Software Development in Technical Spaces (MOST)

Use of DQL and DTL in DFD (e.g., Web Mashups)

► DTL and DQL (Xquery, Xcerpt and others) can be employed for filters, generators and
transformers (processes in DFD)

■ A DDL describes the types of data on the streams (types, schemata)

■ String rewrite systems can be used to specify processes if streams transport texts

■ Term rewrite systems can be used to specify processes if streams transport trees
■ XML rewrite systems: With XML and XSD, Xcerpt can be used

■ Graph rewrite systems can be used if streams transport graphs

► Mashups are XML-DFD

■ easily extensible, because channels can be replicated and extended

■ extremely important for extensible tools

XML-Dokumente
(Schema 1)

XML-Dokumente
(Schema 2)

in:Schema1
out:Schema2

Internal
storage

Stored
Data

Disk

Filter in DTL
e.g., Xcerpt

Trafo A

out2:Schema2

 ©
 P

ro
f.

U
. A

ß
m

an
n

13 Model-Driven Software Development in Technical Spaces (MOST)

XML-Mashups with Modular Xcerpt

Use Modular Xcerpt for creating a CD mashup of our favourite music LPs
– “mashing-up” freely available data from online stores
– easily extensible with new sources or processing steps

Mashup

Client
<<views>>

Client
<<views>>

Amazon

bol.de

buch.de

Actor
Actor

Filter
Modular

Xcerpt
Trafo A

 ©
 P

ro
f.

U
. A

ß
m

an
n

14 Model-Driven Software Development in Technical Spaces (MOST)

Mashups with Modular Xcerpt

► First we need a data structure for CDs, so that we can use it for our virtual store of
aggregated data

► Model with Xcerpt data terms (XML trees)
–

cd [
artist,
title,
coverlink,
songs [

song, song … song
]

]

cd

titleartist coverlink songs

song song song ...

 ©
 P

ro
f.

U
. A

ß
m

an
n

15 Model-Driven Software Development in Technical Spaces (MOST)

Mashups with Modular Xcerpt

► Next step: creating import modules to aggregate data from our sources
MODULE AmazonQuery
FROM
public html [

 head [[]],
 body [[

var ARTIST, br,
var TITLE, br,
img {
 attributes {src { var COVERLINK }}
},
table [[
 tr [
 th [[]]
],
 tr[
 td [var SONGTITLE],
 td [[]]
]

]]
]]
]
CONSTRUCT
public cd [

artist [var ARTIST],
title [var TITLE],
coverlink [var COVERLINK],
songs [
 all song [var SONGTITLE]
]

]
END

(Example HTML Source)

 ©
 P

ro
f.

U
. A

ß
m

an
n

16 Model-Driven Software Development in Technical Spaces (MOST)

Mashups with Modular Xcerpt

► Import modules are independent from a concrete source
– pass the resource locations to the modules
– collect all data from modules by introducing a virtualroot node (dummy)

MODULE MainProgram

IMPORT /import/AmazonQuery.mxcerpt AS Amazon
IMPORT /import/BuchdeQuery.mxcerpt AS BuchDE

CONSTRUCT to Amazon (
 var DATA
)
FROM
 in {
 resource { “file:data/amazon-blue_man_group-

the_complex.html", "xml" },
 var DATA
 }
END

CONSTRUCT to BuchDE

 …
END

// Filling variable CDINFO with
// dummy virtual root node
CONSTRUCT

virtualroot [all var CDINFO]
FROM in Amazon (

var CDINFO -> cd [[]]
)
END

CONSTRUCT
virtualroot [all var CDINFO]

FROM in BuchDE (
var CDINFO -> cd [[]]

)
END

../../../../../data/amazon-blue_man_group-

 ©
 P

ro
f.

U
. A

ß
m

an
n

17 Model-Driven Software Development in Technical Spaces (MOST)

Mashups with Modular Xcerpt

► Construct rules “mash up” the data – create a new webpage
– in Xcerpt a goal rule must be specified (program entry point)

FROM
virtualroot [[
 cd [[
 artist [var ARTIST],
 title [var TITLE]
]]
]]
GOAL
out {
 resource {"file:mashup.html", "xml"},
 html [
 head [
 title ["Mashup"]
],
 body [
 table [
 all tr [
 td [var ARTIST],
 td [var TITLE]
]
]
]
]
}
END

FROM
virtualroot [[
 cd [[
 artist [var ARTIST],
 title [var TITLE]
]]
]]
GOAL
out {
 resource {"file:mashup.html", "xml"},
 html [
 head [
 title ["Mashup"]
],
 body [
 table [
 all tr [
 td [var ARTIST],
 td [var TITLE]
]
]
]
]
}
END

Goal Rule

html
html

cd

html
html

cd

virtualroot virualroot
Amzon
Module

BuchDE
Module

Main
Program

Blue Man
Group
 web page Gorillaz

web
page

Mashup

html

2raumwohn.
 web page

Chicane
web
page

(Structure of the Modular Xcerpt program)

 ©
 P

ro
f.

U
. A

ß
m

an
n

18 Model-Driven Software Development in Technical Spaces (MOST)

Further Decomposition of Mashup Possible

► Further decomposition of program possible
– HTML creator can be an extra module
– Table layout and style sheet linking can be made configurable

Goal Rule

table

virtualroot

HTMLCreator
Module

TableCreator
Module

Main
Program

Mashup

html

(advanced Modular Xcerpt program)

alldata

cd

TableCreator
Module

virtualroot

html

style

html creator

webpage data

link
style sheetStyle

Module

 Model-Driven Software Development in Technical Spaces (MOST) © Prof. U. Aßmann

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie

29.4. Macromodels with Stream-Based Tools (DFD
Aspects)

 ©
 P

ro
f.

U
. A

ß
m

an
n

20 Model-Driven Software Development in Technical Spaces (MOST)

Stream-Skeleton-SUM
View Extension and Merge

► Projection operations can be used to form Views of a SUM (view-get operation)

► Adding a new extension adds a new view

► If filters are implemented by RAG, projections (view-get) can be calculated by projection on attributions

► RAG-A, -B and -C are assumed to be subsets of RAG-SUM

Filter A
(Projection A)

in1:RAG-SUM

Filter B
(Projection B)

out3:RAG-B

Extension
(Aspect B/
Context B)

Link Tree
(SUM)

Link Tree
(View B)

out2:RAG-A

Link Tree
(Full View A)

Merge Filter
(Unify Trees)

Filter C
(Projection C)

out4:RAG-C

Link Tree
(View C)

Extension
(Aspect C/
Context C)

 ©
 P

ro
f.

U
. A

ß
m

an
n

21 Model-Driven Software Development in Technical Spaces (MOST)

Google Docs as Stream-Skeleton-SUM
View Extension and Merge

► Document is a link tree in XML format

Editor A
(Projection A)

in1:RAG-SUM

Editor B
(Projection B)

out3:RAG-B

Extension
(View B/

Context B)

Link Tree
(View B)

out2:RAG-A

Link Tree
(Full View A)

Editor C
(Projection C)

out4:RAG-C

Link Tree
(View C)

Extension
(View C/

Context C)

tee

Link Tree
(SUM)

(on server)

Paste
Merge Filter

(order inputs)

 ©
 P

ro
f.

U
. A

ß
m

an
n

22 Model-Driven Software Development in Technical Spaces (MOST)

Stream-Skeleton-SUM
for Mashedup Websites, with Intake of New Data

► New data can be taken into the SUM from every view

Filter A
(Projection A)

in1:RAG-SUM

Filter B
(Projection B)

out3:RAG-B

Extension
(Aspect B/
Context B)

HTML
Link Tree

(SUM)

Link Tree
(View B

Amazon Data)

out2:RAG-A

Link Tree
(Full View A)

Merge Filter
(Unify Trees)

Filter C
(Projection C)

out4:RAG-C

Link Tree
(View C

Bol Data)

Extension
(Aspect C/
Context C)

Merge Filter B
(Merge Amazon

Data)

Merge Filter C
(Merge Bol

Data)

HTML Link Tree
(new from
Amazon)

HTML Link Tree
(new from

Bol)

 Model-Driven Software Development in Technical Spaces (MOST) © Prof. U. Aßmann

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie

29.4.2. MDA Macromodels with Stream-Based Tools
(DFD Aspects)

 ©
 P

ro
f.

U
. A

ß
m

an
n

24 Model-Driven Software Development in Technical Spaces (MOST)

MDA by Composition of DFD Aspects

► DFD modules can be used as MDA cartridges
■ They compose process extensions “around” stream names
■ Model weaving is done by stream copying, decomposition and composition

► Model Transformation and Template expansion (in MDA) is done by modular
composition (aspect composition) with DFD modules and filters

■ Model synchronisation is done by re-composition
■ DFD-MDA supports composable and decomposable macromodels

 ©
 P

ro
f.

U
. A

ß
m

an
n

25 Model-Driven Software Development in Technical Spaces (MOST)

MDA Stream-based Lowerings (Forward Transformations)

Filter A
(reducing

Stereotype A)

in1:RAG-PSM

Filter B
(reducing

Stereotype B)

out3:RAG-B

Morphic
Transformation

2

Link Tree
(PIM)

Link Tree
(PIM‘‘)

out2:RAG-A

Link Tree
(PIM‘)

Filter C
(reducing

Stereotype C)

out4:RAG-PSM

Link Tree
(PSM)

Morphic
Transformation

3

Morphic Transformation 1

Filter D
(Expand)

out5:RAG-PSI

Link Tree
(PSI)

Model2Text
Expansion Template

► Morphic lowering
operations can be used
transform the PSM step by
step to the PIM

► As well as template-expand
and code-merge

Merge Filter E
(Unify Trees)

Out6:RAG-Source

Link Tree
(Source)

Code
Merge Hand-written

Code

 ©
 P

ro
f.

U
. A

ß
m

an
n

26 Model-Driven Software Development in Technical Spaces (MOST)

MDA Stream-based Lowerings with TraceModels
(MDA Stream Macromodel)

Filter A
(reducing

Stereotype A)

Filter B
(reducing

Stereotype B)

out3:RAG-B

Morphic
Transformation

2

Link Tree
(PIM)

Link Tree
(PIM‘‘)

out2:RAG-A

Link Tree
(PIM‘)

Filter C
(reducing

Stereotype C)

out4:RAG-PSM

Link Tree
(PSM)

Morphic
Transformation

3

Morphic Transformation 1

Filter D
(Expand)

out5:RAG-PSI

Link Tree
(PSI)

Model2Text
ExpansionTemplate

► Morphic lowering
operations can be traced in
a trace model

► This trace model allows for
inverting all
transformations by
disambiguating reductions

► A macromodel results:
Every Link Tree can be
edited and synchronized
with the other models

Merge Filter E
(Unify Trees)

Out6:RAG-Source

Link Tree
(Source)

Code
MergeHand-written

Code

Trace Model A

Trace Model B

Trace Model C

Trace Model D

Trace Model E

 ©
 P

ro
f.

U
. A

ß
m

an
n

27 Model-Driven Software Development in Technical Spaces (MOST)

MDA Stream-based Lowerings with RAGs
(MDA Stream Macromodel)

Filter B
(reducing

Stereotype B)

out3:RAG-B

Morphic
Transformation

2

Link Tree
(PIM)

Link Tree
(PIM‘‘)

out2:RAG-A

Link Tree
(PIM‘)

Filter C
(reducing

Stereotype C)

out4:RAG-PSM

Link Tree
(PSM)

Morphic
Transformation

3

Morphic Transformation 1

Filter D
(Expand)

out5:RAG-PSI

Link Tree
(PSI)

Model2Text
ExpansionTemplate

► With RAG, trace models can
often be slim, because the
dynamic dependency graph
of attributions records
traces anyway!

► Saved:
■ Trace model of

Template
expansion

■ Merging Trace
Models

► If we combine

RAG-SUM = RAG-A + RAG-B +
RAG-PSM + RAGPSI + RAG-
Source,

the RAG-SUM computes all
traces in the dependency
graphsMerge Filter E

(Unify Trees)

Out6:RAG-Source

Link Tree
(Source)

Code
MergeHand-written

Code

Trace Model A

Trace Model B

Trace Model C

Filter A
(reducing

Stereotype A)

 ©
 P

ro
f.

U
. A

ß
m

an
n

28 Model-Driven Software Development in Technical Spaces (MOST)

How Do I Construct a Macromodel Myself?

► 1) Decide on stream-based or
repository-based architecture

► 2) Decide on Skeleton-SUM or MDA
■ Use RAGs for all models
■ Use CROM/Scroll

► Repository-based Skeleton-SUM:
■ Get full traceability and

synchronization for GET and
PUT operations

■ Scroll programming for GET
and PUT

► Repository-based MDA:
■ Use RAG aspects and get full

traceability
■ ROSIMA is a Mono-

Skeleton-SUM with GET as
deactivation of contexts and
PUT as activation of contexts

► Stream-based Skeleton-SUM:
■ Use RAGs for all models to

save trace models and get
SUM as in-place
transformation

► Stream-based MDA:
■ Use RAGs for all models to

save trace models and get
traceability as good as
possible

 ©
 P

ro
f.

U
. A

ß
m

an
n

29 Model-Driven Software Development in Technical Spaces (MOST)

The End – What did we learn?

► Stream-based tools, filters, can easily be extended and composed
– with input stream replication
– with asynchronous or synchronous output stream merge
– with aspect-oriented extension

► Tools should be composed only with regard to their Essence, disregarding
Administration and Infrastructure aspects

► Macromodels can be stream-based
■ Explain a stream-based Skeleton-SUM macromodel
■ Explain a stream-based MDA macromodel
■ How are trace models saved?

 Model-Driven Software Development in Technical Spaces (MOST) © Prof. U. Aßmann

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie

29.5. Aspect-Oriented XML-Weaving with XML
Transformations

► For aspect-orientied extensions of DFD und Mashups

 ©
 P

ro
f.

U
. A

ß
m

an
n

31 Model-Driven Software Development in Technical Spaces (MOST)

Aspect-Oriented Tool Extension by Crosscut-Graph between
Core and Extension

► If an extension extends many places in a core (scattering), a crosscut-graph results
describing the scattering

Documents
(Schema 2)

Documents
(Schema 4)

Filter A
(Transformation)

Table
storage

Documents
(Schema 5)

Filter E
(Extension)

Filter B
(Transformation)

Cross-cut graph

Core

Extension

 ©
 P

ro
f.

U
. A

ß
m

an
n

32 Model-Driven Software Development in Technical Spaces (MOST)

XML Adaptation Aspects (HyperAdapt Weaver)

► Xcerpt mashups induce data-flow architecture

► Mashups should be rendered for different target devices, e.g., mobiles, tablets →
Adaptation Aspects

Mashup

Client
<<views>>

Client

<<views>>

Amazon

bol.de

buch.de

Conver-
ter

Amazon

bol.de

 ©
 P

ro
f.

U
. A

ß
m

an
n

33 Model-Driven Software Development in Technical Spaces (MOST)

XML Adaptation Aspects (HyperAdapt Weaver)

► The tool “HyperAdapt Weaver” modifies the streams by transformation: “aspect
actions” are “woven” into the stream

Mashup

Client
<<views>>

Client

<<views>>

Amazon

bol.de

buch.de

Conver-
ter

Amazon

Request Conversion Aggregation Render (e.g.,
XHTML)

aspect SIZE {
Before „Aggregation“
If (device=“mobile“)→
Action
 Choose SMALL CD Cover
Variant
}

aspect LAYOUT {
Before „Render“
If (screen_w<“5cm“)→
Action Convert Layout
}

 ©
 P

ro
f.

U
. A

ß
m

an
n

34 Model-Driven Software Development in Technical Spaces (MOST)

XML Adaptation Aspects (HyperAdapt Weaver)

► Example: Virtual Storage Music Database before aggregation phase as plain XML

► Selection of fragments with regard to device type (global variable)
<music-database xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://music music.xsd" xmlns="http://music">
 <album inStock="Yes">
 <title>How to Be a Megastar-Live!</title>
 <artist>

<pseudonym>Blue Man Group</pseudonym>
 </artist>
 <id>B00166GLVO</id>

<edition>First</edition>
<publisher>Rhino (Warner)</publisher>
<image size="SMALL" url="..."/>
<image size="LARGE" url="...SS500_.jpg"/>
<image size="TINY" url="...SS500_tiny.jpg"/>
<media>

<medium kind="CD">
 <tracks>
 <song name="Above" length="3.30" />
 <song name="Drumbone" length="3.25" />
 <song name="Time To Start" length="4.22" />
 <song name="Up To The Roof" length="4.16" />
 <song name="Altering Appearances" length="2.23" />
 <song name="Persona" length="4.12" />
 <song name="Your Attention" length="4.04" />
 <song name="Piano Smasher " length="6.01" />
 <song name="Shirts And Hats" length="4.40" />
 <song name="Sing Along" length="3.10" />
 </tracks>
</medium>

 </media>
 </album>
</music-database>

aspect SIZE {
Before „Aggregation“
If (device=“mobile“)→
Action Choose SMALL
CD Cover Variant
}

(Pictures from amazon.de)

 ©
 P

ro
f.

U
. A

ß
m

an
n

35 Model-Driven Software Development in Technical Spaces (MOST)

XML Adaptation Aspects (HyperAdapt Weaver)

► Example: Document adaptation specified as HyperAdapt Adaptation Aspect, written in
the XML-based HyperAdapt Aspect Language

– Interpreting these aspects, the weaver weaves aspect slice into streams

<?xml version="1.0" encoding="UTF-8" ?>
<aspect name="choose-image">
 <interface>
 <core id="core" type="http://music" />
 </interface>
 <adviceGroup>
 <scope>

<xpath>/music:music-database</xpath>
<before>Aggregation</before>

 </scope>
 <advices>
 <chooseVariant>

 <pointcut>/music:album/music:image[1]</pointcut>
 </chooseVariant>
 </advices>
 </adviceGroup>
</aspect>

document namespace

process stage (joinpoint)

adaptation rule (advice)

 Model-Driven Software Development in Technical Spaces (MOST) © Prof. U. Aßmann

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie

29.6 Essential Decomposition of Tools

 ©
 P

ro
f.

U
. A

ß
m

an
n

37 Model-Driven Software Development in Technical Spaces (MOST)

Development with DFD

► Prozess-oriented Refinement/Decomposition refines processes/activities step by
step into smaller processes (divide-and-conquer)

– One dimension of decomposition

► Essential Decomposition uses aspect-oriented decomposition and distinguishes three
aspects: [McMenamen/Palmer]

– Essence (E): essential processes, activities, storage. Functionality that
cannot be stripped

– Administration (A): administrative activities (for consistency checking of
data in internal storages;for contract checking of processes on input and
output streams)

– Infrastructure (I): activities for communication and adaptation to platform
(platform-specific details)

 ©
 P

ro
f.

U
. A

ß
m

an
n

38 Model-Driven Software Development in Technical Spaces (MOST)

Olympic Rings (EAI-Decomposition)

Essence

Administration

Infrastruktur / Middleware

Event Environment

Functionality, independent of
platform

Events external to the system

Quality assurance, consistency
checking, contract checking,
error handling, error compensation

Middleware: platform- and
implementation-dependent
I/O, communication with
external world, UI

Physical ring

► Essential decomposition (EAI decomposition) separates the essence of a system from
implementation-specific parts (infrastructure) and quality assurance (administration).

► Essential functionality assumes perfect technology [McMenamen/Palmer]
■ Processes do not need time, storage with unlimited capacity

►

 ©
 P

ro
f.

U
. A

ß
m

an
n

40 Model-Driven Software Development in Technical Spaces (MOST)

EAI-Decomposition of DFD-Based Tools

► With DFD, the decomposition into EAI-aspects (Essence, Administration,
Infrastructure) is simple

■ Every model element is given a direct concern by the user
■ The rest is graph slicing

EAI-concerns of a tool:

► Essence of a tool:
– Functionality assuming perfect technology

► Administration of a tool:
– Constraint checker
– Contract checkers on streams
– Wellformedness checker on internal repository

► Infrastructure of a tool:
– Parser, tree constructor (import)
– Pretty printer, code generator (export)

 ©
 P

ro
f.

U
. A

ß
m

an
n

41 Model-Driven Software Development in Technical Spaces (MOST)

Ex. EAI-Decomposition of a Process of a Tool “Task
Management System”

Essence

Administration Customer

Infrastucture
<completed>
permission

<signed>
permission

<written>
Form

<approved>
 Application

Proposal<checked>
application

<unchecked>
 Application

<raw>
Desire

► EAI was invented for the Structured Analysis of applications, but can be used for tools

accept
_Desire

send
permission

sign
permission

check_
application

approveinvestigate

update

write
_Form

[Raasch]

Administration

<raw>
Address

check_
address

 ©
 P

ro
f.

U
. A

ß
m

an
n

42 Model-Driven Software Development in Technical Spaces (MOST)

EAI-Decomposition of a Stream-Based Tool

User Interface

Repository
(internal database)Administration

Infrastructure

Output streamInput stream Import Export

Consistency
checker

Filter Core (Essence)

Filter 1 Filter 2

Consistency
checker

Infrastructure

 ©
 P

ro
f.

U
. A

ß
m

an
n

43 Model-Driven Software Development in Technical Spaces (MOST)

reducible DFD

Essential Structured Analysis for Tools

Requirements

Event Analysis
recognize events on an

input channel

ECA-Rule Table

Event Condition Action

Essential
DFD of tool

essential hierarchy

processes, activities

Quelle: Raasch, J.: Systementwicklung mit Strukturierten Methoden; Hanser Verlag (3.Aufl.) München 1993

administrative hierarchy

processes, activities

Administrative
DFD of tool

Infrastructure hierarchy

processes, activities

Infrastructure/
Middleware
DFD of tool

reducible DFD reducible DFD

Rule Base

ECA-Analysis

Data Dictionary

streams

 Model-Driven Software Development in Technical Spaces (MOST) © Prof. U. Aßmann

Fakultät Informatik - Institut Software- und Multimediatechnik - Softwaretechnologie

29.7 Composition of Stream-Based Tools

 ©
 P

ro
f.

U
. A

ß
m

an
n

45 Model-Driven Software Development in Technical Spaces (MOST)

Process for Composition of Stream-Based Tools

1) Strip the DFD: Strip Essence of
Administration and Infrastructure:

1) remove parser, printer,
GUI, etc.

2) Compose the essential DFD of the
tools

– Extend and merge
streams with the same
schema (respect typing)

– Extend core tools by
asynchronous merge of
output streams

– Extend core tools by
synchronous merge of
output streams

– Use aspect-oriented
extension with cross-
cut-graphs

3) Add Administration

4) Add Infrastructure to the composed
DFD

reducible DFD

Essential
DFD of tool

essential hierarchy

processes, activities

administrative hierarchy

processes, activities

Administrative
DFD of tool

Infrastructure hierarchy

processes, activities

Infrastructure/
Middleware
DFD of tool

reducible DFD reducible DFD

streams

 ©
 P

ro
f.

U
. A

ß
m

an
n

46 Model-Driven Software Development in Technical Spaces (MOST)

reducible DFD

Essential
DFD of tool

essential hierarchy

processes, activities

administrative hierarchy

processes, activities

Administrative
DFD of tool

reducible DFD

1) Strip Infrastructure 2) Strip Administration

reducible DFD

Essential
DFD of tool

essential hierarchy

processes, activities

administrative hierarchy

processes, activities

Administrative
DFD of tool

reducible DFD

reducible DFD

Essential
DFD of tool

essential hierarchy

processes, activities

reducible DFD

Essential
DFD of tool

essential hierarchy

processes, activities

1 2

 ©
 P

ro
f.

U
. A

ß
m

an
n

47 Model-Driven Software Development in Technical Spaces (MOST)

3) Extend Essence 4) Add Administration

reducible DFD

Essential
DFD of tool

essential hierarchy

processes, activities

reducible DFD

Essential
DFD of tool

essential hierarchy

processes, activities

reducible DFD

Extended
essential
DFD of tool

essential hierarchy

processes, activities

reducible DFD

Extended
essential
DFD of tool

essential hierarchy

processes, activities

reducible DFD

New administration
DFD of tool

administrat. hierarchy

processes, activities

3 4

 ©
 P

ro
f.

U
. A

ß
m

an
n

48 Model-Driven Software Development in Technical Spaces (MOST)

5) Add New Infrastructure

reducible DFD

Extended
essential
DFD of tool

essential hierarchy

processes, activities

reducible DFD

New administration
DFD of tool

administrat. hierarchy

processes, activities

reducible DFD

New infrastructure
DFD of tool

administrat. hierarchy

processes, activities

streams

5

